Cellulose-based Biosensor for Bio-molecules Detection in Medical Diagnosis: A Mini-Review

Author(s): Minmin Chang, Tao Song*, Xinxin Liu, Qixuan Lin, Bei He, Junli Ren

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 28 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Biosensors are widely applied for the detection of bio-molecules in blood glucose , cholesterol, and gene. Cellulose as the most dominating natural polymer has attracted more and more interest, especially in the field of medicine such as advanced medical diagnosis. Cellulose could endow biosensors with improved biocompatibility, biodegradability and nontoxicity, which could help in medical diagnosis. This mini-review summarizes the current development of cellulose-based biosensors as well as their applications in medical diagnosis in recent years.

Methods: After reviewing recent years’ publications we can say that, there are several kinds of cellulose used in biosensors including different cellulose derivatives, bacterial cellulose and nanocellulose. Different types of cellulose-based biosensors, such as membrane, nano-cellulose and others were briefly described in addition to the detection principle. Cellulose-based biosensors were summarized as in the previous papers. The description of various methods used for preparing cellulose-based biosensors was also provided.

Results: Cellulose and its derivatives with their unique chemical structure proved to be versatile materials providing a good platform for achieving immobilizing bioactive molecules in biosensors. These cellulose-based biosensors possess various desirable properties such as accuracy, sensitivity, convenience, low cost and fast response. Among them, cellulose paper-based biosensors have the advantages of low cost and easy operation. Nano-cellulose has unique properties such as a large aspect ratio, good dispersing ability and high absorption capacity.

Conclusion: Cellulose displays a promising application in biosensors which could be used to detect different bio-molecules such as glucose, lactate, urea, gene, cell, amino acid, cholesterol, protein and hydroquinone. In future, the attention will be focused on designing miniaturized, multifunctional, intelligent and integrated biosensors. Creation of low cost and environmentally friendly biosensors is also very important.

Keywords: Cellulose, biosensor, preparation, bio-molecules, medical diagnosis, cellulose derivatives, bacterial cellulose.

[1]
Mutwil, M.; Debolt, S.; Persson, S. Cellulose synthesis: A complex complex. Curr. Opin. Plant Biol., 2008, 11(3), 252-257.
[http://dx.doi.org/10.1016/j.pbi.2008.03.007] [PMID: 18485800]
[2]
Paavo, A.P.; Tomoya, I.; Marie, C.; Masahiro, M.; Yoshihiko, A. Multimethod approach to understand the assembly of cellulose fibrils in the biosynthesis of bacterial cellulose. Cellulose, 2018, 25(5), 2771-2783.
[http://dx.doi.org/10.1007/s10570-018-1755-x]
[3]
Kwak, M.H.; Kim, J.E.; Go, J.; Koh, E.K.; Song, S.H.; Son, H.J.; Kim, H.S.; Yun, Y.H.; Jung, Y.J.; Hwang, D.Y. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohydr. Polym., 2015, 122, 387-398.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.049] [PMID: 25817683]
[4]
Capanema, N.S.V.; Mansur, A.A.P.; Carvalho, S.M.; Carvalho, I.C.; Chagas, P.; de Oliveira, L.C.A.; Mansur, H.S. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr. Polym., 2018, 195, 401-412.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.105] [PMID: 29804993]
[5]
Hou, Y.; Wang, X.; Yang, J.; Zhu, R.; Zhang, Z.; Li, Y. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J. Biomed. Mater. Res. A, 2018, 106(5), 1288-1298.
[http://dx.doi.org/10.1002/jbm.a.36330] [PMID: 29316233]
[6]
Liu, H.; Wang, D.; Song, Z.; Shang, S. Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose, 2011, 18(1), 67-84.
[http://dx.doi.org/10.1007/s10570-010-9464-0]
[7]
Milne, J.C.; Lambert, P.D.; Schenk, S.; Carney, D.P.; Smith, J.J.; Gagne, D.J.; Jin, L.; Boss, O.; Perni, R.B.; Vu, C.B.; Bemis, J.E.; Xie, R.; Disch, J.S.; Ng, P.Y.; Nunes, J.J.; Lynch, A.V.; Yang, H.; Galonek, H.; Israelian, K.; Choy, W.; Iffland, A.; Lavu, S.; Medvedik, O.; Sinclair, D.A.; Olefsky, J.M.; Jirousek, M.R.; Elliott, P.J.; Westphal, C.H. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature, 2007, 450(7170), 712-716.
[http://dx.doi.org/10.1038/nature06261] [PMID: 18046409]
[8]
Oh, Y.J.; Jeong, K. Nanopillar arrays: Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced raman scattering. Adv. Mater., 2012, 24(17), 2234-2237.
[http://dx.doi.org/10.1002/adma.201104696] [PMID: 22454295]
[9]
Camilli, A.; Bassler, B.L. Bacterial small-molecule signaling pathways. Science, 2006, 311(5764), 1113-1116.
