Biological Activities and Phenolic Compound Content of Astilboides tabularis (Hemsl.) Engler Extracts

Author(s): Jinfeng Yang, Lee Chanok, Kim Heekyu, Yong S. Kwon, Myong J. Kim*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 11 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Introduction: The plant, Astilboides tabularis (Hemsl.) Engler, is used in Chinese and Korean medicine to regulate blood sugar levels; however, little is known about its precise effects.

Materials and Methods: In this study, we aimed to measure the composition as well as the antioxidant, and anti-proliferative capacities of A. tabularis. Various extracts were generated using different organic solvents, and in vitro antioxidant activities were evaluated using DPPH free radical-scavenging and reducing power assays. The extracts were also evaluated based on their ability to inhibit lipopolysaccharide (LPS)-induced Nitric Oxide (NO) production in RAW 264.7 cells.

Results: Research shows that the A. tabularis ethyl acetate (EtOAc) extract showed significant antioxidant activity. Additionally, this extract could inhibit the LPS-induced expression of inflammatory mediators and pro-inflammatory cytokines in RAW 264.7 cells, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and interleukin-1 beta (IL-1ß). Notably, the A. tabularis EtOAc extract also displayed potent cytotoxic effects against MCF-7 and HeLa cancer cell lines, as determined by MTT assays. Lastly, total phenol and flavonoid content was measured for all extracts, and four flavonoid compounds-catechin, kaempferol, quercitrin, and isoquercetin were isolated from the EtOAc extract. Their structures were confirmed using mass spectrometry and nuclear magnetic resonance, and these isolated compounds were found to display potent DPPH free radical-scavenging activity.

Conclusion: Thus, our data suggest that phenolic compounds in A. tabularis extracts promote antioxidant activity, and furthermore, these extracts show numerous features that indicate potential for therapeutic development.

Keywords: Antioxidant, anti-proliferative, Astilboides tabularis (Hemsl.) Engler, phenolic compounds, DPPH free radicalscavenging.

