α-Ketophosphonates in the Synthesis of α-iminophosphonates

Author(s): Petro P. Ony`sko*, Tetyana I. Chudakova, Vladimir V. Pirozhenko, Alexandr B. Rozhenko

Journal Name: Current Green Chemistry

Volume 7 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The potentialities of condensation of α-ketophosphonates with primary amines for direct synthesis of α-iminophosphonates have been revealed. Diesters of α-ketophosphonic acids react with the primary amines by two competitive pathways: with a formation of α-iminophosphonates or a C-P bond cleavage resulting in a hydrogen phosphonate and an acylated amine. In many cases, the latter undesirable pathway is dominant, especially for more nucleophilic alkyl amines. Using metallic salts of α-ketophosphonates avoids the C-P bond cleavage, allowing direct preparation of α-phosphorylated imines by the reaction with primary amines. This strategy provides an atom economy single-stage synthesis of iminophosphonates – precursors of bio relevant phosphorus analogs of α-amino acids. Methyl sodium iminophosphonates, bearing aryl or heteryl substituents at the imino carbon atom exist in solutions at room temperature as an equilibrium mixture of Z- and E-isomers. A configuration of the C=N bond can be controlled by the solvent: changing the aprotic dipolar solvent DMSO-d6 by water or alcohols leads to the change from a predominant Z-isomer to almost an exclusive E-form. In contrast, diesters of the respective iminophosphonates exist in non-protic solvents predominantly in Econfiguration. The solvent effect on E-Z stereochemistry is demonstrated by DFT calculations.

Keywords: α-Iminophosphonates, α-ketophosphonates, aminophosphonates, aminophosphonic acids, E-Z isomerism, DFT calculations.

