Preparation and Characterization of Highly Fluorescent TGA-CdTe Quantum Dot-Hyamine 1622 Additive Composite

Author(s): Md. Kudrat-E-Zahan, Salih Zeki Yildiz*, Senem Colak Yazici

Journal Name: Micro and Nanosystems

Volume 12 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: The aim of the present study was to prepare highly luminescent additive composite polymer with hyamine 1622 and Thioglycolic Acid (TGA) coated CdTe Quantum Dots (QDs).

Methods: The additive nano-composite was synthesized by the colloid synthesis method for the first time. The properties like particle size, fluorescence efficiency, fluorescence imaging, self-assembling, quantum dots, encapsulation, etc. were characterized by the employing of instrumental techniques such as 1H and 13C NMR, Fourier Transform Infrared spectroscopy (FT-IR), BAB image analysis system spectroscopy, Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS).

Results: CdTe quantum dots were stabilized successfully in the solid phase by hydrophobic conversion with hyamine 1622 as the cationic surfactant. The experimental results show that the prepared composite is ideal for various applications, easily synthesized, safe, and maintain good fluorescence properties.

Conclusion: The newly prepared additive nanocomposite having sharp and narrow excitation/ emission properties is expected to be applicable in biomedical/analytical systems.

Keywords: Nanocomposite, CdTe quantum dots, cationic surfactant, TGA-CdTe-hyamine, 1622 composite, fluorescence.

