Akt Pathway Inhibitors

Author(s): Nne E. Uko, Osman F. Güner, Diane F. Matesic, J. Phillip Bowen*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 10 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Cancer is a devastating disease that has plagued humans from ancient times to this day. After decades of slow research progress, promising drug development, and the identification of new targets, the war on cancer was launched, in 1972. The P13K/Akt pathway is a growth-regulating cellular signaling pathway, which in many human cancers is over-activated. Studies have demonstrated that a decrease in Akt activity by Akt inhibitors is associated with a reduction in tumor cell proliferation. There have been several promising drug candidates that have been studied, including but not limited to ipatasertib (RG7440), 1; afuresertib (GSK2110183), 2; uprosertib (GSK2141795), 3; capivasertib (AZD5363), 4; which reportedly bind to the ATP active site and inhibit Akt activity, thus exerting cytotoxic and antiproliferative activities against human cancer cells. For most of the compounds discussed in this review, data from preclinical studies in various cancers suggest a mechanistic basis involving hyperactivated Akt signaling. Allosteric inhibitors are also known to alter the activity of kinases. Perifosine (KRX- 0401), 5, an alkylphospholipid, is known as the first allosteric Akt inhibitor to enter clinical development and is mechanistically characterized as a PH-domain dependent inhibitor, non-competitive with ATP. This results in a reduction in Akt enzymatic and cellular activities. Other small molecule (MK- 2206, 6, PHT-427, Akti-1/2) inhibitors with a similar mechanism of action, alter Akt activity through the suppression of cell growth mediated by the inhibition of Akt membrane localization and subsequent activation. The natural product solenopsin has been identified as an inhibitor of Akt. A few promising solenopsin derivatives have emerged through pharmacophore modeling, energy-based calculations, and property predictions.

Keywords: Akt activation, Akt binding site, Akt kinase, Akt inhibitors, ATP inhibitors, Cancer, Drug design, Phosphorylation, Pharmacophore, Computational chemistry, Computer-assisted drug design, Molecular modeling, P13K/Akt pathway, PKB, to Ipatasertib (RG7440), Afuresertib (GSK2110183), Uprosertib (GSK2141795), Capivasertib (AZD5363), Perifosine (KRX- 0401), Solenopsin, Solenopsin analogues.

Romano, G. The role of the dysfunctional akt-related pathway in cancer: establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development. Scientifica (Cairo), 2013, 2013, 317186
[http://dx.doi.org/10.1155/2013/317186] [PMID: 24381788]
Guimarães, I.S.; Tessarollo, N.G.; Lyra-Júnior, P.C.; dos Santos, D.Z.; Zampier, R.C.; de Oliveira, L.F.; Siqueira, K.V.; Silva, I.V.; Rangel, L.B. Targeting the PI3K/AKT/mTOR pathway in cancer cells. InUpdates on Cancer Treatment ; InTech: London, 2013.
Nitulescu, G.M.; Margina, D.; Juzenas, P.; Peng, Q.; Olaru, O.T.; Saloustros, E.; Fenga, C.; Spandidos, D.Α.; Libra, M.; Tsatsakis, A.M. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int. J. Oncol., 2016, 48(3), 869-885.
[http://dx.doi.org/10.3892/ijo.2015.3306] [PMID: 26698230]
Zhang, X.; Zhuang, T.; Liang, Z.; Li, L.; Xue, M.; Liu, J.; Liang, H. Breast cancer suppression by aplysin is associated with inhibition of PI3K/AKT/FOXO3a pathway. Oncotarget, 2017, 8(38), 63923-63934.
[http://dx.doi.org/10.18632/oncotarget.19209] [PMID: 28969041]
Bellacosa, A.; Testa, J.R.; Staal, S.P.; Tsichlis, P.N. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science, 1991, 254(5029), 274-277.
[http://dx.doi.org/10.1126/science.1833819] [PMID: 1833819]
Bellacosa, A.; Franke, T.F.; Gonzalez-Portal, M.E.; Datta, K.; Taguchi, T.; Gardner, J.; Cheng, J.Q.; Testa, J.R.; Tsichlis, P.N. Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene, 1993, 8(3), 745-754.
[PMID: 8437858]
Coffer, P.J.; Woodgett, J.R. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur. J. Biochem., 1991, 201(2), 475-481.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb16305.x] [PMID: 1718748]
Jones, P.F.; Jakubowicz, T.; Hemmings, B.A. Molecular cloning of a second form of rac protein kinase. Cell Regul., 1991, 2(12), 1001-1009.
[http://dx.doi.org/10.1091/mbc.2.12.1001] [PMID: 1801921]
Masure, S.; Haefner, B.; Wesselink, J-J.; Hoefnagel, E.; Mortier, E.; Verhasselt, P.; Tuytelaars, A.; Gordon, R.; Richardson, A.; Gordon, R.; Richardson, A. Molecular cloning, expression and characterization of the human serine/threonine kinase Akt-3. Eur. J. Biochem., 1999, 265(1), 353-360.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00774.x] [PMID: 10491192]
Yang, Z.Z.; Tschopp, O.; Hemmings-Mieszczak, M.; Feng, J.; Brodbeck, D.; Perentes, E.; Hemmings, B.A. Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J. Biol. Chem., 2003, 278(34), 32124-32131.
[http://dx.doi.org/10.1074/jbc.M302847200] [PMID: 12783884]
Hanks, S.K.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J., 1995, 9(8), 576-596.
[http://dx.doi.org/10.1096/fasebj.9.8.7768349] [PMID: 7768349]
Huang, X.; Begley, M.; Morgenstern, K.A.; Gu, Y.; Rose, P.; Zhao, H.; Zhu, X. Crystal structure of an inactive Akt2 kinase domain. Structure, 2003, 11(1), 21-30.
[http://dx.doi.org/10.1016/S0969-2126(02)00937-1] [PMID: 12517337]
Brooun, A.; Chien, E.Y.; Dougan, D.R.; Jennings, A.J.; Kraus, M.L.; Mol, C.D. Washington, DC: U.S. Patent and Trademark Office. U.S. Patent No. 7,309,594.. 2007.
Hanada, M.; Feng, J.; Hemmings, B.A. Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim. Biophys. Acta, 2004, 1697(1-2), 3-16.
[http://dx.doi.org/10.1016/j.bbapap.2003.11.009] [PMID: 15023346]
Davies, T.G.; Verdonk, M.L.; Graham, B.; Saalau-Bethell, S.; Hamlett, C.C.; McHardy, T.; Collins, I.; Garrett, M.D.; Workman, P.; Woodhead, S.J.; Jhoti, H.; Barford, D. A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. J. Mol. Biol., 2007, 367(3), 882-894.