[1]
(a)Sinitsa, A.A.; Kolotylo, M.V.; Onys’ko, P.P. Imidoylphosphonates. Ukr. Khim. Zh., 1998, 64(5), 47-66. [Ukranian Chem. J.,1998, 64, 43-61 (Engl. Transl)].
(b)Onys’ko, P.P.; Rassukana, Yu.V.; Sinitsa, O.A. Imidoyl chlorides: New promising building blocks in synthesis of α-aminophosphoryl compounds. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183, 399-405.
[http://dx.doi.org/10.1080/10426500701735338]
(c)Onys’ko, P.P.; Rassukana, Yu.V.; Khomutnyk, Y.Y.; Yelenich, I.P.; Klukovsky, D.V.; Synytsya, A.D. A new strategy for synthesis of compounds bearing biorelevant α-aminophosphonate functionalities. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 725-728.
[http://dx.doi.org/10.1080/10426507.2014.974098]
(d)Vicario, J.; Aparacio, D.; Palacios, F. α-Ketiminophosphonates: synthesis and applications. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186, 638-643.
[http://dx.doi.org/10.1080/10426507.2010.521211]
[2]
Kukhar, V.P.; Hudson, H.R. Aminophosphonic and aminophosphinic acids. Chemistry and biological activity; John Wiley & Sons: New York,. 2000.
(b)Kafarski, P.; Lejczak, B. Biological activity of aminophosphonic acids. Phosphorus Sulfur Silicon Relat. Elem., 1991, 63, 193-215.
[http://dx.doi.org/10.1080/10426509108029443]
(c)Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem., 2011, 54(17), 5955-5980..
[http://dx.doi.org/10.1021/jm200587f ] [PMID: 21780776]
(d)Zefirov, N.S.; Matveeva, E.D. Catalytic Kabachnik-Fields reaction: new horizons for old reaction. ARKIVOC, 2008, i, 1-17..
(e)Van der Jeught, S.; Stevens, C.V. Direct phosphonylation of aromatic azaheterocycles. Chem. Rev., 2009, 109(6), 2672-2702.
[http://dx.doi.org/10.1021/cr800315] [PMID: 19449857]
(f)Berlicki, L.; Kafarski, P. Computer-aided analysis and design of phosphonic and phosphinic enzyme inhibitors as potential drugs and agrochemicals. Curr. Org. Chem., 2005, 9, 1829-1850.
[http://dx.doi.org/10.2174/138527205774913088]
(g)Kafarski, P.; Lejczak, B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. Anticancer Agents, 2001,1(3), 301-312..
[http://dx.doi.org/10.2174/1568011013354543] [PMID: 12678760]
(h)Yang, K.W.; Cheng, X.; Zhao, C.; Liu, C.C.; Jia, C.; Feng, L.; Xiao, J.M.; Zhou, L.S.; Gao, H.Z.; Yang, X.; Zhai, L. Synthesis and activity study of phosphonamidate dipeptides as potential inhibitors of VanX. Bioorg. Med. Chem. Lett., 2011, 21(23), 7224- 7227..
[http://dx.doi.org/10.1016/j.bmcl.2011.09.020 ] [PMID: 22001030]
[3]
(a)Wagner, S.; Schütz, A.; Rademann, J. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as photoactive phosphotyrosine mimetic. Bioorg. Med. Chem., 2015, 23(12), 2839-2847.
[http://dx.doi.org/10.1016/j.bmc.2015.03.074] [PMID: 25907367]
(b)Horatscheck, A.; Wagner, S.; Ortwein, J.; Kim, B.G.; Lisurek, M.; Beligny, S.; Schütz, A. Rademann. J. Angew. Chem. Int. Ed., 2012, 37, 9441-9447.
[http://dx.doi.org/10.1002/anie.201201475]
(c)Trush, V.V.; Tanchuk, V.Y.; Cherenok, S.O.; Kalchenko, V.I.; Vovk, A.I. Evaluation of inhibition of protein tyrosine phosphatase 1B by calixarene-based α-ketophosphonic acids. Chem. Biol. Lett, 2015, 2, 1-5.
[4]
(a)Onys’ko, P.P.; Kim, T.V.; Kiseleva, E.I.; Synytsya, A.D.N. -(α-Dialkoxyphosphorylalkyl)imidoyl phosphonates. Zh. Obshch. Khim, 1990, 60, 966-968.
(b)Jelaiel, N.; Said, N.; Touil, S.; Efrit, M.L. Les α et β-cetophosphonates, des precurseurs de pyrrolidines et de quinoleines phosphonatees. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185, 2382-2392.
[http://dx.doi.org/10.1080/10426501003671429]
[5]
Sekine, M. Satoh, M.; Yamagata, H.; Hata, T. Acylphosphonates: phosphorus-carbon bond cleavage of dialkyl acylphosphonates by means of amines. Substituent and solvent effects for acylation of amines. J. Org. Chem., 1980, 45, 4162-4167.
[http://dx.doi.org/10.1021/jo01309a019]
[6]
Onys’ko, P.P.; Klukovsky, D.V.; Bezdudny, A.V. N-Cycloalkyl- and N-arylimidoylphosphonates. Russ. J. Gen. Chem., 2015, 85, 2065-2070.
[http://dx.doi.org/10.1134/S107036321509008X]
[7]
(a)Onys’ko, P.P.; Kim, T.V.; Kiseleva, E.I.; Synytsya, A.D. Sigmatropic isomerizations in azaallyl systems: XXI. Alkanimidoylphosphonates and their prototropic and phosphorotropic isomers. Russ. J. Gen. Chem., 2004, 74, 1868-1878.
[http://dx.doi.org/10.1007/s11176-005-0110-8]