[http://dx.doi.org/10.1126/science.1121357] [PMID: 16497924]
[10]
Hu, C.; Liu, Y.; Qin, J.; Nie, G.; Lei, B.; Xiao, Y.; Zheng, M.; Rong, J. Fabrication of reduced graphene oxide and sliver nanoparticle hybrids for raman detection of absorbed folic acid: A potential cancer diagnostic probe. ACS Appl. Mater. Interfaces, 2013, 5(11), 4760-4768.
[http://dx.doi.org/10.1021/am4000485] [PMID: 23629451]
[11]
Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature, 2008, 455(7216), 1054-1056.
[http://dx.doi.org/10.1038/4551054a ] [PMID: 18948945 ]
[12]
Hong, C.C.; Yu, P.B. Applications of small molecule BMP inhibitors in physiology and disease. Cytokine Growth Factor Rev., 2009, 20(5-6), 409-418.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.021] [PMID: 19914855]
[13]
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet, 1998, 352(9131), 854-865.
[http://dx.doi.org/10.1016/S0140-6736(98)07037-8] [PMID: 9742977]
[14]
UKPDS. Group, Intensive blood glucose control with sulfonylurea or insulin compared with conventional treatment and risk of complication in patients with type 2 diabetes. Lancet, 1998, 352, 837-853.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[15]
Kim, E.J.; Cho, S.S.; Jeong, B.H. Glucose metabolism in sporadic Creutzfeldt-Jakob disease: An SPM analysis of 18F-FDG PET. Eur. J. Neurol., 2012, 19(3), 488-493.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03570.x] [PMID: 22050286]
[16]
Park, M.; Jung, H.; Jeong, Y.; Jeong, K.H. Plasmonic schirmer strip for Human tear-based gouty arthritis diagnosis using surface-enhanced raman scattering. ACS Nano, 2017, 11(1), 438-443.
[http://dx.doi.org/10.1021/acsnano.6b06196] [PMID: 27973769]
[17]
Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron., 2002, 17(6-7), 441-456.
[http://dx.doi.org/10.1016/S0956-5663(01)00313-X] [PMID: 11959464]
[18]
Long, F.; Zhu, A.; Shi, H. Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Basel), 2013, 13(10), 13928-13948.
[http://dx.doi.org/10.3390/s131013928] [PMID: 24132229]
[19]
Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators B Chem., 2018, 265, 35-49.
[http://dx.doi.org/10.1016/j.snb.2018.03.004]
[20]
Jung, I.Y.; Lee, E.H.; Suh, A.Y.; Lee, S.J.; Lee, H. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection. Anal. Bioanal. Chem., 2016, 408(10), 2383-2406.
[http://dx.doi.org/10.1007/s00216-015-9212-2] [PMID: 26781106]
[21]
Jasim, A.; Ullah, M.W.; Shi, Z.; Lin, X.; Yang, G. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr. Polym., 2017, 163, 62-69.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.056] [PMID: 28267519]
[22]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. ChemInform Abstract: Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 42(42), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[23]
Halib, N.; Perrone, F.; Cemazar, M.; Dapas, B.; Farra, R.; Abrami, M.; Chiarappa, G.; Forte, G.; Zanconati, F.; Pozzato, G.; Murena, L.; Fiotti, N.; Lapasin, R.; Cansolino, L.; Grassi, G.; Grassi, M. Potential applications of nanocellulose- containing materials in the biomedical field. Materials (Basel), 2017, 10(8), 977-1107.
[http://dx.doi.org/10.3390/ma10080977] [PMID: 28825682]
[24]
Tashiro, K.; Kobayashi, M. Theoretical evaluation of three dimensional elastic constants of native and regenerated celluloses: Role of hydrogen bonds. Polymer (Guildf.), 1991, 32(8), 1516-1526.
[http://dx.doi.org/10.1016/0032-3861(91)90435-L]
[25]
Pérez, S.; Samain, D. Structure and engineering of celluloses. Adv. Carbohydr. Chem. Biochem., 2010, 64, 25-116.
[http://dx.doi.org/10.1016/S0065-2318(10)64003-6] [PMID: 20837198]
[26]
Song, J.; Birbach, N.L.; Hinestroza, J.P. Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose, 2012, 19, 411-424.
[http://dx.doi.org/10.1007/s10570-011-9647-3]
[27]
Deng, L.; Young, R.J.; Kinloch, I.A.; Abdelkader, A.M.; Holmes, S.M.; De Haro-Del Rio, D.A.; Eichhorn, S.J. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Interfaces, 2013, 5(20), 9983-9990.
[http://dx.doi.org/10.1021/am403622v] [PMID: 24070254]
[28]
Orelma, H.; Teerinen, T.; Johansson, L.S.; Holappa, S.; Laine, J. CMC-Modified cellulose biointerface for antibody conjugation. Biomacromolecules, 2012, 13(4), 1051-1058.