[http://dx.doi.org/10.1016/j.jmb.2007.01.004] [PMID: 17275837]
Calleja, V.; Laguerre, M.; Parker, P.J.; Larijani, B. Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition. PLoS Biol., 2009, 7(1), e17
[http://dx.doi.org/10.1371/journal.pbio.1000017] [PMID: 19166270]
Gonzalez, E.; McGraw, T.E. Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc. Natl. Acad. Sci. USA, 2009, 106(17), 7004-7009.
[http://dx.doi.org/10.1073/pnas.0901933106] [PMID: 19372382]
Wang, S.; Basson, M.D. Identification of functional domains in AKT responsible for distinct roles of AKT isoforms in pressure-stimulated cancer cell adhesion. Exp. Cell Res., 2008, 314(2), 286-296.
[http://dx.doi.org/10.1016/j.yexcr.2007.08.005] [PMID: 17825284]
Huse, M.; Kuriyan, J. The conformational plasticity of protein kinases. Cell, 2002, 109(3), 275-282.
[http://dx.doi.org/10.1016/S0092-8674(02)00741-9] [PMID: 12015977]
Jacobs, M.D.; Caron, P.R.; Hare, B.J. Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex. Proteins, 2008, 70(4), 1451-1460.
[http://dx.doi.org/10.1002/prot.21633] [PMID: 17910071]
Kornev, A.P.; Haste, N.M.; Taylor, S.S.; Eyck, L.F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA, 2006, 103(47), 17783-17788.
[http://dx.doi.org/10.1073/pnas.0607656103] [PMID: 17095602]
Kornev, A.P.; Taylor, S.S. Defining the conserved internal architecture of a protein kinase. Biochim. Biophys. Acta, 2010, 1804(3), 440-444.
[http://dx.doi.org/10.1016/j.bbapap.2009.10.017] [PMID: 19879387]
Guo, M.; Huang, B.X.; Kim, H.Y. Conformational changes in Akt1 activation probed by amide hydrogen/deuterium exchange and nano-electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom., 2009, 23(13), 1885-1891.
[http://dx.doi.org/10.1002/rcm.4085] [PMID: 19462409]
Cheng, S.; Niv, M.Y. Molecular dynamics simulations and elastic network analysis of protein kinase B (Akt/PKB) inactivation. J. Chem. Inf. Model., 2010, 50(9), 1602-1610.
[http://dx.doi.org/10.1021/ci100076j] [PMID: 20735046]
Yang, J.; Cron, P.; Thompson, V.; Good, V.M.; Hess, D.; Hemmings, B.A.; Barford, D. Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell, 2002, 9(6), 1227-1240.
[http://dx.doi.org/10.1016/S1097-2765(02)00550-6] [PMID: 12086620]
Alessi, D.R.; Andjelkovic, M.; Caudwell, B.; Cron, P.; Morrice, N.; Cohen, P.; Hemmings, B.A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J., 1996, 15(23), 6541-6551.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb01045.x] [PMID: 8978681]
Kumar, C.C.; Diao, R.; Yin, Z.; Liu, Y.; Samatar, A.A.; Madison, V.; Xiao, L. Expression, purification, characterization and homology modeling of active Akt/PKB, a key enzyme involved in cell survival signaling. Biochim. Biophys. Acta, 2001, 1526(3), 257-268.
[http://dx.doi.org/10.1016/S0304-4165(01)00143-X] [PMID: 11410335]
Xing, L.; Rai, B.; Lunney, E.A. Scaffold mining of kinase hinge binders in crystal structure database. J. Comput. Aided Mol. Des., 2014, 28(1), 13-23.
[http://dx.doi.org/10.1007/s10822-013-9700-4] [PMID: 24375079]
Kim, E.K.; Tucker, D.F.; Yun, S.J.; Do, K.H.; Kim, M.S.; Kim, J.H.; Kim, C.D.; Birnbaum, M.J.; Bae, S.S. Linker region of Akt1/protein kinase Balpha mediates platelet-derived growth factor-induced translocation and cell migration. Cell. Signal., 2008, 20(11), 2030-2037.
[http://dx.doi.org/10.1016/j.cellsig.2008.07.012] [PMID: 18700164]
Blake, J.F.; Xu, R.; Bencsik, J.R.; Xiao, D.; Kallan, N.C.; Schlachter, S.; Mitchell, I.S.; Spencer, K.L.; Banka, A.L.; Wallace, E.M.; Gloor, S.L.; Martinson, M.; Woessner, R.D.; Vigers, G.P.A.; Brandhuber, B.J.; Liang, J.; Safina, B.S.; Li, J.; Zhang, B.; Chabot, C.; Do, S.; Lee, L.; Oeh, J.; Sampath, D.; Lee, B.B.; Lin, K.; Liederer, B.M.; Skelton, N.J. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors. J. Med. Chem., 2012, 55(18), 8110-8127.
[http://dx.doi.org/10.1021/jm301024w] [PMID: 22934575]
Lučić, I.; Rathinaswamy, M.K.; Truebestein, L.; Hamelin, D.J.; Burke, J.E.; Leonard, T.A. Conformational sampling of membranes by Akt controls its activation and inactivation. Proc. Natl. Acad. Sci, 2018, USA 115, E3940-E3949.
Okuzumi, T.; Ducker, G.S.; Zhang, C.; Aizenstein, B.; Hoffman, R.; Shokat, K.M. Synthesis and evaluation of indazole based analog sensitive Akt inhibitors. Mol. Biosyst., 2010, 6(8), 1389-1402.
[http://dx.doi.org/10.1039/c003917a] [PMID: 20582381]
Chuang, C.H.; Cheng, T.C.; Leu, Y.L.; Chuang, K.H.; Tzou, S.C.; Chen, C.S. Discovery of Akt kinase inhibitors through structure-based virtual screening and their evaluation as potential anticancer agents. Int. J. Mol. Sci., 2015, 16(2), 3202-3212.
[http://dx.doi.org/10.3390/ijms16023202] [PMID: 25648320]
Brown, J.S.; Banerji, U. Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol. Ther., 2017, 172, 101-115.
