Title:Structures and Absorption Spectrum of 1D and 2D ZnS Nanoparticles
VOLUME: 5 ISSUE: 1
Author(s):Spyros Papantzikos, Alexandos G. Chronis, Fotios I. Michos and Mihail M. Sigalas*
Affiliation:Department of Materials Science, University of Patras, GR-26504, Patras, Department of Materials Science, University of Patras, GR-26504, Patras, Department of Materials Science, University of Patras, GR-26504, Patras, Department of Materials Science, University of Patras, GR-26504, Patras
Keywords:ZnS nanoparticles, nanorods, non-toxic elements, density functional theory, absorption
spectrum, UV region.
Abstract:
Background: ZnS nanoparticles (NPs) are attractive for quantum dots
applications because they consist of abundant and non-toxic elements. Their major
drawback is that they absorb in the UV region, ultimately limiting their
applications.
Objective: In the present study, 1D and 2D ZnS NPs have been found. The goal of
this study is to find NPs that have absorption in the visible spectrum.
Methods: Calculations based on the Density Functional Theory (DFT) have been
used to find the optimized geometries. Their absorption spectra have been
calculated with the Time-Dependent DFT.
Results: Several shapes were examined, such as nanorod, and it is observed that
these shapes move the absorption spectra in lower energies, into the visible
spectrum, while the 3D NPs have absorption edges in the UV region.
Conclusion: NPs with the shape of nanorod in different directions showed that their
absorption spectra moved to lower energies well inside the visible spectrum with
significantly high oscillator strength. In contrast with the mostly used CdSe NPs,
the ZnS NPs are made from more abundant and less toxic elements. Therefore, by
making them absorb in the visible region, they may find significant applications in
solar cells and other photonic applications.