[http://dx.doi.org/10.1021/bm201771m ] [PMID: 22360491]
[29]
Wu, X.; Zhao, F.; Varcoe, J.R.; Thumser, A.E.; Avignone- Rossa, C.; Slade, R.C.T. Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose-carbon nanotube matrix. Bioelectrochemistry, 2009, 77(1), 64-68.
[http://dx.doi.org/10.1016/j.bioelechem.2009.05.008] [PMID: 19535301]
[30]
Cui, W.; Zhou, Y.; Chang, J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater., 2010, 11(1), 014108.
[http://dx.doi.org/10.1088/1468-6996/11/1/014108] [PMID: 27877323]
[31]
Liu, X.; Lin, T.; Gao, Y.; Xu, Z.; Huang, C.; Yao, G.; Jiang, L.; Tang, Y.; Wang, X. Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(6), 1556-1565.
[http://dx.doi.org/10.1002/jbm.b.32724] [PMID: 22692845]
[32]
Moccelini, S.K.; Franzoi, A.C.; Vieira, I.C.; Dupont, J.; Scheeren, C.W. A novel support for laccase immobilization: Cellulose acetate modified with ionic liquid and application in biosensor for methyldopa detection. Biosens. Bioelectron., 2011, 26(8), 3549-3554.
[http://dx.doi.org/10.1016/j.bios.2011.01.043] [PMID: 21353521]
[33]
Chang, J.; Xiao, W.; Liu, P. Carboxymethyl cellulose assisted preparation of water-processable halloysite nanotubular composites with carboxyl-functionalized multi-carbon nanotubes for simultaneous voltammetric detection of uric acid, guanine and adenine in biological samples. J. Electroanal. Chem., 2016, 780, 103-113.
[http://dx.doi.org/10.1016/j.jelechem.2016.09.013]
[34]
Ul-Islam, M.; Khattak, W.A.; Ullah, M.W.; Khan, S.; Park, J.K. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose, 2014, 21(1), 433-447.
[http://dx.doi.org/10.1007/s10570-013-0109-y]
[35]
Ullah, M.W.; Ul-Islam, M.; Khan, S.; Kim, Y.; Park, J.K. Structural and physico-mechanical characterization of bio cellulose produced by a cell-free system. Carbohydr. Polym., 2016, 136, 908-916.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.010] [PMID: 26572428]
[36]
Ullah, M.W.; Khattak, W.A.; Ul-Islam, M.; Khan, S.; Park, J.K. Metabolic engineering of synthetic cell-free systems: Strategies and applications. Biochem. Eng. J., 2016, 105, 391-405.
[http://dx.doi.org/10.1016/j.bej.2015.10.023]
[37]
Seo, C.; Lee, H.W.; Suresh, A.; Yang, J.W.; Jung, J.K.; Kim, Y.C. Improvement of fermentative production of exopolysaccharides from Aureobasidium pullulans, under various conditions. Korean J. Chem. Eng., 2014, 31(8), 1433-1437.
[http://dx.doi.org/10.1007/s11814-014-0064-9]
[38]
Dugan, J.M.; Gough, J.E.; Eichhorn, S.J. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine (Lond.), 2013, 8(2), 287-298.
[http://dx.doi.org/10.2217/nnm.12.211 PMID: 23394157]
[39]
Ul-Islam, M.; Khan, S.; Ullah, M.W.; Park, J.K. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol. J., 2015, 10(12), 1847-1861.
[http://dx.doi.org/10.1002/biot.201500106] [PMID: 26395011]
[40]
Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brown, R.M. Jr. Microbial cellulose--the natural power to heal wounds. Biomaterials, 2006, 27(2), 145-151.
[http://dx.doi.org/10.1016/j.biomaterials.2005.07.035] [PMID: 16099034]
[41]
Chen, P.; Kim, H.S.; Kwon, S.M.; Yun, Y.S.; Jin, H.J. Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning. Curr. Appl. Phys., 2009, 9(2), 96-99.
[http://dx.doi.org/10.1016/j.cap.2008.12.038]
[42]
Feng, Y.Y.; Zhang, X.Q.; Shen, Y.T.; Yoshinoc, K.; Feng, W. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym., 2012, 87(1), 644-649.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.039] [PMID: 24751088]
[43]
Hosseini, H.; Kokabi, M.; Mousavi, S.M. BC/rGO conductive nanocomposite aerogel as a strain sensor. Polymer (Guildf.), 2018, 137, 82-96.
[http://dx.doi.org/10.1016/j.polymer.2017.12.068]
[44]
Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500.
[http://dx.doi.org/10.1021/cr900339w] [PMID: 20201500]
[45]
Shao, W.; Liu, H.; Liu, X. Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Advances, 2014, 5(7), 4795-4803.
[http://dx.doi.org/10.1039/C4RA13057J]
[46]
Lee, W.J.; Clancy, A.J.; Kontturi, E.; Bismarck, A.; Shaffer, M.S. Strong and stiff: High performance cellulose nanocrystal/polyvinyl alcohol composite fibers. ACS Appl. Mater. Interfaces, 2016, 8(46), 31500-31504.