[1]
Adedapo, A.A.; Mogbojuri, O.M.; Emikpe, B.O. Safety evaluations of the aqueous extract of the leaves of Moringa oleifera in rats. Med. Plants Res., 2009, 3, 585-591.
[2]
Arung, E.T.; Shimizu, K.; Kondo, R. Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis. Biol. Pharm. Bull., 2006, 29(9), 1966-1969.
[http://dx.doi.org/10.1248/bpb.29.1966] [PMID: 16946519]
[3]
Ayub, M.A.; Hussain, A.I.; Hanif, M.A.; Chatha, S.A.S.; Kamal, G.M.; Shahid, M.; Janneh, O. Variation in phenolic profile, β-carotene and flavonoid contents, biological activities of two tagetes species from Pakistani Flora. Chem. Biodivers., 2017, 14(6), 1600463.
[http://dx.doi.org/10.1002/cbdv.201600463] [PMID: 28299905]
[4]
Bendimerad-Mouttas, F.; Beghdad, M.C.; El Haci, I.A.; Soualem, Z.; Belarbi, M.; Bekkara, F.A. Bioactive compounds and antioxidant activity of Rhaponticum acaule (L.) DC. Nat. Prod. Res., 2018, 22, 1-5.
[http://dx.doi.org/10.1080/14786419.2018.1516664] [PMID: 30580609]
[5]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. J. Nat., 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[6]
Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., 2013, 138(4), 2099-2107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[7]
Folmer, F.; Basavaraju, U.; Jaspars, M.; Hold, G.; El-Omar, E.; Dicato, M.; Diederich, M. Anticancer effects of bioactive berry compounds. Phytochem. Rev., 2014, 13, 295-322.
[http://dx.doi.org/10.1007/s11101-013-9319-z]
[8]
He, M.W.; Yang, X.B.; Jiao, Y.B.; Tiao, L.M.; Zhao, Y. Characterisation of antioxidant and antiproliferative acidic polysaccharides from Chinese wolfberry fruits. Food Chem., 2012, 133(3), 978-989.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.018]
[9]
Jang, D.S.; Kim, J.M.; Kim, J.; Yoo, J.L.; Kim, Y.S.; Kim, J.S. Effects of compounds isolated from the fruits of Rumex japonicus on the protein glycation. Chem. Biodivers., 2008, 5(12), 2718-2723.
[http://dx.doi.org/10.1002/cbdv.200890226] [PMID: 19089830]
[10]
Jung, E.; Kang, D.; Yoo, K.; Kwak, M.; Kim, Y. Isolation and characterization of EST-SSR markers for Astilboides tabularis (Saxifragaceae), endangered species in Korea. Plant Taxon., 2018, 48(3), 195-200.
[http://dx.doi.org/10.11110/kjpt.2018.48.3.195]
[11]
Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive compounds, antioxidant activity, and biological effects of European cranberry (Vaccinium oxycoccos). Molecules, 2018, 24(1), 24.
[http://dx.doi.org/10.3390/molecules24010024] [PMID: 30577610]
[12]
Kimura, M.; Umegaki, K.; Kasuya, Y.; Sugisawa, A.; Higuchi, M. The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. Eur. J. Clin. Nutr., 2002, 56(12), 1186-1193.
[http://dx.doi.org/10.1038/sj.ejcn.1601471] [PMID: 12494303]
[13]
Li, J.E.; Fan, S.T.; Qiu, Z.H.; Li, C.; Nie, S.P. Total flavonoids content, antioxidant and antimicrobial activities of extracts from Mosla chinensis Maxim. cv. Jiangxiangru. Lebensm. Wiss. Technol., 2015, 64, 1022-1027.
[http://dx.doi.org/10.1016/j.lwt.2015.07.033]
[14]
Liu, Z.; Zhai, J.; Han, N.; Yin, J. Assessment of anti-diabetic activity of the aqueous extract of leaves of Astilboides tabularis. J. Ethnopharmacol., 2016, 194, 635-641.
[http://dx.doi.org/10.1016/j.jep.2016.10.003] [PMID: 27751828]
[15]
Murakami, A.; Ashida, H.; Terao, J. Multitargeted cancer prevention by quercetin. Cancer Lett., 2008, 269(2), 315-325.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[16]
Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. J. Nutr., 1986, 44, 307-315.
[17]
Oloyede, H.O.B.; Bello, T.O.; Ajiboye, T.O.; Salawu, M.O. Antidiabetic and antidyslipidemic activities of aqueous leaf extract of Dioscoreophyllum cumminsii (Stapf) Diels in alloxan-induced diabetic rats. J. Ethnopharmacol., 2015, 166, 313-322.
[http://dx.doi.org/10.1016/j.jep.2015.02.049] [PMID: 25749145]
[18]
Park, Y.K.; Koo, M.H.; Ikegaki, M.; Contado, J.L. Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq. Biol. Tecnol., 1997, 40, 97-106.
[19]
Psahoulia, F.H.; Drosopoulos, K.G.; Doubravska, L.; Andera, L.; Pintzas, A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther., 2007, 6(9), 2591-2599.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0001] [PMID: 17876056]
[20]
Baba, S.A.; Malik, S.A. Determination of total phenolic and flavonoid content, antimicrobialand antioxidant activity of a root extract of Arisaema jacquemontii Blum. Taibah Univ Sci., 2015, 9, 449-454.
[http://dx.doi.org/10.1016/j.jtusci.2014.11.001]
[21]
Saeki, K.; Hayakawa, S.; Isemura, M.; Miyase, T. Importance of a pyrogallol-type structure in catechin compounds for apoptosis-inducing activity. Phytochemistry, 2000, 53(3), 391-394.
[http://dx.doi.org/10.1016/S0031-9422(99)00513-0] [PMID: 10703063]
[22]
Shi, P.; Du, W.; Wang, Y.; Teng, X.; Chen, X.; Ye, L. Total phenolic, flavonoid content, and antioxidant activity of bulbs, leaves, and flowers made from Eleutherine bulbosa (Mill.). Urb. Food Sci. Nutr., 2018, 7(1), 148-154.
[http://dx.doi.org/10.1002/fsn3.834] [PMID: 30680168]
[23]
Sharma, V.; Joseph, C.; Ghosh, S.; Agarwal, A.; Mishra, M.K.; Sen, E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol. Cancer Ther., 2007, 6(9), 2544-2553.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0788] [PMID: 17876051]
[24]
Sherman, M.P.; Aeberhard, E.E.; Wong, V.Z.; Griscavage, J.M.; Ignarro, L.J. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun., 1993, 191(3), 1301-1308.
[http://dx.doi.org/10.1006/bbrc.1993.1359] [PMID: 7682068]
[25]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
[26]
Sudan, R.; Bhagat, M.; Gupta, S.; Singh, J.; Koul, A. Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). BioMed Res. Int., 2014, 2014, 179865.
[http://dx.doi.org/10.1155/2014/179865] [PMID: 24895548]
[27]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[28]
Tavakkol-Afshari, J.; Brook, A.; Mousavi, S.H. Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem. Toxicol., 2008, 46(11), 3443-3447.
[http://dx.doi.org/10.1016/j.fct.2008.08.018] [PMID: 18790714]
[29]
Tiloke, C.; Phulukdaree, A.; Chuturgoon, A.A. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement. Altern. Med., 2013, 13, 226.
[http://dx.doi.org/10.1186/1472-6882-13-226] [PMID: 24041017]
[30]
Tsai, T.H.; Tsai, P.J.; Ho, S.C. Antioxidant and anti-inflammatory activities of several commonly used spices. Shipin Kexue, 2005, 70, 93-95.
[http://dx.doi.org/10.1111/j.1365-2621.2005.tb09028.x]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 11
Year: 2020
Published on: 20 September, 2020
Page: [1070 - 1078]
Pages: 9
DOI: 10.2174/1389201021666200226093202
Price: $65

Article Metrics

PDF: 15
HTML: 1