Towards a Better Understanding of Computational Models for Predicting DNA Methylation Effects at the Molecular Level

Author(s): Nathanael K. Proctor, Tugba Ertan-Bolelli, Kayhan Bolelli, Ethan W. Taylor, Norman H.L. Chiu, J. Phillip Bowen*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 10 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Human DNA is a very sensitive macromolecule and slight changes in the structure of DNA can have disastrous effects on the organism. When nucleotides are modified, or changed, the resulting DNA sequence can lose its information, if it is part of a gene, or it can become a problem for replication and repair. Human cells can regulate themselves by using a process known as DNA methylation. This methylation is vitally important in cell differentiation and expression of genes. When the methylation is uncontrolled, however, or does not occur in the right place, serious pathophysiological consequences may result. Excess methylation causes changes in the conformation of the DNA double helix. The secondary structure of DNA is highly dependent upon the sequence. Therefore, if the sequence changes slightly the secondary structure can change as well. These slight changes will then cause the doublestranded DNA to be more open and available in some places where large adductions can come in and react with the DNA base pairs. Computer models have been used to simulate a variety of biological processes including protein function and binding, and there is a growing body of evidence that in silico methods can shed light on DNA methylation. Understanding the anomeric effect that contributes to the structural and conformational flexibility of furanose rings through a combination of quantum mechanical and experimental studies is critical for successful molecular dynamic simulations.

Keywords: DNA, DNA methylation, nucleosides, nucleotides, molecular mechanics (MM), molecular dynamics (MD), MD simulations, computational chemistry, quantum mechanics (QM), density functional theory (DFT), QM/MM, ab initio calculations, anomeric effect, conformations, pseudorotation.

Llinàs-Arias, P.; Esteller, M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol., 2017, 7(9), pii: 170152
[] [PMID: 28931650]
Hardwick, J.S.; Lane, A.N.; Brown, T. Epigenetic modifications of cytosine: Biophysical properties, regulation and function in mammalian DNA. BioEssays, 2018, 40(3), 1700199
[] [PMID: 29369386]
Varriale, A. DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges. Int. J. Dev. Biol., 2014., 475981
Kumar, S.; Cheng, X.; Klimasauskas, S.; Mi, S.; Posfai, J.; Roberts, R.J.; Wilson, G.G. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res., 1994, 22(1), 1-10.
[] [PMID: 8127644]
Ferreira, Humberto Manel, E CpG Islands in cancer: heads, tails, and sides. Methods Enzymol.,, 2018, 1766(CpG Islands), 49-80.
López, V.; Fernández, A.F.; Fraga, M.F. The role of 5-hydroxymethylcytosine in development, aging and age-related diseases. Ageing Res. Rev., 2017, 37, 28-38.
[] [PMID: 28499883]
Eleftheriou, M.; Pascual, A.J.; Wheldon, L.M.; Perry, C.; Abakir, A.; Arora, A.; Johnson, A.D.; Auer, D.T.; Ellis, I.O.; Madhusudan, S.; Ruzov, A. 5-Carboxylcytosine levels are elevated in human breast cancers and gliomas. Clin. Epigenetics, 2015, 7, 88.
Jeltsch, A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem, 2002, 3(4), 274-293.
[<274:AID-CBIC274>3.0.CO;2-S] [PMID: 11933228]
Gruber, D.R.; Toner, J.J.; Miears, H.L.; Shernyukov, A.V.; Kiryutin, A.S.; Lomzov, A.A.; Endutkin, A.V.; Grin, I.R.; Petrova, D.V.; Kupryushkin, M.S.; Yurkovskaya, A.V.; Johnson, E.C.; Okon, M.; Bagryanskaya, E.G.; Zharkov, D.O.; Smirnov, S.L. Oxidative damage to epigenetically methylated sites affects DNA stability, dynamics and enzymatic demethylation. Nucleic Acids Res., 2018, 46(20), 10827-10839.
[] [PMID: 30289469]
Lee, J.Y.; Lee, T.H. Effects of DNA methylation on the structure of nucleosomes. J. Am. Chem. Soc., 2012, 134(1), 173-175.
[] [PMID: 22148575]
Lapinska, K.; Faria, G.; McGonagle, S.; Macumber, K.M.; Heerboth, S.; Sarkar, S. Cancer progenitor cells: The result of an epigenetic event? Anticancer Res., 2018, 38(1), 1-6.