[http://dx.doi.org/10.1021/acsami.6b11578] [PMID: 27933978]
[47]
Sturcová, A.; Davies, G.R.; Eichhorn, S.J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules, 2005, 6(2), 1055-1061.
[http://dx.doi.org/10.1021/bm049291k] [PMID: 15762678]
[48]
Nishino, T.; Matsuda, I.; Hirao, K. All-cellulose composite. Macromolecules, 2004, 37(20), 7683-7687.
[http://dx.doi.org/10.1021/ma049300h]
[49]
Tsourounaki, K.; Bonné, M.J.; Thielemans, W.; Psillakis, E.; Helton, M.; McKee, A.; Marken, F. Nanofibrillar cellulose-chitosan composite film electrodes: Competitive binding of triclosan, Fe(CN)63-/4-, and SDS surfactant. Electroanalysis, 2008, 20(22), 2395-2402.
[http://dx.doi.org/10.1002/elan.200804338]
[50]
Wang, W.; Zhang, T.J.; Zhang, D.W.; Li, H.Y.; Ma, Y.R.; Qi, L.M.; Zhou, Y.L.; Zhang, X.X. Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Talanta, 2011, 84(1), 71-77.
[http://dx.doi.org/10.1016/j.talanta.2010.12.015] [PMID: 21315900]
[51]
An, K.; Duong, H.D.; Rhee, J.I. Ratiometric fluorescent L-arginine and L-asparagine biosensors based on the oxazine 170 perchlorate-ethyl cellulose membrane. Eng. Life Sci., 2017, 17(8), 847-856.
[http://dx.doi.org/10.1002/elsc.201700033]
[52]
Song, S.H.; Kim, J.E.; Lee, Y.J.; Kwak, M.H.; Sung, G.Y.; Kwon, S.H.; Son, H.J.; Lee, H.S.; Jung, Y.J.; Hwang, D.Y. Cellulose film regenerated from styela clava tunics have biodegradability, toxicity and biocompatibility in the skin of SD rats. J. Mater. Sci. Mater. Med., 2014, 25(6), 1519-1530.
[http://dx.doi.org/10.1007/s10856-014-5182-8] [PMID: 24577945]
[53]
Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci., 1962, 102(1), 29-45.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x] [PMID: 14021529]
[54]
Updike, S.J.; Hicks, G.P. The enzyme electrode. Nature, 1967, 214(5092), 986-988.
[http://dx.doi.org/10.1038/214986a0] [PMID: 6055414]
[55]
Guilbault, G.G.; Montalvo, J.G. Jr. A urea-specific enzyme electrode. J. Am. Chem. Soc., 1969, 91(8), 2164-2165.
[http://dx.doi.org/10.1021/ja01036a083] [PMID: 5784180]
[56]
Liu, J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. Trends Analyt. Chem., 2014, 58, 99-111.
[http://dx.doi.org/10.1016/j.trac.2013.12.014]
[57]
Hulanicki, A.; Geab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem., 1991, 63(9), 1247-1250.
[http://dx.doi.org/10.1351/pac199163091247]
[58]
Tschmelak, J.; Proll, G.; Gauglitz, G. Improved strategy for biosensor-based monitoring of water bodies with diverse organic carbon levels. Biosens. Bioelectron., 2005, 21(6), 979-983.
[http://dx.doi.org/10.1016/j.bios.2005.03.006] [PMID: 16257667]
[59]
Borisov, S.M.; Wolfbeis, O.S. Optical biosensors. Chem. Rev., 2008, 108(2), 423-461.
[http://dx.doi.org/10.1021/cr068105t] [PMID: 18229952]
[60]
Liu, X.P.; Chen, J.S.; Mao, C.J.; Niu, H.L.; Song, J.M.; Jin, B.K. A label-free photoelectrochemical biosensor for urokinase-type plasminogen activator detection based on a g-C3N4/CdS nanocomposite. Anal. Chim. Acta, 2018, 1025, 99-107.
[http://dx.doi.org/10.1016/j.aca.2018.04.051] [PMID: 29801612]
[61]
Nagl, S.; Wolfbeis, O.S. Classification of chemical sensors and biosensors based on fluorescence and phosphorescence. Springer Berlin Heidelberg, 2008, 5, 325-346.
[http://dx.doi.org/10.1007/4243_2008_022]
[62]
Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical bio-sensors: Recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2), 121-131.
[PMID: 11261847]
[63]
Samson, A.A.S.; Lee, J.; Song, J.M. Paper-based inkjet bioprinting to detect fluorescence resonance energy transfer for the assessment of anti-inflammatory activity. Sci. Rep., 2018, 8(1), 591-600.
