Synthesis of Dihydrazones as Potential Anticancer and DNA Binding Candidates: A Validation by Molecular Docking Studies

Author(s): Malavalli B. Sridhara, Kadalipura P. Rakesh*, Honnayakanahalli M. Manukumar, Chavalmane S. Shantharam, Hamse K. Vivek, Humegowdeenahally K. Kumara, Yasser H.E. Mohammed, Dale C. Gowda*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Accounting for mortality nearly one in four of human and second highest leading cause of death worldwide. Every year, about 10 million new cancers are diagnosed and causing major health issues in both developing and developed countries.

Methods: A series of new dihydrazones were synthesized and screened for in vitro anticancer activity against three different MDA-MB-231, A546 and MCF7 cell lines and validated by DNA binding and molecular docking approaches.

Result: In the present investigations, synthesized compounds 21, 22, 23 and 24 exhibited potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to Doxorubicin and ethidium bromide as a positive control respectively.

Conclusion: The Structure Activity Relationship (SAR) showed that the electron withdrawing groups (-Cl, -NO2, - F, and -Br) favored the DNA binding studies and anticancer activity whereas, electron donating groups (-OH and - OCH3) showed moderate activity. In the molecular docking study, binding interactions of the most active compounds 21, 22, 23 and 24 stacked with A-T rich regions of the DNA minor groove by surface binding interactions were confirmed. Further, the tuning of active analogs for targeted therapy was warranted.

Keywords: Dihydrazones, anticancer, DNA binding studies, docking study, MDA-MB-231, A546, MCF7.