[http://dx.doi.org/10.1016/j.pharmthera.2016.12.001] [PMID: 27919797]
Yap, T.A.; Walton, M.I.; Grimshaw, K.M.; Te Poele, R.H.; Eve, P.D.; Valenti, M.R.; de Haven Brandon, A.K.; Martins, V.; Zetterlund, A.; Heaton, S.P.; Heinzmann, K.; Jones, P.S.; Feltell, R.E.; Reule, M.; Woodhead, S.J.; Davies, T.G.; Lyons, J.F.; Raynaud, F.I.; Eccles, S.A.; Workman, P.; Thompson, N.T.; Garrett, M.D. AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity. Clin. Cancer Res., 2012, 18(14), 3912-3923.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3313] [PMID: 22781553]
Lindsley, C.W.; Zhao, Z.; Leister, W.H.; Robinson, R.G.; Barnett, S.F.; Defeo-Jones, D.; Jones, R.E.; Hartman, G.D.; Huff, J.R.; Huber, H.E.; Duggan, M.E. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(3), 761-764.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.011] [PMID: 15664853]
Yamaji, M.; Ota, A.; Wahiduzzaman, M.; Karnan, S.; Hyodo, T.; Konishi, H.; Tsuzuki, S.; Hosokawa, Y.; Haniuda, M. Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med., 2017, 6(11), 2646-2659.
[http://dx.doi.org/10.1002/cam4.1179] [PMID: 28960945]
Manning, B.D.; Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell, 2007, 129(7), 1261-1274.
[http://dx.doi.org/10.1016/j.cell.2007.06.009] [PMID: 17604717]
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 2006, 7(8), 606-619.
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
Rodriguez-Viciana, P.; Warne, P.H.; Dhand, R.; Vanhaesebroeck, B.; Gout, I.; Fry, M.J.; Waterfield, M.D.; Downward, J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature, 1994, 370(6490), 527-532.
[http://dx.doi.org/10.1038/370527a0] [PMID: 8052307]
Manning, B.D.; Toker, A. AKT/PKB signaling: navigating the network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
Franke, T.F.; Yang, S.I.; Chan, T.O.; Datta, K.; Kazlauskas, A.; Morrison, D.K.; Kaplan, D.R.; Tsichlis, P.N. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell, 1995, 81(5), 727-736.
[http://dx.doi.org/10.1016/0092-8674(95)90534-0] [PMID: 7774014]
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol., 2010, 11(5), 329-341.
[http://dx.doi.org/10.1038/nrm2882] [PMID: 20379207]
Guilherme, A.; Klarlund, J.K.; Krystal, G.; Czech, M.P. Regulation of phosphatidylinositol 3,4,5-trisphosphate 5′-phosphatase activity by insulin. J. Biol. Chem., 1996, 271(47), 29533-29536.
[http://dx.doi.org/10.1074/jbc.271.47.29533] [PMID: 8939879]
Franke, T.F.; Kaplan, D.R.; Cantley, L.C.; Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science, 1997, 275(5300), 665-668.
[http://dx.doi.org/10.1126/science.275.5300.665] [PMID: 9005852]
Klippel, A.; Kavanaugh, W.M.; Pot, D.; Williams, L.T. A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol. Cell. Biol., 1997, 17(1), 338-344.
[http://dx.doi.org/10.1128/MCB.17.1.338] [PMID: 8972214]
Dufour, M.; Dormond-Meuwly, A.; Demartines, N.; Dormond, O. Targeting the mammalian target of rapamycin (mTOR) in cancer therapy: lessons from past and future perspectives. Cancers (Basel), 2011, 3(2), 2478-2500.
[http://dx.doi.org/10.3390/cancers3022478] [PMID: 24212820]
Sparks, C.A.; Guertin, D.A. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene, 2010, 29(26), 3733-3744.
[http://dx.doi.org/10.1038/onc.2010.139] [PMID: 20418915]
Yang, J.; Cron, P.; Good, V.M.; Thompson, V.; Hemmings, B.A.; Barford, D. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat. Struct. Biol., 2002, 9(12), 940-944.
[http://dx.doi.org/10.1038/nsb870] [PMID: 12434148]
Mora, A.; Komander, D.; van Aalten, D.M.; Alessi, D.R. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol., 2004, 15(2), 161-170.
[http://dx.doi.org/10.1016/j.semcdb.2003.12.022] [PMID: 15209375]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
Calleja, V.; Alcor, D.; Laguerre, M.; Park, J.; Vojnovic, B.; Hemmings, B.A.; Downward, J.; Parker, P.J.; Larijani, B. Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol., 2007, 5(4), e95
[http://dx.doi.org/10.1371/journal.pbio.0050095] [PMID: 17407381]
Auger, K.R.; Serunian, L.A.; Soltoff, S.P.; Libby, P.; Cantley, L.C. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell, 1989, 57(1), 167-175.
[http://dx.doi.org/10.1016/0092-8674(89)90182-7] [PMID: 2467744]
Gao, T.; Furnari, F.; Newton, A.C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell, 2005, 18(1), 13-24.
[http://dx.doi.org/10.1016/j.molcel.2005.03.008] [PMID: 15808505]
Kuo, Y.C.; Huang, K.Y.; Yang, C.H.; Yang, Y.S.; Lee, W.Y.; Chiang, C.W. Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55α regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J. Biol. Chem., 2008, 283(4), 1882-1892.
[http://dx.doi.org/10.1074/jbc.M709585200] [PMID: 18042541]
Farhan, M.; Wang, H.; Gaur, U.; Little, P.J.; Xu, J.; Zheng, W. FOXO signaling pathways as therapeutic targets in cancer. Int. J. Biol. Sci., 2017, 13(7), 815-827.
[http://dx.doi.org/10.7150/ijbs.20052] [PMID: 28808415]
Zhang, X.; Tang, N.; Hadden, T.J.; Rishi, A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta, 2011, 1813(11), 1978-1986.
Kim, A.H.; Khursigara, G.; Sun, X.; Franke, T.F.; Chao, M.V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell. Biol., 2001, 21(3), 893-901.
[http://dx.doi.org/10.1128/MCB.21.3.893-901.2001] [PMID: 11154276]
Guan, K.L.; Figueroa, C.; Brtva, T.R.; Zhu, T.; Taylor, J.; Barber, T.D.; Vojtek, A.B. Negative regulation of the serine/threonine kinase B-Raf by Akt. J. Biol. Chem., 2000, 275(35), 27354-27359.
[http://dx.doi.org/10.1074/jbc.M004371200] [PMID: 10869359]
Cheung, M.; Sharma, A.; Madhunapantula, S.V.; Robertson, G.P. Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res., 2008, 68(9), 3429-3439.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5867] [PMID: 18451171]
Bonni, A.; Brunet, A.; West, A.E.; Datta, S.R.; Takasu, M.A.; Greenberg, M.E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 1999, 286(5443), 1358-1362.
[http://dx.doi.org/10.1126/science.286.5443.1358] [PMID: 10558990]
Maiti, D.; Bhattacharyya, A.; Basu, J. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem., 2001, 276(1), 329-333.