[http://dx.doi.org/10.1038/s41598-017-18995-3] [PMID: 29330381]
[64]
Li, J.; He, G.; Wang, B.; Shi, L.; Gao, T.; Li, G. Fabrication of reusable electrochemical biosensor and its application for the assay of α-glucosidase activity. Anal. Chim. Acta, 2018, 1026, 140-146.
[http://dx.doi.org/10.1016/j.aca.2018.04.015] [PMID: 29852990]
[65]
Chen, Z.; Liu, Y.; Xin, C.; Zhao, J.; Liu, S. A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing. Biosens. Bioelectron., 2018, 113, 1-8.
[http://dx.doi.org/10.1016/j.bios.2018.04.046] [PMID: 29709776]
[66]
Hu, L.; Ge, A.; Wang, X.; Wang, S.; Yue, X.; Wang, J.; Feng, X.; Du, W.; Liu, B.F. Real-time monitoring of immune responses under pathogen invasion and drug interference by integrated microfluidic device coupled with worm based biosensor. Biosens. Bioelectron., 2018, 110, 233-238.
[http://dx.doi.org/10.1016/j.bios.2018.03.058] [PMID: 29625331]
[67]
Liu, C.F.; Wang, M.H.; Jang, L.S. Microfluidics-based hairpin resonator biosensor for biological cell detection. Sens. Actuators B Chem., 2018, 263, 129-136.
[http://dx.doi.org/10.1016/j.snb.2018.01.234]
[68]
Huang, R.; He, N.; Li, Z. Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers. Biosens. Bioelectron., 2018, 109, 27-34.
[http://dx.doi.org/10.1016/j.bios.2018.02.053] [PMID: 29524914]
[69]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel), 2018, 11(3), 448-461.
[http://dx.doi.org/10.3390/ma11030448] [PMID: 29562700]
[70]
Teresa, R.M.; Antonio, L.M.C.; Naveen, N. A multifunctional material based on co-electrospinning for developing biosensors with optical oxygen transduction. Anal. Chim. Acta, 2018, 26, 66-73.
[http://dx.doi.org/10.1016/j.aca.2018.02.010]
[71]
Huang, T.; Liu, Z.; Li, Y.; Li, Y.; Chao, L.; Chen, C.; Tan, Y.; Xie, Q.; Yao, S.; Wu, Y. Oxidative polymerization of 5-hydroxytryptamine to physically and chemically immobilize glucose oxidase for electrochemical biosensing. Anal. Chim. Acta, 2018, 1013(12), 26-35.
[http://dx.doi.org/10.1016/j.aca.2018.02.020] [PMID: 29501089]
[72]
Sun, X.; Chen, H.; Wang, S.; Zhang, Y.; Tian, Y.; Zhou, N. Electrochemical detection of sequence-specific DNA based on formation of G-quadruplex-hemin through continuous hybridization chain reaction. Anal. Chim. Acta, 2018, 1021, 121-128.
[http://dx.doi.org/10.1016/j.aca.2018.02.076] [PMID: 29681278]
[73]
Liu, Y.; Wang, Y.M.; Zhu, W.Y.; Zhang, C.H.; Tang, H.; Jiang, J.H. Conjugated polymer nanoparticles-based fluorescent biosensor for ultrasensitive detection of hydroquinone. Anal. Chim. Acta, 2018, 1012, 60-65.
[http://dx.doi.org/10.1016/j.aca.2018.01.027] [PMID: 29475474]
[74]
Zhang, W.; Li, Y.; Liu, Q.J.; Xu, Y.; Cai, H.; Wang, P. A novel experimental research based on taste cell chips for taste transduction mechanism. Sens. Actuators B Chem., 2008, 131(1), 24-28.
[http://dx.doi.org/10.1016/j.snb.2007.12.021]
[75]
Müller, L.; Sinn, S.; Drechsel, H.; Ziegler, C.; Wendel, H.P.; Northoff, H.; Gehring, F.K. Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor. Anal. Chem., 2010, 82(2), 658-663.
[http://dx.doi.org/10.1021/ac9021117] [PMID: 20000697]
[76]
Hoa, X.D.; Kirk, A.G.; Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron., 2007, 23(2), 151-160.
[http://dx.doi.org/10.1016/j.bios.2007.07.001] [PMID: 17716889]
[77]
Dai, G.; Hu, J.; Zhao, X.; Wang, P. A colorimetric paper sensor for lactate assay using a cellulose-Binding recombinant enzyme. Sens. Actuators B Chem., 2017, 238, 138-144.
[http://dx.doi.org/10.1016/j.snb.2016.07.008]
[78]
Tao, C.B.; Yen, C.S.; Liu, J.T.; Chen, C.J. Analytical performance of paper electro-biosensor detection platform for point-of-care diagnosis. Cellulose, 2016, 23(6), 1-10.
[http://dx.doi.org/10.1007/s10570-016-1046-3]
[79]
Gao, X.; Zhang, Y.; Wu, Q.; Chen, H.; Chen, Z.; Lin, X. One step electrochemically deposited nanocomposite film of chitosan-carbon nanotubes-gold nanoparticles for carcinoembryonic antigen immunosensor application. Talanta, 2011, 85(4), 1980-1985.