[1]
Rollas, S.S.G.; Kucukguzel, S.G. Biological applications of hydrazone derivatives. Molecules, 2007, 12, 1910-1939.
[http://dx.doi.org/10.3390/12081910] [PMID: 17960096]
[2]
Abdelrahman, M.A.; Salama, I.; Gomaa, M.S.; Elaasser, M.M.; Abdel-Aziz, M.M.; Soliman, D.H. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem., 2017, 138, 698-714.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.004] [PMID: 28715707]
[3]
Hernández, P.; Cabrera, M.; Lavaggi, M.L.; Celano, L.; Tiscornia, I.; Rodrigues da Costa, T.; Thomson, L.; Bollati-Fogolín, M.; Miranda, A.L.; Lima, L.M.; Barreiro, E.J.; González, M.; Cerecetto, H. Discovery of new orally effective analgesic and anti-inflammatory hybrid furoxanyl N-acylhydrazone derivatives. Bioorg. Med. Chem., 2012, 20(6), 2158-2171.
[http://dx.doi.org/10.1016/j.bmc.2012.01.034] [PMID: 22356737]
[4]
Carradori, S.; Secci, D.; Bolasco, A.; Rivanera, D.; Mari, E.; Zicari, A.; Lotti, L.V.; Bizzarri, B. Synthesis and cytotoxicity of novel (thiazol-2-yl)hydrazine derivatives as promising anti-Candida agents. Eur. J. Med. Chem., 2013, 65, 102-111.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.042] [PMID: 23702472]
[5]
Vavříková, E.; Polanc, S.; Kočevar, M.; Horváti, K.; Bosze, S.; Stolaříková, J.; Vávrová, K.; Vinšová, J. New fluorine-containing hydrazones active against MDR-tuberculosis. Eur. J. Med. Chem., 2011, 46(10), 4937-4945.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.052] [PMID: 21855181]
[6]
Nagender, P.; Naresh Kumar, R.; Malla Reddy, G.; Krishna Swaroop, D.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis of novel hydrazone and azole functionalized pyrazolo[3,4-b]pyridine derivatives as promising anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(18), 4427-4432.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.006] [PMID: 27528432]
[7]
Li, Z.H.; Yang, D.X.; Geng, P.F.; Zhang, J.; Wei, H.M.; Hu, B.; Guo, Q.; Zhang, X.H.; Guo, W.G.; Zhao, B.; Yu, B.; Ma, L.Y.; Liu, H.M. Design, synthesis and biological evaluation of [1,2,3]triazolo[4,5-d]pyrimidine derivatives possessing a hydrazone moiety as antiproliferative agents. Eur. J. Med. Chem., 2016, 124, 967-980.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.022] [PMID: 27771599]
[8]
Wang, G.; Chen, M.; Wang, J.; Peng, Y.; Li, L.; Xie, Z.; Deng, B.; Chen, S.; Li, W. Synthesis, biological evaluation and molecular docking studies of chromone hydrazone derivatives as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(13), 2957-2961.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.007] [PMID: 28506754]
[9]
Kosiha, A.; Parthiban, C.; Elango, K.P. Synthesis, characterization and DNA binding/cleavage, protein binding and cytotoxicity studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of aminonaphthoquinone. J. Photochem. Photobiol. B, 2017, 168, 165-174.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.010] [PMID: 28231533]
[10]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: a new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[11]
Jennette, K.W.; Lippard, S.J.; Vassiliades, G.A.; Bauer, W.R. Metallointercalation reagents. 2-hydroxyethanethiolato(2,2′,2′-terpyridine)-platinum(II) monocation binds strongly to DNA by intercalation. Proc. Natl. Acad. Sci. USA, 1974, 71(10), 3839-3843.
[http://dx.doi.org/10.1073/pnas.71.10.3839] [PMID: 4530265]
[12]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[13]
Lautz, T.B.; Jie, C.; Clark, S.; Naiditch, J.A.; Jafari, N.; Qiu, Y.Y.; Zheng, X.; Chu, F.; Madonna, M.B. The effect of vorinostat on the development of resistance to doxorubicin in neuroblastoma. PLoS One, 2012, 7(7), e40816
[http://dx.doi.org/10.1371/journal.pone.0040816] [PMID: 22829886]
[14]
Ajani, O.O.; Obafemi, C.A.; Nwinyi, O.C.; Akinpelu, D.A. Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg. Med. Chem., 2010, 18(1), 214-221.