[http://dx.doi.org/10.1074/jbc.M002650200] [PMID: 11020382]
Cardone, M.H.; Roy, N.; Stennicke, H.R.; Salvesen, G.S.; Franke, T.F.; Stanbridge, E.; Frisch, S.; Reed, J.C. Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998, 282(5392), 1318-1321.
[http://dx.doi.org/10.1126/science.282.5392.1318] [PMID: 9812896]
Rena, G.; Guo, S.; Cichy, S.C.; Unterman, T.G.; Cohen, P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem., 1999, 274(24), 17179-17183.
[http://dx.doi.org/10.1074/jbc.274.24.17179] [PMID: 10358075]
Woods, Y.L.; Rena, G.; Morrice, N.; Barthel, A.; Becker, W.; Guo, S.; Unterman, T.G.; Cohen, P. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem. J., 2001, 355(3), 597-607.
[http://dx.doi.org/10.1042/bj3550597] [PMID: 11311120]
Lynch, D.K.; Daly, R.J. PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2. EMBO J., 2002, 21(1-2), 72-82.
[http://dx.doi.org/10.1093/emboj/21.1.72] [PMID: 11782427]
Ozes, O.N.; Mayo, L.D.; Gustin, J.A.; Pfeffer, S.R.; Pfeffer, L.M.; Donner, D.B. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999, 401(6748), 82-85.
[http://dx.doi.org/10.1038/43466] [PMID: 10485710]
Cross, D.A.; Alessi, D.R.; Cohen, P.; Andjelkovich, M.; Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995, 378(6559), 785-789.
[http://dx.doi.org/10.1038/378785a0] [PMID: 8524413]
Navé, B.T.; Ouwens, M.; Withers, D.J.; Alessi, D.R.; Shepherd, P.R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J., 1999, 344(Pt 2), 427-431.
[http://dx.doi.org/10.1042/bj3440427] [PMID: 10567225]
Li, Y.; Dowbenko, D.; Lasky, L.A. AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J. Biol. Chem., 2002, 277(13), 11352-11361.
[http://dx.doi.org/10.1074/jbc.M109062200] [PMID: 11756412]
Ogawara, Y.; Kishishita, S.; Obata, T.; Isazawa, Y.; Suzuki, T.; Tanaka, K.; Masuyama, N.; Gotoh, Y. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J. Biol. Chem., 2002, 277(24), 21843-21850.
[http://dx.doi.org/10.1074/jbc.M109745200] [PMID: 11923280]
Vander Haar, E.; Lee, S.I.; Bandhakavi, S.; Griffin, T.J.; Kim, D.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol., 2007, 9(3), 316-323.
[http://dx.doi.org/10.1038/ncb1547] [PMID: 17277771]
Roux, P.P.; Ballif, B.A.; Anjum, R.; Gygi, S.P.; Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. , 2004, 101, 13489-13494.
Bornhauser, B.C.; Bonapace, L.; Lindholm, D.; Martinez, R.; Cario, G.; Schrappe, M.; Niggli, F.K.; Schäfer, B.W.; Bourquin, J.P. Low-dose arsenic trioxide sensitizes glucocorticoid-resistant acute lymphoblastic leukemia cells to dexamethasone via an Akt-dependent pathway. Blood, 2007, 110(6), 2084-2091.
[http://dx.doi.org/10.1182/blood-2006-12-060970] [PMID: 17537996]
Basu, S.; Totty, N.F.; Irwin, M.S.; Sudol, M.; Downward, J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell, 2003, 11(1), 11-23.
[http://dx.doi.org/10.1016/S1097-2765(02)00776-1] [PMID: 12535517]
Garenne, D.; Renault, T.T.; Manon, S. Bax mitochondrial relocation is linked to its phosphorylation and its interaction with Bcl-xL. Microb. Cell, 2016, 3(12), 597-605.
[http://dx.doi.org/10.15698/mic2016.12.547] [PMID: 28357332]
Wolter, K.G.; Hsu, Y.T.; Smith, C.L.; Nechushtan, A.; Xi, X.G.; Youle, R.J. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol., 1997, 139(5), 1281-1292.
[http://dx.doi.org/10.1083/jcb.139.5.1281] [PMID: 9382873]
Muise-Helmericks, R.C.; Grimes, H.L.; Bellacosa, A.; Malstrom, S.E.; Tsichlis, P.N.; Rosen, N. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem., 1998, 273(45), 29864-29872.
[http://dx.doi.org/10.1074/jbc.273.45.29864] [PMID: 9792703]
Bellacosa, A.; Testa, J.R.; Moore, R.; Larue, L. A portrait of AKT kinases: human cancer and animal models depict a family with strong individualities. Cancer Biol. Ther., 2004, 3(3), 268-275.
[http://dx.doi.org/10.4161/cbt.3.3.703] [PMID: 15034304]
Mayo, L.D.; Donner, D.B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 11598-11603.
[http://dx.doi.org/10.1073/pnas.181181198] [PMID: 11504915]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
Testa, J.R.; Bellacosa, A. AKT plays a central role in tumorigenesis. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 10983-10985.
[http://dx.doi.org/10.1073/pnas.211430998] [PMID: 11572954]
Zhao, H.F.; Wang, J.; Tony To, S.S. The phosphatidylinositol 3-kinase/Akt and c-Jun N-terminal kinase signaling in cancer: Alliance or contradiction? (Review). Int. J. Oncol., 2015, 47(2), 429-436.
[http://dx.doi.org/10.3892/ijo.2015.3052] [PMID: 26082006]
Dajas-Bailador, F.; Bantounas, I.; Jones, E.V.; Whitmarsh, A.J. Regulation of axon growth by the JIP1-AKT axis. J. Cell Sci., 2014, 127(Pt 1), 230-239.
[http://dx.doi.org/10.1242/jcs.137208] [PMID: 24198394]
Kim, A.H.; Sasaki, T.; Chao, M.V. JNK-interacting protein 1 promotes Akt1 activation. J. Biol. Chem., 2003, 278(32), 29830-29836.
[http://dx.doi.org/10.1074/jbc.M305349200] [PMID: 12783873]
Kim, A.H.; Yano, H.; Cho, H.; Meyer, D.; Monks, B.; Margolis, B.; Birnbaum, M.J.; Chao, M.V. Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron, 2002, 35(4), 697-709.
[http://dx.doi.org/10.1016/S0896-6273(02)00821-8] [PMID: 12194869]
Levresse, V.; Butterfield, L.; Zentrich, E.; Heasley, L.E. Akt negatively regulates the cJun N-terminal kinase pathway in PC12 cells. J. Neurosci. Res., 2000, 62(6), 799-808.