[PMID: 29277749]
Zhou, Z.; Sun, B.; Li, X.; Zhu, C. DNA methylation landscapes in the pathogenesis of type 2 diabetes mellitus. Nutr. Metab. (Lond.), 2018, 15(47), 47.
[] [PMID: 29988495]
Potaczek, D.P.; Harb, H.; Michel, S.; Alhamwe, B.A.; Renz, H.; Tost, J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics, 2017, 9(4), 539-571.
[] [PMID: 28322581]
Liang, L.; Willis-Owen, S.A.G.; Laprise, C.; Wong, K.C.C.; Davies, G.A.; Hudson, T.J.; Binia, A.; Hopkin, J.M.; Yang, I.V.; Grundberg, E.; Busche, S.; Hudson, M.; Rönnblom, L.; Pastinen, T.M.; Schwartz, D.A.; Lathrop, G.M.; Moffatt, M.F.; Cookson, W.O.C.M. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature, 2015, 520(7549), 670-674.
[] [PMID: 25707804]
Duan, Y.T.; Sangani, C.B.; Liu, W.; Soni, K.V.; Yao, Y. New promises to cure cancer and other genetic diseases/disorders: Epi-drugs through epigenetics. Curr. Top. Med. Chem., 2019, 19(12), 972-994.
[] [PMID: 31161992]
Yang, K.; Park, D.; Tretyakova, N.Y.; Greenberg, M.M. Histone tails decrease N7-methyl-2′-deoxyguanosine depurination and yield DNA-protein cross-links in nucleosome core particles and cells. Proc. Natl. Acad. Sci. USA, 2018, 115(48), E11212-E11220.
[] [PMID: 30429328]
Singer, B.; Hang, B. Nucleic acid sequence and repair: role of adduct, neighbor bases and enzyme specificity. Carcinogenesis, 2000, 21(6), 1071-1078.
[] [PMID: 10836993]
Tan, X.; Suzuki, N.; Grollman, A.P.; Shibutani, S. Mutagenic events in Escherichia coli and mammalian cells generated in response to acetylaminofluorene-derived DNA adducts positioned in the Nar I restriction enzyme site. Biochemistry, 2002, 41(48), 14255-14262.
[] [PMID: 12450390]
Bestor, T.; Edwards, J.R.; Ju, J.; Li, X. Universal methylation profiling methods. IPN WO, 2010, 2010/011312, A9.
Rollins, R.A.; Haghighi, F.; Edwards, J.R.; Das, R.; Zhang, M.Q.; Ju, J.; Bestor, T.H. Large-scale structure of genomic methylation patterns. Genome Res., 2006, 16(2), 157-163.
[] [PMID: 16365381]
Yan, S.; Shapiro, R.; Geacintov, N.E.; Broyde, S. Stereochemical, structural, and thermodynamic origins of stability differences between stereoisomeric benzo[a]pyrene diol epoxide deoxyadenosine adducts in a DNA mutational hot spot sequence. J. Am. Chem. Soc., 2001, 123(29), 7054-7066.
[] [PMID: 11459484]
Garner, R.C.; Tierney, B.; Phillips, D.H. A comparison of 32P-postlabelling and immunological methods to examine human lung DNA for benzo[a]pyrene adducts. IARC Sci. Publ., 1988, 89(89), 196-200.
[PMID: 3143669]
van Schooten, F.J.; Hillebrand, M.J.; Scherer, E.; den Engelse, L.; Kriek, E. Immunocytochemical visualization of DNA adducts in mouse tissues and human white blood cells following treatment with benzo[a]pyrene or its diol epoxide. A quantitative approach. Carcinogenesis, 1991, 12(3), 427-433.
[] [PMID: 1901249]
Baan, R.A.; Steenwinkel, M.J.; van Asten, S.; Roggeband, R.; van Delft, J.H. The use of benzo[a]pyrene diolepoxide-modified DNA standards for adduct quantification in 32P-postlabelling to assess exposure to polycyclic aromatic hydrocarbons: application in a biomonitoring study. Mutat. Res., 1997, 378(1-2), 41-50.
[] [PMID: 9288884]
Guo, l.; Jiang, X.; Tian, H.-Y.; Yao, S.J.; Li, B.-Y.; Zhang, R.J.; Zhang, S.-S.; Sun, X. Detection of BPDE-DNA adducts in human umbilical cord blood by LC-MS/MS analysis. Yao Wu Shi Pin Fen Xi, 2019, 27, 518-525.