[http://dx.doi.org/10.1016/j.bmc.2009.10.064] [PMID: 19948407]
[15]
Melnyk, P.; Leroux, V.; Sergheraert, C.; Grellier, P. Design, synthesis and in vitro antimalarial activity of an acylhydrazone library. Bioorg. Med. Chem. Lett., 2006, 16(1), 31-35.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.058] [PMID: 16263280]
[16]
Zheng, L.W.; Wu, L.L.; Zhao, B.X.; Dong, W.L.; Miao, J.Y. Synthesis of novel substituted pyrazole-5-carbohydrazide hydrazone derivatives and discovery of a potent apoptosis inducer in A549 lung cancer cells. Bioorg. Med. Chem., 2009, 17(5), 1957-1962.
[http://dx.doi.org/10.1016/j.bmc.2009.01.037] [PMID: 19217789]
[17]
Rakesha, K.P.; Wang, S.M.; Leng, J.; Ravindar, L.; Abdullah, M.A.; Marwani, H.M.; Qin, H.L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. Anticancer. Agents Med. Chem., 2017, 17, 1-18.
[18]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[19]
American Cancer Society, Inc., Surveillance Research. Cancer Faiths and Figures,, 2005.http://www.geocites.com
[20]
Hanessian, S. Structure-based organic synthesis of drug prototypes: a personal odyssey. ChemMedChem, 2006, 1(12), 1301-1330.
[http://dx.doi.org/10.1002/cmdc.200600203] [PMID: 17091524]
[21]
Aragon, P.J.; Yapi, A.D.F.; Pinguet, F.; Chezal, J.M.; Teulade, J.C.; Blache, Y. Synthesis and biological evaluation of indoloquinolines and pyridocarbazoles: a new example of unexpected photoreduction accompanying photocyclization. Chem. Pharm. Bull. (Tokyo), 2007, 55(9), 1349-1355.
[http://dx.doi.org/10.1248/cpb.55.1349] [PMID: 17827760]
[22]
Wilhelmsson, L.M.; Kingi, N.; Bergman, J. Interactions of antiviral indolo[2,3-b]quinoxaline derivatives with DNA. J. Med. Chem., 2008, 51(24), 7744-7750.
[http://dx.doi.org/10.1021/jm800787b] [PMID: 19053744]
[23]
Gu, Z.; Li, Y.; Ma, S. Synthesis, cytotoxic evaluation and DNA binding study of 9-fluoro-6H-indolo[2,3-b]quinoxaline derivatives. RSC Advances, 2017, 66, 41869-41879.
[http://dx.doi.org/10.1039/C7RA08138C]
[24]
Zawadowski, T.; Klimaszewska, M. Synthesis of some 6-substituted derivativs of indophenazine with potential pharmacogical activity. Acta Pol. Pharm., 1995, 52, 249-252.
[25]
Rakesh, K.P.; Manukumar, H.M.; Gowda, D.C. Schiff’s bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants. Bioorg. Med. Chem. Lett., 2015, 25(5), 1072-1077.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.010] [PMID: 25638040]
[26]
Rakesh, K.P.; Shantharam, C.S.; Manukumar, H.M. Synthesis and SAR studies of potent H(+)/K(+)-ATPase inhibitors of quinazolinone-Schiff’s base analogues. Bioorg. Chem., 2016, 68, 1-8.
[http://dx.doi.org/10.1016/j.bioorg.2016.07.001] [PMID: 27399885]
[27]
Rakesh, K.P.; Ramesha, A.B.; Shantharam, C.S. An unexpected reaction to methodology: an unprecedented approach to transamidation. RSC Advances, 2016, 6, 108315-108318.
[http://dx.doi.org/10.1039/C6RA23374K]
[28]
Zha, G.F.; Leng, J.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Asiri, A.M.; Marwani, H.M.; Rakesh, K.P.; Mallesha, N.; Qin, H.L. Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2017, 27(14), 3148-3155.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.032] [PMID: 28539243]
[29]
Wang, S.M.; Zha, G.F.; Rakesh, K.P.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Mallesha, N.; Qin, H.L. Synthesis of benzo[d]thiazole-hydrazone analogues: molecular docking and SAR studies of potential H+/K+ ATPase inhibitors and anti-inflammatory agents. MedChemComm, 2017, 8(6), 1173-1189.
[http://dx.doi.org/10.1039/C7MD00111H] [PMID: 30108827]
[30]
Chen, X.; Leng, J.; Rakesh, K.P.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Mallesha, N.; Qin, H.L. Synthesis and molecular docking studies of xanthone attached amino acids as potential antimicrobial and anti-inflammatory agents. MedChemComm, 2017, 8(8), 1706-1719.
[http://dx.doi.org/10.1039/C7MD00209B] [PMID: 30108882]