[http://dx.doi.org/10.1002/1097-4547(20001215)62:6<799:AID-JNR6>3.0.CO;2-1] [PMID: 11107164]
Khatlani, T.S.; Wislez, M.; Sun, M.; Srinivas, H.; Iwanaga, K.; Ma, L.; Hanna, A.E.; Liu, D.; Girard, L.; Kim, Y.H.; Pollack, J.R.; Minna, J.D.; Wistuba, I.I.; Kurie, J.M. c-Jun N-terminal kinase is activated in non-small-cell lung cancer and promotes neoplastic transformation in human bronchial epithelial cells. Oncogene, 2007, 26(18), 2658-2666.
[http://dx.doi.org/10.1038/sj.onc.1210050] [PMID: 17057737]
Gentry, L.R.; Martin, T.D.; Der, C.J. Mechanisms of targeted therapy resistance take a de-TOR. Cancer Cell, 2013, 24(3), 284-286.
[http://dx.doi.org/10.1016/j.ccr.2013.08.021] [PMID: 24029226]
Winter, J.N.; Jefferson, L.S.; Kimball, S.R. ERK and Akt signaling pathways function through parallel mechanisms to promote mTORC1 signaling. Am. J. Physiol. Cell Physiol., 2011, 300(5), C1172-C1180.
[http://dx.doi.org/10.1152/ajpcell.00504.2010] [PMID: 21289294]
Inoki, K.; Li, Y.; Xu, T.; Guan, K.L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev., 2003, 17(15), 1829-1834.
[http://dx.doi.org/10.1101/gad.1110003] [PMID: 12869586]
Long, X.; Lin, Y.; Ortiz-Vega, S.; Yonezawa, K.; Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol., 2005, 15(8), 702-713.
[http://dx.doi.org/10.1016/j.cub.2005.02.053] [PMID: 15854902]
Hawley, S.A.; Ross, F.A.; Gowans, G.J.; Tibarewal, P.; Leslie, N.R.; Hardie, D.G. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J., 2014, 459(2), 275-287.
[http://dx.doi.org/10.1042/BJ20131344] [PMID: 24467442]
Chen, M.; Nowak, D.G.; Trotman, L.C. Molecular pathways: PI3K pathway phosphatases as biomarkers for cancer prognosis and therapy. Clin. Cancer Res., 2014, 20(12), 3057-3063.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3680] [PMID: 24928944]
Altomare, D.A.; Testa, J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene, 2005, 24(50), 7455-7464.
[http://dx.doi.org/10.1038/sj.onc.1209085] [PMID: 16288292]
Carpten, J.D.; Faber, A.L.; Horn, C.; Donoho, G.P.; Briggs, S.L.; Robbins, C.M.; Hostetter, G.; Boguslawski, S.; Moses, T.Y.; Savage, S.; Uhlik, M.; Lin, A.; Du, J.; Qian, Y.W.; Zeckner, D.J.; Tucker-Kellogg, G.; Touchman, J.; Patel, K.; Mousses, S.; Bittner, M.; Schevitz, R.; Lai, M.H.; Blanchard, K.L.; Thomas, J.E. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 2007, 448(7152), 439-444.
[http://dx.doi.org/10.1038/nature05933] [PMID: 17611497]
Dannemann, N.; Hart, J.R.; Ueno, L.; Vogt, P.K. Phosphatidylinositol 4,5-bisphosphate-specific AKT1 is oncogenic. Int. J. Cancer, 2010, 127(1), 239-244.
[http://dx.doi.org/10.1002/ijc.25012] [PMID: 19876913]
Faes, S.; Dormond, O. PI3K and AKT: unfaithful partners in cancer. Int. J. Mol. Sci., 2015, 16(9), 21138-21152.
[http://dx.doi.org/10.3390/ijms160921138] [PMID: 26404259]
SPARTAN. Wavefunction, Inc.: Irvine. , 2018.
Bowen, J.P. Computational chemistry and computer-assisted drug design. In: Wilson and gisvold’s textbook of organic medicinal and pharmaceutical chemistry; John M. Beale Jr., John Block, Eds. . Lippincott Williams & Wilkins: Philadelphia, 2004, pp. 919-947.
Leclercq, S.; Thirionet, I.; Broeders, F.; Daloze, D.; Vander Meer, R.; Braekman, J.C. Absolute configuration of the solenopsins, venom alkaloids of the fire ants. Tetrahedron, 1994, 50, 8465-8478.
Arbiser, J.L.; Kau, T.; Konar, M.; Narra, K.; Ramchandran, R.; Summers, S.A.; Vlahos, C.J.; Ye, K.; Perry, B.N.; Matter, W.; Fischl, A.; Cook, J.; Silver, P.A.; Bain, J.; Cohen, P.; Whitmire, D.; Furness, S.; Govindarajan, B.; Bowen, J.P. Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis. Blood, 2007, 109(2), 560-565.
[http://dx.doi.org/10.1182/blood-2006-06-029934] [PMID: 16990598]
Arbiser, J.L.; Bowen, J.P.; Watkins, E.B. Solenopsin and derivatives, therapeutic compositions; and methods related thereto. U.S. Patent No. 9,592,226,. 2017.
Jones, T.H.; Blum, M.S.; Fales, H.M. Ant venom alkaloids from Solenopsis and Monorium species: Recent developments. Tetrahedron, 1982, 38, 1949-1958.
Reding, M.T.; Buchwald, S.L. Short Enantioselective Total syntheses of the piperidine alkaloids (S)-coniine and (2R, 6R)-trans-solenopsin A via catalytic asymmetric imine hydrosilylation. J. Org. Chem., 1998, 63(18), 6344-6347.
[http://dx.doi.org/10.1021/jo980808q] [PMID: 11672268]
Beak, P.; Lee, W.K. α-Lithioamine synthetic equivalents: Syntheses of diastereoisomers from Boc derivatives of cyclic amines. J. Org. Chem., 1993, 58, 1109-1117.
Bowen, J.P.; Whitmire, D.; Furness, M.S. Solenopsin derivatives and analogues as fire ant suppressants., U.S. Patent 6,369,078 B1,. 2002.
Karlsson, I.; Zhou, X.; Thomas, R.; Smith, A.T.; Bonner, M.Y.; Bakshi, P.; Banga, A.K.; Bowen, J.P.; Qabaja, G.; Ford, S.L.; Ballard, M.D.; Petersen, K.S.; Li, X.; Chen, G.; Ogretmen, B.; Zhang, J.; Watkins, E.B.; Arnold, R.S.; Arbiser, J.L. Solenopsin A and analogs exhibit ceramide-like biological activity. Vasc. Cell, 2015, 7, 5-16.
