Efficient Methods for the Synthesis of Novel Arylazothiazoles Based on Acetylferrocene or Adamantane

Author(s): Abdelwahed R. Sayed*, Mohamed S.M. Ahmed, Sobhi M. Gomha

Journal Name: Current Organic Synthesis

Volume 17 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Hydrazonoyl halides are convenient for the synthesis of arylazothiazoles.

Materials and Methods: A series of novel arylazothiazoles were efficiently synthesized from the reaction of hydrazonoyl chlorides with 2-(adamantan-2-ylidene)hydrazinecarbothioamide or 2-(ferrocenyl-1-ylidene)hydrazinecarbo-- thioamide in dioxane used as an aprotic solvent because of its lower toxicity and higher boiling point (101 °C) and triethylamine at reflux. The reaction mechanistic pathway proceeded by the nucleophilic substitution reaction by the elimination of hydrogen chloride to give thiohydrazonates as intermediate, which in situ undergo intramolecular cyclization and loss of water molecule to afford the final product of novel arylazothiazoles. This method is simple with good yield and excellent purities.

Results and Discussion: The synthetic schemes for the final products are proposed and discussed. The chemical structures of the final products were identified by different techniques, such as elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and mass spectrometry (MS).

Conclusion: In this article, we prepared arylazothiazoles from the reaction of 2-(adamantan-2-ylidene)hydrazinecarbothioamide or 2-(ferrocenyl-1-ylidene)hydrazinecarbothioamide with hydrazonoyl halides.

Keywords: Hydrazonoyl, thiazoles, hydrazone, thioamide, mass spectrometry, elemental analysis.