[http://dx.doi.org/10.1016/j.talanta.2011.07.012] [PMID: 21872047]
[80]
Zhao, J.; Yu, J.; Wang, F. Fabrication of gold nanoparticle-dihexadecyl hydrogen phosphate film on a glassy carbon electrode, and its application to glucose sensing. Mikrochim. Acta, 2006, 156(3-4), 277-282.
[http://dx.doi.org/10.1007/s00604-006-0631-9]
[81]
Trettnak, W.; Leiner, M.J.; Wolfbeis, O.S. Optical sensors. Part 34. Fibreoptic glucose biosensor with an oxygen optrode as the transducer. Analyst (Lond.), 1988, 113(10), 1519-1523.
[http://dx.doi.org/10.1039/an9881301519] [PMID: 3239814]
[82]
Trettnak, W.; Leiner, M.J.P.; Wolfbeis, O.S. Fibre-optic glucose sensor with a pH optrode as the transducer. Biosensors, 1988, 4(1), 15-26.
[http://dx.doi.org/10.1016/0265-928X(89)80031-8]
[83]
Stamm, C.; Seiler, K.; Simon, W. Enzymatic biosensor for urea based on an ammonium ion-selective bulk optode membrane. Anal. Chim. Acta, 1993, 282(2), 229-237.
[http://dx.doi.org/10.1016/0003-2670(93)80206-Z]
[84]
Doong, R.A.; Tsai, H.C. Immobilization and characterization of sol-gel-encapsulated acetylcholinesterase fiber-optic bio-sensor. Anal. Chim. Acta, 2001, 434(2), 239-246.
[http://dx.doi.org/10.1016/S0003-2670(01)00853-4]
[85]
Gautier, S.M.; Blum, L.J.; Coulet, P.R. Multi-function fibreoptic sensor for the bioluminescent flow determination of ATP or NADH. Anal. Chim. Acta, 1990, 235(2), 243-253.
[http://dx.doi.org/10.1016/S0003-2670(00)82081-4]
[86]
Mitsubayashi, K.; Kon, T.; Hashimoto, Y. Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber. Biosens. Bioelectron., 2003, 19(3), 193-198.
[http://dx.doi.org/10.1016/S0956-5663(03)00218-5] [PMID: 14611754]
[87]
Xie, X.; Suleiman, A.A.; Guilbaut, G.G.; Yang, Z.; Sun, Z. Flow-injection determination of ethanol by fiber-optic chemi-luminescence measurement. Anal. Chim. Acta, 1992, 266(2), 325-329.
[http://dx.doi.org/10.1016/0003-2670(92)85059-F]
[88]
Trettnak, W.; Wolfbeis, O.S. A fiber optic cholesterol biosensor with an oxygen optrode as the transducer. Anal. Biochem., 1990, 184(1), 124-127.
[http://dx.doi.org/10.1016/0003-2697(90)90023-3] [PMID: 2321749]
[89]
Rauch, P.; Ferri, E.N.; Girotti, S.; Rauchova, H.; Carrea, G.; Bovara, R.; Fini, F.; Roda, A. A chemiluminescent flow sensing device for determination of choline and phospholipase D activity in biological samples. Anal. Biochem., 1997, 245(2), 133-140.
[http://dx.doi.org/10.1006/abio.1996.9950] [PMID: 9056196]
[90]
Marquette, C.A.; Leca, B.D.; Blum, L.J. Electrogenerated chemiluminescence of luminol for oxidase-based fibre-optic biosensors. Luminescence, 2001, 16(2), 159-165.
[http://dx.doi.org/10.1002/bio.617] [PMID: 11312542]
[91]
Preuschoff, F.; Spohn, U.; Weber, E.; Unverhau, K.; Mohr, K.H. Chemiluminometric L-lysine determination with immobilized lysine oxidase by flow-injection analysis. Anal. Chim. Acta, 1993, 280(2), 185-189.
[http://dx.doi.org/10.1016/0003-2670(93)85120-9]
[92]
Healey, B.G.; Walt, D.R. Improved fiber-optic chemical sensor for penicillin. Anal. Chem., 1995, 67(24), 4471-4476.
[http://dx.doi.org/10.1021/ac00120a007] [PMID: 8633784]
[93]
Koncki, R.; Wolfbeis, O.S. Composite films of Prussian blue and N-substituted polypyrroles: Covalent immobilization of enzymes and application to near infrared optical biosensing. Biosens. Bioelectron., 1999, 14(1), 87-92.
[http://dx.doi.org/10.1016/S0956-5663(98)00095-5] [PMID: 10028653]
[94]
Pohanka, M. The Piezoelectric Biosensors: Principles and applications. Int. J. Electrochem. Sci., 2017, 12, 496-506.
[http://dx.doi.org/10.20964/2017.01.44]
[95]
Xiao, F.; Wang, L.; Duan, H. Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnol. Adv., 2016, 34(3), 234-249.