[http://dx.doi.org/10.1186/s13221-015-0030-2] [PMID: 26015865]
Güner, O.F. Pharmacophore perception, development, and use in drug design. Molecules, 5(7), 987-989.
Güner, O.F.; Waldman, M.; Hoffmann, R.; Kim, J.H. Strategies for database mining and pharmacophore development. In: Pharmacophore perception, development, and use in drug design;; Osman F. Guner, Ed.;. International University Line: San Diego, 2000, pp. 213-236.
Güner, O.F.; Henry, D.R. Pharmacophore perception, development and use in drug design.edited by osman F. güner.; Molecules; , 2000, pp. 5. (7): 987-989.
Güner, O.F.; Bowen, J.P. Setting the record straight: the origin of the pharmacophore concept. J. Chem. Inf. Model., 2014, 54(5), 1269-1283.
[http://dx.doi.org/10.1021/ci5000533] [PMID: 24745881]
Schrödinger, LLC Small-Molecule Drug Discovery Suite . 2013.
Uko, N.E.; Güner, O.F.; Barnett, L.M.A.; Matesic, D.F.; Bowen, J.P. Discovery and biological activity of computer-assisted drug designed Akt pathway inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(19), 3247-3250.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.006] [PMID: 30143420]
Uko, N.E.; Güner, O.F.; Bowen, J.P.; Matesic, D.F. Akt pathway inhibition of the solenopsing analog, 2-dodecylsulfnayl-1,4,5,6-tetrahydropyrimidine. Anticancer Res., 2019, 39, 5329-5338.
[http://dx.doi.org/10.21873/anticanres.13725] [PMID: 31570426]
West, K.A.; Castillo, S.S.; Dennis, P.A. Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist. Updat., 2002, 5(6), 234-248.
[http://dx.doi.org/10.1016/S1368-7646(02)00120-6] [PMID: 12531180]
Pal, S.K.; Reckamp, K.; Yu, H.; Figlin, R.A. Akt inhibitors in clinical development for the treatment of cancer. Expert Opin. Investig. Drugs, 2010, 19(11), 1355-1366.
[http://dx.doi.org/10.1517/13543784.2010.520701] [PMID: 20846000]
Hsieh, A.C.; Truitt, M.L.; Ruggero, D. Oncogenic AKTivation of translation as a therapeutic target. Br. J. Cancer, 2011, 105(3), 329-336.
[http://dx.doi.org/10.1038/bjc.2011.241] [PMID: 21772331]
Davies, B.R.; Greenwood, H.; Dudley, P.; Crafter, C.; Yu, D.H.; Zhang, J.; Li, J.; Gao, B.; Ji, Q.; Maynard, J.; Ricketts, S.A.; Cross, D.; Cosulich, S.; Chresta, C.C.; Page, K.; Yates, J.; Lane, C.; Watson, R.; Luke, R.; Ogilvie, D.; Pass, M. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol. Cancer Ther., 2012, 11(4), 873-887.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0824-T] [PMID: 22294718]
Rhodes, N.; Heerding, D.A.; Duckett, D.R.; Eberwein, D.J.; Knick, V.B.; Lansing, T.J.; McConnell, R.T.; Gilmer, T.M.; Zhang, S-Y.; Robell, K.; Kahana, J.A.; Geske, R.S.; Kleymenova, E.V.; Choudhry, A.E.; Lai, Z.; Leber, J.D.; Minthorn, E.A.; Strum, S.L.; Wood, E.R.; Huang, P.S.; Copeland, R.A.; Kumar, R. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res., 2008, 68(7), 2366-2374.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5783] [PMID: 18381444]
Johnson, L.N.; Lowe, E.D.; Noble, M.E.; Owen, D.J. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett., 1998, 430(1-2), 1-11.
[http://dx.doi.org/10.1016/S0014-5793(98)00606-1] [PMID: 9678585]
Wu, W.I.; Voegtli, W.C.; Sturgis, H.L.; Dizon, F.P.; Vigers, G.P.; Brandhuber, B.J. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One, 2010, 5(9), e12913
[http://dx.doi.org/10.1371/journal.pone.0012913] [PMID: 20886116]
Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the “gatekeeper door”: exploiting the active kinase conformation. J. Med. Chem., 2010, 53(7), 2681-2694.
[http://dx.doi.org/10.1021/jm901443h] [PMID: 20000735]
Chan, T.O.; Zhang, J.; Tiegs, B.C.; Blumhof, B.; Yan, L.; Keny, N.; Penny, M.; Li, X.; Pascal, J.M.; Armen, R.S.; Rodeck, U.; Penn, R.B. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response. Biochem. J., 2015, 471(1), 37-51.
[http://dx.doi.org/10.1042/BJ20150325] [PMID: 26201515]
Lin, K.; Lin, J.; Wu, W.I.; Ballard, J.; Lee, B.B.; Gloor, S.L.; Vigers, G.P.; Morales, T.H.; Friedman, L.S.; Skelton, N.; Brandhuber, B.J. An ATP-site on-off switch that restricts phosphatase accessibility of Akt. Sci. Signal., 2012, 5(223), ra37-ra37.
[http://dx.doi.org/10.1126/scisignal.2002618] [PMID: 22569334]
Blake, J.F.; Kallan, N.C.; Xiao, D.; Xu, R.; Bencsik, J.R.; Skelton, N.J.; Spencer, K.L.; Mitchell, I.S.; Woessner, R.D.; Gloor, S.L.; Risom, T.; Gross, S.D.; Martinson, M.; Morales, T.H.; Vigers, G.P.; Brandhuber, B.J. Discovery of pyrrolopyrimidine inhibitors of Akt. Bioorg. Med. Chem. Lett., 2010, 20(19), 5607-5612.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.053] [PMID: 20810279]
Lin, J.; Sampath, D.; Nannini, M.A.; Lee, B.B.; Degtyarev, M.; Oeh, J.; Savage, H.; Guan, Z.; Hong, R.; Kassees, R.; Lee, L.B.; Risom, T.; Gross, S.; Liederer, B.M.; Koeppen, H.; Skelton, N.J.; Wallin, J.J.; Belvin, M.; Punnoose, E.; Friedman, L.S.; Lin, K. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin. Cancer Res., 2013, 19(7), 1760-1772.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3072] [PMID: 23287563]
Mou, L.; Cui, T.; Liu, W.; Zhang, H.; Cai, Z.; Lu, S.; Gao, G. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation. Chem. Biol. Drug Des., 2017, 89(5), 723-731.