[1]
Yamane, M.; Asahara, Y. Glasses for photonics; Cambridge University Press: Cambridge, 2000.
[http://dx.doi.org/10.1017/CBO9780511541308]
[2]
Kanaras, A.G.; Sönnichsen, C.; Liu, H.; Alivisatos, A.P. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three dimensional structures. Nano Lett., 2005, 5(11), 2164-2167.
[http://dx.doi.org/10.1021/nl0518728] [PMID: 16277446]
[3]
Selvan, S.T.; Tan, T.T.; Ying, J.Y. Robust, non-cytotoxic, silica coated CdSe quantum dots with efficient photoluminescence. Adv. Mater., 2005, 17, 1620-1625.
[http://dx.doi.org/10.1002/adma.200401960]
[4]
Bailey, R.E.; Nie, S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc., 2003, 125(23), 7100-7106.
[http://dx.doi.org/10.1021/ja035000o] [PMID: 12783563]
[5]
D’ Souza, S.; Antunes, E.; Nyokong, T. Synthesis and photophysical studies of CdTe quantum dot-mono substituted zinc phthalocyanine conjugates. Inorg. Chim. Acta, 2011, 367, 173-181.
[http://dx.doi.org/10.1016/j.ica.2010.12.027]
[6]
Torchynska, T.; Vorobiev, Y. Semiconductor II-VI quantum dots with interface states and their biomedical applications In: Advanced Biomedical Engineering; InTech Open: México, 2011.
[http://dx.doi.org/10.5772/20628]
[7]
Gan, T.T.; Zhang, Y.J.; Zhao, N.J.; Xiao, X.; Yin, G.F.; Yu, S.H.; Wang, H.B.; Duan, J.B.; Shi, C.Y.; Liu, W.Q. Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag+. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 99, 62-68.
[http://dx.doi.org/10.1016/j.saa.2012.09.005] [PMID: 23041923]
[8]
Ali, E.M.; Zheng, Y.; Yu, H.H.; Ying, J.Y. Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal. Chem., 2007, 79(24), 9452-9458.
[http://dx.doi.org/10.1021/ac071074x] [PMID: 18004817]
[9]
Wang, H.; Chen, Q.; Tan, Z.; Yin, X.; Wang, L. Electrochemiluminescence of CdTe quantum dots capped with glutathione and thioglycolic acid and its sensing of Pb2+. Electrochim. Acta, 2012, 72, 28-31.
[http://dx.doi.org/10.1016/j.electacta.2012.03.146]
[10]
Guo, C.; Wang, J.; Cheng, J.; Dai, Z. Determination of trace copper ions with ultrahigh sensitivity and selectivity utilizing CdTe quantum dots coupled with enzyme inhibition. Biosens. Bioelectron., 2012, 36(1), 69-74.
[http://dx.doi.org/10.1016/j.bios.2012.03.040] [PMID: 22521943]
[11]
Zhang, L.; Shang, L.; Dong, S. Sensitive and selective determination of Cu2+ by electrochemiluminescence of CdTe quantum dots. Electrochem. Commun., 2008, 10, 1452-1454.
[http://dx.doi.org/10.1016/j.elecom.2008.07.015]
[12]
Xu, H.; Miao, R.; Fang, Z.; Zhong, X. Quantum dot-based “turn on” fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal. Chim. Acta, 2011, 687(1), 82-88.
[http://dx.doi.org/10.1016/j.aca.2010.12.002] [PMID: 21241850]
[13]
Tao, H.; Liao, X.; Xu, M.; Li, S.; Zhong, F.; Yi, Z. Determination of trace Hg2+ ions based on the fluorescence resonance energy transfer between fluorescent brightener and CdTe quantum dots. J. Lumin., 2014, 146, 376-381.
[http://dx.doi.org/10.1016/j.jlumin.2013.10.005]
[14]
Wang, X.; Lv, Y.; Hou, X. A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots. Talanta, 2011, 84(2), 382-386.
[http://dx.doi.org/10.1016/j.talanta.2011.01.012] [PMID: 21376961]
[15]
Sorouraddin, M.; Nabiyyi, A.; Gehraz, S.; Rashidi, M. A new fluorimetric method for determination of valproic acid using TGA capped CdTe quantum dots as proton sensor. J. Lumin., 2014, 145, 253-258.
[http://dx.doi.org/10.1016/j.jlumin.2013.07.025]
[16]
Ge, S.; Lu, J.; Ge, L.; Yan, M.; Yu, J. Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5), 1704-1709.
[http://dx.doi.org/10.1016/j.saa.2011.05.040] [PMID: 21684806]
[17]
Li, J.; Zou, G.; Hu, X.; Zhang, X. Electrochemistry of thiol-capped CdTe quantum dots and its sensing application. J. Electroanal. Chem. (Lausanne Switz.), 2009, 625, 88-91.
[http://dx.doi.org/10.1016/j.jelechem.2008.10.011]
[18]
Yu, X.; Liu, J.; Zuo, S.; Yu, Y.; Cai, K.; Yang, R. Application of mercaptosuccinic acid capped CdTe quantum dots for latent fingermark development. Forensic Sci. Int., 2013, 231(1-3), 125-130.
[http://dx.doi.org/10.1016/j.forsciint.2013.04.027] [PMID: 23890626]
[19]
Badawi, A.; Al-Hosiny, N.; Abdullah, S.; Negm, S.; Talaat, H. Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Sol. Energy, 2013, 88, 137-143.
[http://dx.doi.org/10.1016/j.solener.2012.11.005]
[20]
Yi, K.Y.; Wei, C.S. Electrochemiluminescence of CdTe quantum dots and sensitive detection of hemoglobin. Int. J. Electrochem. Sci., 2017, 12, 3472-3482.
[http://dx.doi.org/10.20964/2017.04.100]
[21]
Mebadi, A.; Houshmand, M.; Zandi, M.H.; Gorji, N.E. Simulations of the intermediate bandwidth fluctuations in nanostructured PV. Physica E, 2013, 53, 130-136.
[http://dx.doi.org/10.1016/j.physe.2013.04.024]
[22]
Ruan, J.; Song, H.; Qian, Q.; Li, C.; Wang, K.; Bao, C.; Cui, D. HER2 monoclonal antibody conjugated RNase-A-associated CdTe quantum dots for targeted imaging and therapy of gastric cancer. Biomaterials, 2012, 33(29), 7093-7102.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.053] [PMID: 22796163]
[23]
Yu, Y.; Xu, L.; Chen, J.; Gao, H.; Wang, S.; Fang, J.; Xu, S. Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Colloids Surf. B Biointerfaces, 2012, 95, 247-253.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.011] [PMID: 22494668]