[31]
Rakesh, K.P.; Darshini, N.; Vidhya, S.L. Synthesis and SAR studies of potent H+/K+-ATPase and anti-inflammatory activities of symmetrical and unsymmetrical urea analogues. Med. Chem. Res., 2017, 26, 1675-1681.
[http://dx.doi.org/10.1007/s00044-017-1878-x]
[32]
Manukumar, H.M.; Chandrasekhar, B.; Rakesh, K.P.; Ananda, A.P.; Nandhini, M.; Lalitha, P.; Sumathi, S.; Qin, H.L.; Umesha, S. Novel T-C@AgNPs mediated biocidal mechanism against biofilm associated methicillin-resistant Staphylococcus aureus (Bap-MRSA) 090, cytotoxicity and its molecular docking studies. MedChemComm, 2017, 8(12), 2181-2194.
[http://dx.doi.org/10.1039/C7MD00486A] [PMID: 30108735]
[33]
Akbar, M.; Naser, F.; Abdolhossein, R. Synthesis of some novel bis-1,2,4-triazole and bis-1,3,4-thiaiazole derivatives from terephthaloyl and isophthaloyl chlorides. Heterocycl. Commun., 2013, 19, 265-269.
[34]
Rakesh, K.P.; Vivek, H.K.; Manukumar, H.M.; Shantharam, C.S.; Bukhari, S.N.A.; Qin, H-L.; Sridhara, M.B. Promising bactericidal approach of dihydrazone analogues against bio-film forming Gram-negative bacteria and molecular mechanistic studies. RSC Advances, 2018, 8, 5473-5483.
[http://dx.doi.org/10.1039/C7RA13661G]
[35]
Zhang, Y.; Wang, A.; Cao, C.; Leng, Y.; Wei, T. Anion recognition using novel and colorimetric tweezer receptors: 1,3-Phenylenedi(carbonylhydrazone) in aqueous-organic binary solvents. Chin. J. Chem., 2009, 27, 1617-1623.
[http://dx.doi.org/10.1002/cjoc.200990273]
[36]
Weiwei, H.; Xudong, Y.; Hai, L.; Huakuan, L. A colorimetric sensor for the recognition of biologically important anions. J. Incl. Phenom. Macrocycl. Chem., 2011, 69, 69-73.
[http://dx.doi.org/10.1007/s10847-010-9815-3]
[37]
Sharma, S.; Hundal, M.S.; Walia, A.; Vanita, V.; Hundal, G. Nanomolar fluorogenic detection of Al(III) by a series of Schiff bases in an aqueous system and their application in cell imaging. Org. Biomol. Chem., 2014, 12(25), 4445-4453.
[http://dx.doi.org/10.1039/c4ob00329b] [PMID: 24849460]
[38]
Chen, H.; Jiang, Y.B. Photophysics of 1-dimethylaminonaphthalene in aqueous-organic binary solvents. Chem. Phys. Lett., 2000, 325(5-6), 605-609.
[http://dx.doi.org/10.1016/S0009-2614(00)00741-7]
[39]
Islam, R.; Koizumi, F.; Kodera, Y.; Inoue, K.; Okawara, T.; Masutani, M. Design and synthesis of phenolic hydrazide hydrazones as potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(16), 3802-3806.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.065] [PMID: 25042255]
[40]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[41]
Burres, N.S.; Frigo, A.; Rasmussen, R.R.; McAlpine, J.B. A colorimetric microassay for the detection of agents that interact with DNA. J. Nat. Prod., 1992, 55(11), 1582-1587.
[http://dx.doi.org/10.1021/np50089a004] [PMID: 1479377]
[42]
Savithri, K.; Vasantha Kumar, B.C.; Revanasiddappa, H.D. 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol; synthesis, characterization, crystal structure, Hirshfeld surface analysis and BSA binding studies. J. Mol. Struct., 2017, 1142, 293-303.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.050]
[43]
Kameshwar, V.H.; R, K.J.; Priya, B.S.; Swamy, S.N. Synthesis, characterization and bioactivity studies of novel 1,3,4-oxadiazole small molecule that targets basic phospholipase A2 from Vipera russelli. Mol. Cell. Biochem., 2017, 426(1-2), 161-175.
[http://dx.doi.org/10.1007/s11010-016-2888-6] [PMID: 27928710]
[44]
Hassan, G.S.; El-Messery, S.M.; Abbas, A. Synthesis and anticancer activity of new thiazolo[3,2-a]pyrimidines: DNA binding and molecular modeling study. Bioorg. Chem., 2017, 74, 41-52.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.008] [PMID: 28750204]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 7
Year: 2020
Page: [845 - 858]
Pages: 14
DOI: 10.2174/1871520620666200225104558
Price: $65

Article Metrics

PDF: 18
HTML: 2