[http://dx.doi.org/10.1111/cbdd.12895] [PMID: 27797456]
Saura, C.; Roda, D.; Roselló, S.; Oliveira, M.; Macarulla, T.; Pérez-Fidalgo, J.A.; Morales-Barrera, R.; Sanchis-García, J.M.; Musib, L.; Budha, N.; Zhu, J.; Nannini, M.; Chan, W.Y.; Sanabria Bohórquez, S.M.; Meng, R.D.; Lin, K.; Yan, Y.; Patel, P.; Baselga, J.; Tabernero, J.; Cervantes, A. A first-in-human phase I study of the ATP-competitive AKT inhibitor ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors. Cancer Discov., 2017, 7(1), 102-113.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0512] [PMID: 27872130]
Cheraghchi-Bashi, A.; Parker, C.A.; Curry, E.; Salazar, J.F.; Gungor, H.; Saleem, A.; Cunnea, P.; Rama, N.; Salinas, C.; Mills, G.B.; Morris, S.R.; Kumar, R.; Gabra, H.; Stronach, E.A. A putative biomarker signature for clinically effective AKT inhibition: correlation of in vitro, in vivo and clinical data identifies the importance of modulation of the mTORC1 pathway. Oncotarget, 2015, 6(39), 41736-41749.
[http://dx.doi.org/10.18632/oncotarget.6153] [PMID: 26497682]
Datta, J.; Damodaran, S.; Parks, H.; Ocrainiciuc, C.; Miya, J.; Yu, L.; Gardner, E.P.; Samorodnitsky, E.; Wing, M.R.; Bhatt, D.; Hays, J.; Reeser, J.W.; Roychowdhury, S. Akt activation mediates acquired resistance to fibroblast growth factor receptor inhibitor BGJ398. Mol. Cancer Ther., 2017, 16(4), 614-624.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-1010] [PMID: 28255027]
Dumble, M.; Crouthamel, M.C.; Zhang, S.Y.; Schaber, M.; Levy, D.; Robell, K.; Liu, Q.; Figueroa, D.J.; Minthorn, E.A.; Seefeld, M.A.; Rouse, M.B.; Rabindran, S.K.; Heerding, D.A.; Kumar, R. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS One, 2014, 9(6), e100880
[http://dx.doi.org/10.1371/journal.pone.0100880] [PMID: 24978597]
Abraham, J. PI3K/AKT/mTOR pathway inhibitors: the ideal combination partners for breast cancer therapies? Expert Rev. Anticancer Ther., 2015, 15(1), 51-68.
[http://dx.doi.org/10.1586/14737140.2015.961429] [PMID: 25306975]
National Institute of Health; NCI dictionary of cancer terms., Available from . https://www.cancer.gov/publications/dictionaries/cancer-terms(Accessed 2005.).
Burris, H. A.; Siu, L.L.; Infante, J.R.; Wheler, J.J.; Kurkjian, C.; Opalinska, J.; Smith, D.A.; Antal, J.M.; Gonzalez, T.; Adams, L.M.; Bedard, P.; Gerecitano, R.; Kurzrock, K.N.; Moore, S.R.; Morris, C.; Aghajanian, C. Safety, pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of the oral AKT inhibitor GSK2141795 (GSK795) in a phase I first-in-human study. J. Clin. Onco., 2011, 29(15_suppl), 3003-3003.
Gdowski, A.; Panchoo, M.; Treuren, T.V.; Basu, A. Emerging therapeutics for targeting Akt in cancer. Front. Biosci., 2016, 21, 757-768.
[http://dx.doi.org/10.2741/4419] [PMID: 26709804]
Green, C.J.; Göransson, O.; Kular, G.S.; Leslie, N.R.; Gray, A.; Alessi, D.R.; Sakamoto, K.; Hundal, H.S. Use of Akt inhibitor and a drug-resistant mutant validates a critical role for protein kinase B/Akt in the insulin-dependent regulation of glucose and system A amino acid uptake. J. Biol. Chem., 2008, 283(41), 27653-27667.
[http://dx.doi.org/10.1074/jbc.M802623200] [PMID: 18669636]
Barnett, S.F.; Defeo-Jones, D.; Fu, S.; Hancock, P.J.; Haskell, K.M.; Jones, R.E.; Kahana, J.A.; Kral, A.M.; Leander, K.; Lee, L.L.; Malinowski, J.; McAvoy, E.M.; Nahas, D.D.; Robinson, R.G.; Huber, H.E. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem. J., 2005, 385(Pt 2), 399-408.
[http://dx.doi.org/10.1042/BJ20041140] [PMID: 15456405]
Li, Z.; Tan, F.; Tong, J.; McKee, A.; Thiele, C. Perifosine, as a single agent, inhibits neuroblastoma tumor cell growth in in vitro and in vivo preclinical models. AACR Meeting Abstracts, 2009, p. p. 3205.
Vink, S.R.; Schellens, J.H.M.; Beijnen, J.H.; Sindermann, H.; Engel, J.; Dubbelman, R.; Moppi, G.; Hillebrand, M.J.X.; Bartelink, H.; Verheij, M. Phase I and pharmacokinetic study of combined treatment with perifosine and radiation in patients with advanced solid tumours. Radiother. Oncol., 2006, 80(2), 207-213.
[http://dx.doi.org/10.1016/j.radonc.2006.07.032] [PMID: 16914220]
Hilgard, P.; Klenner, T.; Stekar, J.; Nössner, G.; Kutscher, B.; Engel, J. D-21266, a new heterocyclic alkylphospholipid with antitumour activity. Eur. J. Cancer, 1997, 33(3), 442-446.
[http://dx.doi.org/10.1016/S0959-8049(97)89020-X] [PMID: 9155530]
Bendell, J.C.; Nemunaitis, J.; Vukelja, S.J.; Hagenstad, C.; Campos, L.T.; Hermann, R.C.; Sportelli, P.; Gardner, L.; Richards, D.A. Randomized placebo-controlled phase II trial of perifosine plus capecitabine as second- or third-line therapy in patients with metastatic colorectal cancer. J. Clin. Oncol., 2011, 29(33), 4394-4400.
[http://dx.doi.org/10.1200/JCO.2011.36.1980] [PMID: 21969495]
Richardson, P.G.; Wolf, J.; Jakubowiak, A.; Zonder, J.; Lonial, S.; Irwin, D.; Densmore, J.; Krishnan, A.; Raje, N.; Bar, M.; Martin, T.; Schlossman, R.; Ghobrial, I.M.; Munshi, N.; Laubach, J.; Allerton, J.; Hideshima, T.; Colson, K.; Poradosu, E.; Gardner, L.; Sportelli, P.; Anderson, K.C. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J. Clin. Oncol., 2011, 29(32), 4243-4249.