(b)Onys’ko, P.P.; Rassukana, Yu.V.; Sinitsa, O.A. Prototropic isomerizations in the 2-azaallylic triad of imidoylphosphonates. Curr. Org. Chem., 2010, 14, 1223-1233.
[http://dx.doi.org/10.2174/138527210791330440]
[8]
Palacios, F.; Vicario, J.; Maliszewska, A.; Aparicio, D. Synthesis of α-phosphorylated α,β-unsaturated imines and their selective reduction to vinylogous and saturated α-aminophosphonates. J. Org. Chem., 2007, 72(7), 2682-2685.
[http://dx.doi.org/10.1021/jo062609+] [PMID: 17328577]
[9]
Karaman, R.; Goldblum, A.; Breuer, E. Acylphosphonic acids and methyl hydrogen acylphosphonates: physical and chemical properties and theoretical calculations. J. Chem. Soc. Perkin Trans., 1989, I, 765-774.
[http://dx.doi.org/10.1039/p19890000765]
[10]
(a)Onys’ko, P.P.; Kim, T.V.; Kiseleva, E.I.; Rassukana, Yu.V.; Synytsya, O.A. Imidoylphosphonates-alkylideneaminophosphonates interconversions via biomimetic transamination reaction. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186, 721-728.
[http://dx.doi.org/10.1080/10426507.2010.520287]
(b)Onys’ko, P.P.; Kim, T.V.; Kiseleva, E.I.; Rassukana, Yu.V.; Synytsya, A.D. Sigmatropic isomerizations in azaallyl systems. XX. N-Alkanbenzimidoylphosphonates. Russ. J. Gen. Chem., 2004, 74, 1447-1455.
[11]
Onys’ko, P.P.; Kim, T.V.; Kiseleva, E.I.; Prokopenko, V.P.; Sinitsa, A.D. Sigmatropic isomerizations in azaallyl systems. XVI Electronic nature of azaallylic group.. Russ. J. Gen. Chem.,, 1997, 67, 749-753.
[12]
Onys’ko, P.P.; Kim, T.V.; Kiseleva, E.I.; Sinitsa, A.D.; Kornilov, M.Y. Sigmatropic isomerizations in azaallyl systems. VII. Asymmetric induction during 1,3-H shift in N-(α-phenylethyl) trifluoroacetimidoyl phosphonate. Russ. J. Gen. Chem., 1990, 60, 1304-1307.
[13]
Taft, R.W.; Price, E.; Fox, I.R.; Lewis, I.C.; Andersen, K.K.; Davis, G.T. Fluorine nuclear magnetic resonance shielding in meta-substituted fluorobenzenes. The effect of solvent on the inductive order. J. Am. Chem. Soc., 1963, 85, 709-724.
[http://dx.doi.org/10.1021/ja00889a015]
[14]
(a)Onys’ko, P.P.; Kim, T.V.; Kiseleva, E.I.; Pustovit, Y.M.; Synytsya, A.D. Sigmatropic isomerizations in azaallyl systems. XXII. 1,3-Proton transfer in (N-alkyltrifluoroacetimidoyl)phosphonates. Russ. J. Gen. Chem., 2005, 75, 1197-1203.
[http://dx.doi.org/10.1007/s11176-005-0395-7]
(b)Rassukana, Yu.V.; Kolotylo, M.V.; Sinitsa, O.A.; Pirozhenko, V.V.; Onys’ko, P.P. α-Iminotrifluoroethylphosphonates: the first representatives of N-H imidoyl phosphonates. Synthesis, 2007, 2627-2630.
[15]
Khomutnyk, Y.Y. Onys’ko, Rassukana, Yu.V.; Pirozhenko, V.V.; Synytsya, A.D. N-Aryltrifluoroacetimidoylphosphonates. Russ. J. Gen. Chem., 2013, 83, 391-398.
[16]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[17]
Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter, 1986, 33(12), 8822-8824.
[http://dx.doi.org/10.1103/PhysRevB.33.8822] [PMID: 9938299]
[18]
Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys., 1994, 100, 5829-5835.
[http://dx.doi.org/10.1063/1.467146]
[19]
Schäfer, A.; Klamt, A.; Sattel, D.; Lohrenz, J.; Eckert, F. COSMO Implementation in TURBOMOLE: Extension of an efficient quantum chemical code towards liquid systems. Phys. Chem. Chem. Phys., 2000, 2, 2187-2193.
[http://dx.doi.org/10.1039/b000184h]
[20]
Jmol. An open-source Java viewer for chemical structures in 3D. http://jmol.sourceforge.net/
[21]
Canepa, P.; Hanson, R.M.; Ugliengo, P.; Alfredsson, M.J.J-I.CE. a new Jmol interface for handling and visualizing crystallographic and electronic properties. Appl. Crystallogr., 2011, 44, 225-229.
[http://dx.doi.org/10.1107/S0021889810049411]
[22]
Zon, J.; Amrhein, N.; Gancarz, R. Inhibitors of phenylalanine ammonia-lyase: 1-aminobenzylphosphonic acids substituted in the benzene ring. Phytochemistry, 2002, 59(1), 9-21.
[http://dx.doi.org/10.1016/S0031-9422(01)00425-3] [PMID: 11754939]
[23]
Wanat, W.; Talma, M.; Hurek, J.; Pawełczak, M.; Kafarski, P. Substituted phosphonic analogues of phenylglycine as inhibitors of phenylalanine ammonia lyase from potatoes. Biochimie, 2018, 151, 119-127.
[http://dx.doi.org/10.1016/j.biochi.2018.06.005] [PMID: 29890205]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 2
Year: 2020
Published on: 25 February, 2020
Page: [226 - 238]
Pages: 13
DOI: 10.2174/2213346107666200226095806
Price: $25

Article Metrics

PDF: 30
HTML: 5