[24]
Chu, M.; Pan, X.; Zhang, D.; Wu, Q.; Peng, J.; Hai, W. The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy. Biomaterials, 2012, 33(29), 7071-7083.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.062] [PMID: 22818982]
[25]
Dong, W.; Guo, L.; Wang, M.; Xu, S. CdTe QDs-based prostate specific antigen probe for human prostate cancer cell imaging. J. Lumin., 2009, 129, 926-930.
[http://dx.doi.org/10.1016/j.jlumin.2009.03.017]
[26]
Ma, Q.; Lin, Z.H.; Yang, N.; Li, Y.; Su, X.G. A novel carboxymethyl chitosan-quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater., 2014, 10(2), 868-874.
[http://dx.doi.org/10.1016/j.actbio.2013.10.039] [PMID: 24211611]
[27]
Casals, E.; Gonzalez, E.; Puntes, V.F. Reactivity of inorganic nanoparticles in biological environments: Insights into nanotoxicity mechanisms. J. Phys. D Appl. Phys., 2012, 45, 443001-443015.
[http://dx.doi.org/10.1088/0022-3727/45/44/443001]
[28]
Yan, M.; Zhang, Y.; Xu, K.; Fu, T.; Qin, H.; Zheng, X. An in vitro study of vascular endothelial toxicity of CdTe quantum dots. Toxicology, 2011, 282(3), 94-103.
[http://dx.doi.org/10.1016/j.tox.2011.01.015] [PMID: 21291946]
[29]
Su, Y.; Hu, M.; Fan, C.; He, Y.; Li, Q.; Li, W.; Wang, L.H.; Shen, P.; Huang, Q. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials, 2010, 31(18), 4829-4834.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.074] [PMID: 20346495]
[30]
Chen, N.; He, Y.; Su, Y.; Li, X.; Huang, Q.; Wang, H.; Zhang, X.; Tai, R.; Fan, C. The cytotoxicity of cadmium-based quantum dots. Biomaterials, 2012, 33(5), 1238-1244.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.070] [PMID: 22078811]
[31]
Clapp, A.R.; Medintz, I.L.; Mauro, J.M.; Fisher, B.R.; Bawendi, M.G.; Mattoussi, H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc., 2004, 126(1), 301-310.
[http://dx.doi.org/10.1021/ja037088b] [PMID: 14709096]
[32]
Zeng, Y.; Tang, C.; Tian, G.; Yi, P.; Huang, H.; Hu, N.; Li, S.; Huang, H.; Li, C.; Lin, B.; Yu, X. A controlled approach for synthesizing CdTe quantum dots poly amido amine nanocomposites. Chem. Eng. J., 2010, 156, 524-527.
[http://dx.doi.org/10.1016/j.cej.2009.04.019]
[33]
Zana, R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: A review. Adv. Colloid Interface Sci., 2002, 97(1-3), 205-253.
[http://dx.doi.org/10.1016/S0001-8686(01)00069-0] [PMID: 12027021]
[34]
Li, H.; Wang, X.; Gao, Z.; He, Z. Gemini surfactant for fluorescent and stable quantum dots in aqueous solution. Nanotechnology, 2007, 18, 205603-205609.
[http://dx.doi.org/10.1088/0957-4484/18/20/205603]
[35]
Fan, H.; Leve, E.W.; Scullin, C.; Gabaldon, J.; Tallant, D.; Bunge, S.; Boyle, T.; Wilson, M.C.; Brinker, C.J. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett., 2005, 5(4), 645-648.
[http://dx.doi.org/10.1021/nl050017l] [PMID: 15826102]
[36]
Tan, R.; Blom, D.A.; Ma, S.; Greytak, A.B. Probing surface saturation conditions in alternating layer growth of CdSe/CdS Core/Shell quantum dots. Chem. Mater., 2013, 25, 3724-3736.
[http://dx.doi.org/10.1021/cm402148s]
[37]
Zheng, X.; Hou, Y.; Sun, H.T.; Mohammed, O.F.; Sargent, E.H.; Bakr, O.M. Reducing defects in halide perovskite nanocrystals for light-emitting applications. J. Phys. Chem. Lett., 2019, 10(10), 2629-2640.
[http://dx.doi.org/10.1021/acs.jpclett.9b00689] [PMID: 31038960]
[38]
Chiba, T.; Hayashi, Y.; Ebe, H. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics, 2018, 12(11), 681-687.
[http://dx.doi.org/10.1038/s41566-018-0260-y]
[39]
Huang, Y.; Gao, Y.; Zhang, Q.; Zhang, Y.; Cao, J.J.; Ho, W.; Lee, S.C. Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NOx removal under visible light: Improved charge separation and High selectivity. J. Hazard. Mater., 2018, 354, 54-62.
[http://dx.doi.org/10.1016/j.jhazmat.2018.04.071] [PMID: 29727790]
[40]
Im, J.H.; Lee, C.R.; Lee, J.W.; Park, S.W.; Park, N.G. 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10), 4088-4093.
[http://dx.doi.org/10.1039/c1nr10867k] [PMID: 21897986]
[41]
Yue, D.; Qian, X.; Zhang, Z.; Kan, M.; Ren, M.; Zhao, Y. CdTe/CdS Core/shell quantum dots cocatalyzed by sulfur tolerant [Mo3S13]2− nanoclusters for efficient visible-light-driven hydrogen evolution. ACS Sustain. Chem. Eng., 2016, 4, 6653-6658.
[http://dx.doi.org/10.1021/acssuschemeng.6b01520]
[42]
Tian, D.; Li, X.; He, J. Geometrical potential and nanofiber membrane’s highly selective adsorption property. Adsorpt. Sci. Technol., 2019, 37, 367-388.
[http://dx.doi.org/10.1177/0263617418813826]
[43]
Liu, P.; He, J. Geometric potential: An explanation of nanofibers’ wettability. Therm. Sci., 2018, 22, 33-38.
[http://dx.doi.org/10.2298/TSCI160706146L]
[44]
Li, X.; He, J. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning. Results Phys., 2019, 12, 1405-1410.
[http://dx.doi.org/10.1016/j.rinp.2019.01.043]
[45]
Wang, Y.; Liu, S.; Yang, K.; Zhou, L. One-pot synthesis of CdTe quantum dots using tellurium dioxide as a tellurium source in aqueous solution. Colloid Polym. Sci., 2013, 291, 1313-1318.
[http://dx.doi.org/10.1007/s00396-012-2860-2]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 2
Year: 2020
Published on: 19 August, 2020
Page: [92 - 101]
Pages: 10
DOI: 10.2174/1876402912666200225111411

Article Metrics

PDF: 18
HTML: 2
EPUB: 1
PRC: 1