[http://dx.doi.org/10.1200/JCO.2010.33.9788] [PMID: 21990396]
National Institutes of Health; Assessment of efficacy and safety of perifosine, bortezomib and dexamethasone in multiple myeloma patients., Available from: . https://clinicaltrials.gov/ct2/show/NCT01002248 (Accessed 2013.).
Krawczyk, J.; Keane, N.; Swords, R.; O’Dwyer, M.; Freeman, C.L.; Giles, F.J. Perifosine--a new option in treatment of acute myeloid leukemia? Expert Opin. Investig. Drugs, 2013, 22(10), 1315-1327.
[http://dx.doi.org/10.1517/13543784.2013.826648] [PMID: 23931614]
Bilodeau, M.T.; Balitza, A.E.; Hoffman, J.M.; Manley, P.J.; Barnett, S.F.; Defeo-Jones, D.; Haskell, K.; Jones, R.E.; Leander, K.; Robinson, R.G.; Smith, A.M.; Huber, H.E.; Hartman, G.D. Allosteric inhibitors of Akt1 and Akt2: a naphthyridinone with efficacy in an A2780 tumor xenograft model. Bioorg. Med. Chem. Lett., 2008, 18(11), 3178-3182.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.074] [PMID: 18479914]
Hirai, H.; Sootome, H.; Nakatsuru, Y.; Miyama, K.; Taguchi, S.; Tsujioka, K.; Ueno, Y.; Hatch, H.; Majumder, P.K.; Pan, B.S.; Kotani, H. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol. Cancer Ther., 2010, 9(7), 1956-1967.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1012] [PMID: 20571069]
Meng, J.; Dai, B.; Fang, B.; Bekele, B.N.; Bornmann, W.G.; Sun, D.; Peng, Z.; Herbst, R.S.; Papadimitrakopoulou, V.; Minna, J.D.; Peyton, M.; Roth, J.A. Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS One, 2010, 5(11), e14124
[http://dx.doi.org/10.1371/journal.pone.0014124] [PMID: 21124782]
Yap, T.A.; Yan, L.; Patnaik, A.; Fearen, I.; Olmos, D.; Papadopoulos, K.; Baird, R.D.; Delgado, L.; Taylor, A.; Lupinacci, L.; Riisnaes, R.; Pope, L.L.; Heaton, S.P.; Thomas, G.; Garrett, M.D.; Sullivan, D.M.; de Bono, J.S.; Tolcher, A.W. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J. Clin. Oncol., 2011, 29(35), 4688-4695.
[http://dx.doi.org/10.1200/JCO.2011.35.5263] [PMID: 22025163]
Oki, Y.; Fanale, M.; Romaguera, J.; Fayad, L.; Fowler, N.; Copeland, A.; Samaniego, F.; Kwak, L.W.; Neelapu, S.; Wang, M.; Feng, L.; Younes, A. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Br. J. Haematol., 2015, 171(4), 463-470.
[http://dx.doi.org/10.1111/bjh.13603] [PMID: 26213141]
Yan, L. In MK-2206: A potent oral allosteric AKT inhibitor. Proceeding of the 100th 100th AACR Annual Meeting, Denver, Colorado, USA,April 18-22, ;2009
Rehan, M.; Beg, M.A.; Parveen, S.; Damanhouri, G.A.; Zaher, G.F. Computational insights into the inhibitory mechanism of human AKT1 by an orally active inhibitor, MK-2206. PLoS One, 2014, 9(10), e109705
[http://dx.doi.org/10.1371/journal.pone.0109705] [PMID: 25329478]
Cheng, Y.; Zhang, Y.; Zhang, L.; Ren, X.; Huber-Keener, K.J.; Liu, X.; Zhou, L.; Liao, J.; Keihack, H.; Yan, L.; Rubin, E.; Yang, J-M. MK-2206, a novel allosteric inhibitor of Akt, synergizes with gefitinib against malignant glioma via modulating both autophagy and apoptosis. Mol. Cancer Ther., 2012, 11(1), 154-164.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0606] [PMID: 22057914]
Lai, Y.C.; Liu, Y.; Jacobs, R.; Rider, M.H. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle. Biochem. J., 2012, 447(1), 137-147.
[http://dx.doi.org/10.1042/BJ20120772] [PMID: 22793019]
Liu, R.; Liu, D.; Xing, M. The Akt inhibitor MK2206 synergizes, but perifosine antagonizes, the BRAF(V600E) inhibitor PLX4032 and the MEK1/2 inhibitor AZD6244 in the inhibition of thyroid cancer cells. J. Clin. Endocrinol. Metab., 2012, 97(2), E173-E182.
[http://dx.doi.org/10.1210/jc.2011-1054] [PMID: 22090271]
Duan, L.; Perez, R.E.; Hansen, M.; Gitelis, S.; Maki, C.G. Increasing cisplatin sensitivity by schedule-dependent inhibition of AKT and Chk1. Cancer Biol. Ther., 2014, 15(12), 1600-1612.
[http://dx.doi.org/10.4161/15384047.2014.961876] [PMID: 25482935]
Tao, K.; Yin, Y.; Shen, Q.; Chen, Y.; Li, R.; Chang, W.; Bai, J.; Liu, W.; Shi, L.; Zhang, P. Akt inhibitor MK-2206 enhances the effect of cisplatin in gastric cancer cells. Biomed. Rep., 2016, 4(3), 365-368.
[http://dx.doi.org/10.3892/br.2016.594] [PMID: 26998277]
Shiota, C.; Woo, J.T.; Lindner, J.; Shelton, K.D.; Magnuson, M.A. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Develop. Cell, 2006, 11(4), 583-589.
[http://dx.doi.org/10.1016/j.devcel.2006.08.013] [PMID: 16962829]
Engelman, J.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer, 2009, 9(8), 550.
[http://dx.doi.org/10.1038/nrc2664] [PMID: 19629070]
Lin, Y.H.; Chen, B.Y.H.; Lai, W.T.; Wu, S.F.; Guh, J.H.; Cheng, A.L.; Hsu, L.C. The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(1), 19-31.
[http://dx.doi.org/10.1007/s00210-014-1032-y] [PMID: 25164962]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 23 February, 2020
Page: [883 - 900]
Pages: 18
DOI: 10.2174/1568026620666200224101808
Price: $65

Article Metrics

PDF: 221
HTML: 35
PRC: 1