Glick, J.; Xiong, W.; Lin, Y.; Noronha, A.M.; Wilds, C.J.; Vouros, P. The influence of cytosine methylation on the chemoselectivity of benzo[a]pyrene diol epoxide-oligonucleotide adducts determined using nanoLC/MS/MS. J. Mass Spectrom., 2009, 44(8), 1241-1248.
[] [PMID: 19536795]
Cheng, S.C.; Hilton, B.D.; Roman, J.M.; Dipple, A. DNA adducts from carcinogenic and noncarcinogenic enantiomers of benzo[a]pyrene dihydrodiol epoxide. Chem. Res. Toxicol., 1989, 2(5), 334-340.
[] [PMID: 2519824]
Denissenko, M.F.; Chen, J.X.; Tang, M.S.; Pfeifer, G.P. Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc. Natl. Acad. Sci. USA, 1997, 94(8), 3893-3898.
[] [PMID: 9108075]
Kolbanovskiy, A.; Kuzmin, V.; Shastry, A.; Kolbanovskaya, M.; Chen, D.; Chang, M.; Bolton, J.L.; Geacintov, N.E. Base selectivity and effects of sequence and DNA secondary structure on the formation of covalent adducts derived from the equine estrogen metabolite 4-hydroxyequilenin. Chem. Res. Toxicol., 2005, 18(11), 1737-1747.
[] [PMID: 16300383]
Cheatham, T.E., III; Young, M.A. Molecular dynamics simulation of nucleic acids: successes, limitations, and promise. Biopolymers, 2000-2001, 56(4), 232-256.
[<232:AID-BIP10037>3.0.CO;2-H] [PMID: 11754338]
Naômé, A.; Schyman, P.; Laaksonen, A.; Vercauteren, D.P. Molecular dynamics simulation of 8-oxoguanine containing DNA fragments reveals altered hydration and ion binding patterns. J. Phys. Chem. B, 2010, 114(14), 4789-4801.
[] [PMID: 20307074]
Fischer, N.M.; Polêto, M.D.; Steuer, J.; van der Spoel, D. Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations. Nucleic Acids Res., 2018, 46(10), 4872-4882.
[] [PMID: 29718375]
Cheatham, T.E., III; Kollman, P.A. Molecular dynamics simulations highlight the structural differences among DNA:DNA, RNA:RNA, and DNA:RNA hybrid duplexes. J. Am. Chem. Soc., 1997, 119, 4805-4825.
Cheatham, T.E., III Simulation and modeling of nucleic acid structure, dynamics and interactions. Curr. Opin. Struct. Biol., 2004, 14(3), 360-367.
[] [PMID: 15193317]
Jalluri, R.; Yuh, Y.H.; Taylor, E.W. The O-C-N anomeric effect in nucleosides: a major factor underlying the experimentally observed eastern barrier to pseudorotation. ACS Symposium Series, 1993, Vol. 539, pp. 277-293.
Zacharias, M. Conformational analysis of DNA-trinucleotide-hairpin-loop structures using a continuum solvent model. Biophys. J., 2001, 80(5), 2350-2363.
[] [PMID: 11325735]
Gilson, M.K.; Davis, M.E.; Luty, B.A.; McCammon, J.A. Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation. J. Phys. Chem., 1993, 97, 3591-3600.
Pérez, A.; Luque, F.J.; Orozco, M. Frontiers in molecular dynamics simulations of DNA. Acc. Chem. Res., 2012, 45(2), 196-205.
[] [PMID: 21830782]
Kumari, I.; Sandhu, P.; Ahmed, M.; Akhter, Y. Molecular dynamics simulations, challenges and opportunities: A biologist’s prospective. Curr. Protein Pept. Sci., 2017, 18(11), 1163-1179.
[] [PMID: 28637405]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
Halgren, T.A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem., 1999, 20, 720-729.
Halgren, T.A. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comput. Chem., 1999, 20, 730-748.
Nester, K.; Gaweda, K.; Plazinski, W. A GROMOS force field for furanose-based carbohydrates. J. Chem. Theory Comput., 2019, 15(2), 1168-1186.
[] [PMID: 30609362]
Wavefunction, Inc.; Irvine, CA 92612, USA..
Andrews, C.W.; Fraser-Reid, B.; Bowen, J.P. An ab initio study (6-31G*) of transition states in glycoside hydrolysis based on axial and equatorial 2-methoxytetrahydropyrans. J. Am. Chem. Soc., 1991, 113, 8293-8298.