[1]
Mattson, A.M.; Jensen, C.O.; Dutcher, R.A. Triphenyltetrazolium chloride as a dye for vital tissues. Science, 1947, 106(2752), 294-295.
[http://dx.doi.org/10.1126/science.106.2752.294-a] [PMID: 17840742]
[2]
Karabocek, N.; Kucukdumlu, A.; Ekmekcıoglu, P.; Karabocek, S. Synthesis and structural studies of 2, 2′-[(2E, 5E)-hexane-2, 5-diylidenedi-nitrilo]-dibenzenethiol and 2-Hydroxybenzaldehyde (2E, 5E)-hexane-2, 5-diylidenehydrazone ligands and their mononuclear Cu (II) and Ni (II) complexes. J. Macromol. Sci. Part A Pure Appl. Chem., 2009, 46, 1007-1014.
[http://dx.doi.org/10.1080/10601320903158727]
[3]
Despaigne, A.A.R.; Da Silva, J.G.; Do Carmo, A.C.M.; Piro, O.E.; Castellano, E.E.; Beraldo, H. Copper (II) and zinc (II) complexes with 2-benzoylpyridine-methyl hydrazone. J. Mol. Struct., 2009, 920, 97-102.
[http://dx.doi.org/10.1016/j.molstruc.2008.10.025]
[4]
Shawali, A.S.; Hassaneen, H.M. Synthesis and their conversion into hydrazides: A new chapman-like rearrangement in the hydrazone series. Tetrahedron, 1972, 28, 903-5909.
[http://dx.doi.org/10.1016/0040-4020(72)88123-7]
[5]
Conner, J.D.; Medawala, W.; Stephens, M.T.; Morris, W.H.; Deweese, J.E.; Kent, P.L.; Rice, J.J.; Jiang, X.; Lisic, E.C. Cu(II) benzoylpyridine thiosemicarbazone complexes: inhibition of human topoisomerase IIα and activity against breast cancer cells. J. of Inorg. Chem., 2016, 6, 146-154.
[6]
Jung, K.Y.; Kim, S.K.; Gao, Z.G.; Gross, A.S.; Melman, N.; Jacobson, K.A.; Kim, Y.C. Structure-activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorg. Med. Chem., 2004, 12(3), 613-623.
[http://dx.doi.org/10.1016/j.bmc.2003.10.041] [PMID: 14738972]
[7]
Belicchi-Ferrari, M.; Bisceglie, F.; Casoli, C.; Durot, S.; Morgenstern-Badarau, I.; Pelosi, G.; Pilotti, E.; Pinelli, S.; Tarasconi, P. Copper(II) and cobalt(III) pyridoxal thiosemicarbazone complexes with nitroprusside as counterion: syntheses, electronic properties, and antileukemic activity. J. Med. Chem., 2005, 48(5), 1671-1675.
[http://dx.doi.org/10.1021/jm049529n] [PMID: 15743209]
[8]
Noto, R.; Buccheri, F.; Cusmano, G.; Gruttdauria, M.; Weber, G. Substituent effect on oxidative cyclization of aldehyde thiosemicarbazones with ferric chloride. J. Heterocycl. Chem., 1991, 28, 1421-1427.
[http://dx.doi.org/10.1002/jhet.5570280539]
[9]
Tian, Y.P.; Duan, C.Y.; Lu, Z.L.; You, X.Z.; Fun, H.K.; Kandasamy, S. Crystal structure and spectroscopic studies on metal complexes containing NS donor ligands derivatives from s-benzyldithiocarbazte and p-dimethylaminobenaldehyde. Polyhedron, 1996, 15, 2263-2271.
[http://dx.doi.org/10.1016/0277-5387(95)00477-7]
[10]
Pan, K.; Scott, M.K.; Lee, D.H.S.; Fitzpatrick, L.J.; Crooke, J.J.; Rivero, R.A.; Rosenthal, D.I.; Vaidya, A.H.; Zhao, B.; Reitz, A.B. 2,3-Diaryl-5-anilino[1,2,4]thiadiazoles as melanocortin MC4 receptor agonists and their effects on feeding behavior in rats. Bioorg. Med. Chem., 2003, 11(2), 185-192.
[http://dx.doi.org/10.1016/S0968-0896(02)00428-5] [PMID: 12470712]
[11]
El-Sawaf, A.K.; West, D.X.; El-Saied, F.A.; El-Bahnasawy, R.M. Synthesis, magnetic and spectral studies of iron(III), cobalt(II,III), nickel(II), copper(II) and zinc(II) complexes of 2–formylpyridine N(4)-antipyrinylthiosemi-carbazone. Trans. Met. Chem. (Weinh.), 1998, 23, 565-572.
[http://dx.doi.org/10.1023/A:1006916215988]
[12]
Shawali, A.S.; Mosselhi, M.A.N. Hydrazonoyl halides: Useful building blocks for the synthesis of arylazoheterocycles. J. Heterocycl. Chem., 2003, 40, 725-746.
[http://dx.doi.org/10.1002/jhet.5570400428]
[13]
Farghaly, T.A.; Gomha, S.M.; Sayed, A.R.; Khedr, M.A. Hydrazonoyl halides as precursors for synthesis of bioactive thiazole and thiadiazole derivatives: Synthesis, molecular docking and pharmacological study. Curr. Org. Synth., 2016, 13, 445-455.
[http://dx.doi.org/10.2174/1570179412666150817220018]
[14]
Sayed, A.R.; Gomha, S.M.; Farghaly, T.A. Synthesis and characterization of bis-imidazoles, bis-triazoles, bis-thiadiazoles and bis-thiazoles from novel bis- hydrazonoyl dichlorides. J. Heterocycl. Chem., 2016, 53, 255-262.
[http://dx.doi.org/10.1002/jhet.2320]