[http://dx.doi.org/10.1016/j.biotechadv.2016.01.006] [PMID: 26845060]
[96]
Weishaupt, R.; Siqueira, G.; Schubert, M.; Tingaut, P.; Maniura- Weber, K.; Zimmermann, T.; Thöny-Meyer, L.; Faccio, G.; Ihssen, J. TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromolecules, 2015, 16(11), 3640-3650.
[http://dx.doi.org/10.1021/acs.biomac.5b01100] [PMID: 26413931]
[97]
Kamel, S.; Ali, N.; Jahangir, K.; Shah, S.M.; El-Gendy, A.A. Pharmaceutical significance of cellulose: A review. Express Polym. Lett., 2008, 2(11), 758-778.
[http://dx.doi.org/10.3144/expresspolymlett.2008.90]
[98]
Li, X.; Tian, J.; Garnier, G.; Shen, W. Fabrication of paper based microfluidic sensors by printing. Colloids Surf. B Biointerfaces, 2010, 76(2), 564-570.
[http://dx.doi.org/10.1016/j.colsurfb.2009.12.023] [PMID: 20097546]
[99]
Yang, J.; Nam, Y.G.; Lee, S.K.; Kim, C.S.; Koo, Y.M.; Chang, W.J. Fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes. Sens. Actuators B Chem., 2014, 203, 44-53.
[http://dx.doi.org/10.1016/j.snb.2014.06.077]
[100]
Martínez-Olmos, A.; Ballesta-Claver, J.; Palma, A.J.; Valencia- Mirón, Mdel.C.; Capitán-Vallvey, L.F. A portable luminometer with a disposable electrochemiluminescent biosensor for lactate determination. Sensors (Basel), 2009, 9(10), 7694-7710.
[http://dx.doi.org/10.3390/s91007694] [PMID: 22408475]
[101]
Li, Z.; Li, F.; Xing, Y.; Liu, Z.; You, M.; Li, Y.; Wen, T.; Qu, Z.; Ling Li, X.; Xu, F. Pen-on-paper strategy for point of-care testing: Rapid prototyping of fully written microfluidic biosensor. Biosens. Bioelectron., 2017, 98, 478-485.
[http://dx.doi.org/10.1016/j.bios.2017.06.061] [PMID: 28728008]
[102]
Li, X.; Ballerini, D.R.; Shen, W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 2012, 6(1), 11301-11313.
[http://dx.doi.org/10.1063/1.3687398] [PMID: 22662067]
[103]
Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem., 2010, 82(1), 3-10.
[http://dx.doi.org/10.1021/ac9013989] [PMID: 20000334]
[104]
Gabriel, E.M.F.; Garcia1, P.T.; Lopes, F.M.; Tomazelli, C.W.K. Paper-based colorimetric biosensor for tear glucose measurements. Micromachines (Basel), 2017, 8(4), 104-112.
[http://dx.doi.org/10.3390/mi8040104]
[105]
Zhu, X.; Huang, J.; Liu, J.; Zhang, H.; Jiang, J.; Yu, R. A dual enzyme-inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose. Nanoscale, 2017, 9(17), 5658-5663.
[http://dx.doi.org/10.1039/C7NR00958E] [PMID: 28422254]
[106]
Komuro, N.; Takaki, S.; Suzuki, K.; Citterio, D. Analytical & Bioanalytical Chemistry, Inkjet printed (bio) chemical sensing devices. Anal. Bioanal. Chem., 2013, 405(17), 5785-5805.
[http://dx.doi.org/10.1007/s00216-013-7013-z] [PMID: 23677254]
[107]
Zhang, L.; Cao, X.; Wang, L.; Zhao, X.; Zhang, S.; Wang, P. Printed microwells with highly stable thin-film enzyme coatings for point-of-care multiplex bioassay of blood samples. Analyst (Lond.), 2015, 140(12), 4105-4113.
[http://dx.doi.org/10.1039/C5AN00054H] [PMID: 25893863]
[108]
Creran, B.; Li, X.; Duncan, B.; Kim, C.S.; Moyano, D.F.; Rotello, V.M. Detection of bacteria using inkjet-printed enzymatic test strips. ACS Appl. Mater. Interfaces, 2014, 6(22), 19525-19530.
[http://dx.doi.org/10.1021/am505689g] [PMID: 25318086]
[109]
Hossain, S.M.; Luckham, R.E.; Smith, A.M.; Lebert, J.M.; Davies, L.M.; Pelton, R.H.; Filipe, C.D.; Brennan, J.D. Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel derived bioinks. Anal. Chem., 2009, 81(13), 5474-5483.
[http://dx.doi.org/10.1021/ac900660p] [PMID: 19492815]
[110]
Vilela, D.; González, M.C.; Escarpa, A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Anal. Chim. Acta, 2012, 751, 24-43.