Wiberg, K.B.; Bailey, W.F.; Lambert, K.M.; Stempel, Z.D. The anomeric effect: It’s complicated. J. Org. Chem., 2018, 83(9), 5242-5255.
[] [PMID: 29620891]
Aranda, J.; Zinovjev, K.; Swiderek, K.; Roca, M.; Tuñόn, I. Unraveling the reaction mechanism of enzymatic c5-cytosine methylation of DNA. A combined molecular dynamics and QM/MM study of wild type and Gln119 variant. ACS Catal., 2016, 6, 3262-3276.
Harris, S.A. Modelling the biomechanical properties of DNA using computer simulation. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2006, 364(1849), 3319-3334.
[] [PMID: 17090462]
Young, M.A.; Ravishanker, G.; Beveridge, D.L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys. J., 1997, 73(5), 2313-2336.
[] [PMID: 9370428]
Sundaralingam, M. Stereochemistry of nucleic acids and their constituents. IV. Allowed and preferred conformations of nucleosides, nucleoside mono‐, di‐, tri‐, tetraphosphates, nucleic acids and polynucleotides. Biopolymers, 1969, 7, 821-860.
Sundaralingam, M. The stereochemical concepts of nucleic acids. Conformation in Biology; Srinivasan, R; Sarma, R.H., Ed.; Adenine Press: NY, 1983, pp. 191-225.
Juaristi, E. The attractive and repulsive gauche effects. J. Chem. Educ., 1979, 56, 438-441.
Altona, C.; Sundaralingam, M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J. Am. Chem. Soc., 1972, 94(23), 8205-8212.
[] [PMID: 5079964]
Westhof, E.; Sundaralingam, M. A Method for the analysis of puckering disorder in five-membered rings: The relative mobilities of furanose and proline rings and their effects on polynucleotide and polypeptide backbone flexibility. J. Am. Chem. Soc., 1983, 105, 970-976.
Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New York, N.Y., 1984.
Taylor, E.W.; Van Roey, P.; Schinazi, R.F.; Chu, C.K. A stereochemical rationale for the activity of anti-HIV nucleosides. Antivir. Chem. Chemother., 1990, 1, 163-173.
Olson, W.K. How flexible is the furanose ring? II. An updated potential energy estimate. J. Am. Chem. Soc., 1982, 104, 278-286.
Pearlman, D.A.; Kim, S-H. Conformational studies of nucleic acids. II. The conformational energetics of commonly occurring nucleosides. J. Biomol. Struct. Dyn., 1985, 3(1), 99-125.
[] [PMID: 3917020]
Plavec, J.; Tong, W.; Chattopadhyaya, J. How do the gauche and anomeric effects drive the pseudorotational equilibrium of the pentofuranose moiety of nucleosides? J. Am. Chem. Soc., 1993, 115, 9734-9746.
Allinger, N.L.; Hindman, D.; Hornig, H. Conformational analysis. 125. The importance of twofold barriers in saturated molecules. J. Am. Chem. Soc., 1977, 99, 3282-3284.
Radom, L.; Hehre, W.J.; Pople, J.A. Molecular orbital theory of the electronic structure of organic compounds. XIII. Fourier component analysis of internal rotation potential functions in saturated molecules. J. Am. Chem. Soc., 1972, 94, 2371-2381.
Brunck, T.K.; Weinhold, F. Quantum-mechanical studies on the origin of barriers to internal rotation about single bonds. J. Am. Chem. Soc., 1979, 1979(101), 1700-1709.
Kirby, A.J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer-Verlag: Berlin, 1983.
Koole, L.H.; Buck, H.M.; Nyilas, A.; Chattopadhyaya, J. Structural properties of modified deoxyadenosine structures in solution. Impact of the gauche and anomeric effects on the furanose conformation. Can. J. Chem., 1987, 65, 2089-2094.
Röder, O.; Lüdemann, H.; Von Goldammer, E. Determination of the activation energy for pseudorotation of the furanose ring in nucleosides by 13-C nuclear-magnetic-resonance relaxation. Eur. J. Biochem., 1975, 53(2), 517-524.
[] [PMID: 1140200]
Cheatham, T.E., III; Cieplak, P.; Kollman, P.A. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn., 1999, 16(4), 845-862.
[] [PMID: 10217454]
Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M., Jr; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 1995, 117, 5179-5197.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 25 February, 2020
Page: [901 - 909]
Pages: 9
DOI: 10.2174/1568026620666200226110019
Price: $65

Article Metrics

PDF: 28
PRC: 1