[15]
Sayed, A.R.; Zaki, Y.H.; Aish, E. A convenient route for the synthesis of new thiadiazoles. Turk. J. Chem., 2016, 40, 184-191.
[http://dx.doi.org/10.3906/kim-1505-13]
[16]
Sayed, A.R.; Youssef, M.M.; Al-Faiyz, Y.S. Synthesis, characterization and biological evaluation of novel thiadiazoline sulfonamides and metal complexes. J. Appl. Sci. (Faisalabad), 2015, 15, 884-893.
[http://dx.doi.org/10.3923/jas.2015.884.893]
[17]
Sayed, A.R. Synthesis of bis-thiazoles, bis-pyrazoles bis-hydrazonates, and bis-triazolothiadiazoles based on bis-hydrazonoyl and bis-hydrazones. Turk. J. Chem., 2015, 39, 600-609.
[http://dx.doi.org/10.3906/kim-1412-77]
[18]
Pesso, M.M.B.; Andrade, G.F.S.; Dos Santos, M.R.; Temperin, M.L.A. The electrochemical reduction of 2-formylpyridine thiosemicarbazone monitored by SERS and UV–vis spectroscopies. J. Electroanal. Chem. (Lausanne Switz.), 2003, 545, 117-122.
[http://dx.doi.org/10.1016/S0022-0728(03)00120-7]
[19]
French, F.A.; Blanz, E.J., Jr; Shaddix, S.C.; Brockman, R.W. Alpha-(N)-formylheteroaromatic thiosemicarbazones. Inhibition of tumor-derived ribonucleoside diphosphate reductase and correlation with in vivo antitumor activity. J. Med. Chem., 1974, 17(2), 172-181.
[http://dx.doi.org/10.1021/jm00248a006] [PMID: 4809253]
[20]
Abd-Elzaher, M.M.; Moustafa, S.A.; Labib, A.A.; Ali, M.M. Synthesis, characterization, and anticancer properties of ferrocenyl complexes containing a salicylaldehyde moiety. Monatsh. Chem., 2010, 141, 387-393.
[http://dx.doi.org/10.1007/s00706-010-0268-6]
[21]
Suresh, B.A.R.; Raghunathan, R. Synthesis of ferrocenyl monospirooxindolo-pyrrolidines-a facile [3+2]-cycloaddition of azomethine yields. Tetrahedron Lett., 2008, 49, 4487-4490.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.064]
[22]
Keisuke, K.; Atsushi, Y.; Ryuichi, A.; Shinichi, M. Resist composition and pattern forming process. United States patent US 0, 371, 412, 2014.
[23]
Maugh, T.H., II Panel urges wide use of antiviral drug. Science, 1979, 206(4422), 1058-1060.
[http://dx.doi.org/10.1126/science.386515] [PMID: 386515]
[24]
Boukrinskaia, A.G.; Serbin, A.V.; Bogdan, O.P.; Stotskaya, L.L.; Alymova, I.V.; Klimochkin, Y.N. Polymeric adamantane analogues. Science, 1995, 206, 1058-1060.
[25]
Gomha, S.M.; Farghaly, T.A.; Sayed, A.R. Design, synthesis and characterization of some new bis-thiazoles. J. Heterocycl. Chem., 2017, 54, 1537-1542.
[http://dx.doi.org/10.1002/jhet.2741]
[26]
Sayed, A.R.; Al-Shihry, S.S. New route synthesis of thiadiazoles, bisthiadiazoles, thiadiazolotriazines, and pyrazolothiadiazoles based on hydrazonoyl halides and dihydrazinylthiadiazole. Molecules, 2017, 22, 336.http://dx.doi.org/10.3390 molecules/22020336
[27]
Taczkowski, K.Z.; Misiura, K.; Biernasiuk, A.; Malm, A.; Grela, I. Synthesis and antimicrobial activities of novel 6-(1,3-thiazol-4-yl)-1,3-benzoxazol-2(3H)-one derivatives. Heterocycl. Commun., 2014, 20, 41-46.
[28]
Bakir, J.A.J.; El-dissouky, A. Synthesis, spectroscopic and biological activity studies of thiosemicarbazones ferrocene and their copper (II) complexes. J. Coord. Chem., 2005, 58, 1029-1038.
[http://dx.doi.org/10.1080/00958970500096975]
[29]
Mansour, E.; Aboelnaga, A.; Nassar, E.M.; Elewa, S.I. A new series of thiazolyl pyrazoline derivatives linked to benzo[1,3]dioxole moiety: Synthesis and evaluation of antimicrobial and anti-proliferative activities. Synth. Commun., 2020, 50, 368-379.
[http://dx.doi.org/10.1080/00397911.2019.1695839]
[30]
Dubenko, R.G.; Gorbenko, E.F.; Dubenko, R.G.; Gorbenko, E.F. Substituted glyoxalic acids. XI. Synthesis of arylhydrazones of acid chlorides of substituted glyoxalic acid and reactions with amines and hydrazine. Zh. Org. Khim., 1968, 4, 634-638.
[31]
Sayed, A.R.; Ali, S.H.; Al-Faiyz, Y.S. Recent progress of synthesis of new arylazoazoles based on bis(carbothioamides). Synth. Commun., 2019, 49, 3210-3217.
[http://dx.doi.org/10.1080/00397911.2019.1661482]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Page: [282 - 287]
Pages: 6
DOI: 10.2174/1570179417666200226091711
Price: $65

Article Metrics

PDF: 17
HTML: 2