[http://dx.doi.org/10.1016/j.aca.2012.08.043] [PMID: 23084049]
[111]
Yuan, Z.; Hu, C.C.; Chang, H.T.; Lu, C. Gold nanoparticles as sensitive optical probes. Analyst (Lond.), 2016, 141(5), 1611-1626.
[http://dx.doi.org/10.1039/C5AN02651B] [PMID: 26853370]
[112]
Tsai, T.T.; Huang, C.Y.; Chen, C.A.; Shen, S.W.; Wang, M.C.; Cheng, C.M.; Chen, C.F. Diagnosis of tuberculosis using colorimetric gold nanoparticles on a paper-based analytical device. ACS Sens., 2017, 2(9), 1345-1354.
[http://dx.doi.org/10.1021/acssensors.7b00450] [PMID: 28901134]
[113]
Rivas, L.; Reuterswärd, P.; Rasti, R.; Herrmann, B.; Mårtensson, A.; Alfvén, T.; Gantelius, J.; Andersson-Svahn, H. A vertical flow paper-microarray assay with isothermal DNA amplification for detection of Neisseria meningitidis. Talanta, 2018, 183, 192-200.
[http://dx.doi.org/10.1016/j.talanta.2018.02.070] [PMID: 29567164]
[114]
Martinez, A.W.; Phillips, S.T.; Whitesides, G.M. Three dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA, 2008, 105(50), 19606-19611.
[http://dx.doi.org/10.1073/pnas.0810903105] [PMID: 19064929]
[115]
Yetisen, A.K.; Akram, M.S.; Lowe, C.R.; Lowe, C.R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip, 2013, 13(12), 2210-2251.
[http://dx.doi.org/10.1039/c3lc50169h] [PMID: 23652632]
[116]
Garcia, P.D.T.; Cardoso, T.M.G.; Garcia, C.D. A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances, 2014, 4(71), 37637-37644.
[http://dx.doi.org/10.1039/C4RA07112C]
[117]
Evans, E.; Gabriel, E.F.; Benavidez, T.E.; Tomazelli Coltro, W.K.; Garcia, C.D. Modification of microfluidic paper based devices with silica nanoparticles. Analyst (Lond.), 2014, 139(21), 5560-5567.
[http://dx.doi.org/10.1039/C4AN01147C] [PMID: 25204446]
[118]
Chen, G.H.; Chen, W.Y.; Yen, Y.C.; Wang, C.W.; Chang, H.T.; Chen, C.F. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem., 2014, 86(14), 6843-6849.
[http://dx.doi.org/10.1021/ac5008688] [PMID: 24932699]
[119]
Figueredo, F.; Garcia, P.T.; Cortón, E.; Coltro, W.K.T. Enhanced analytical performance of paper microfluidic devices by using Fe3O4 nanoparticles, MWCNT, and graphene oxide. ACS Appl. Mater. Interfaces, 2016, 8(1), 11-15.
[http://dx.doi.org/10.1021/acsami.5b10027] [PMID: 26693736]
[120]
Wang, X.; Li, F.; Cai, Z.Q.; Liu, K.F.; Jing, Li.; Zhang, B.Y.; He, J.B. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout. Anal. Bioanal. Chem., 2018, 410(10), 2647-2655.
[http://dx.doi.org/10.1007/s00216-018-0939-4] [PMID: 29455281]
[121]
Hong, W.; Jeong, S.; Shim, G.; Kim, D.Y.; Pack, S.P.; Lee, C-S. Improvement in the reproducibility of a paperbased analytical device (PAD) using stable covalent binding between proteins and cellulose paper. Biotechnol Bioproc E, 2018, 23, 686-692.
[http://dx.doi.org/10.1007/s12257-018-0430-2]
[122]
Zhou, M.; Yang, M.; Zhou, F. Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe. Biosens. Bioelectron., 2014, 55, 39-43.
[http://dx.doi.org/10.1016/j.bios.2013.11.065] [PMID: 24361420]
[123]
Patolsky, F.; Zheng, G.; Lieber, C.M. Nanowire sensors for medicine and the life sciences. Nanomedicine (Lond.), 2006, 1(1), 51-65.
[http://dx.doi.org/10.2217/17435889.1.1.51] [PMID: 17716209]
[124]
Li, X.; Zhao, C.; Liu, X.Y. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsyst. Nanoeng., 2015, 1, 15014-15021.
[http://dx.doi.org/10.1038/micronano.2015.14]
[125]
Vera, S.J. Chemical sensors based on polymer composites with carbon nanotubes and graphene: The role of the polymer. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(35), 14289-14328.
[http://dx.doi.org/10.1039/C4TA02159B]
[126]
Martins, G.V.; Tavares, A.P.M.; Fortunato, E.; Sales, M.G.F. Paper-based sensing device for electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine (8-OHdG) in point-of-care. Sci. Rep., 2017, 7(1), 14558-14567.
[http://dx.doi.org/10.1038/s41598-017-14878-9] [PMID: 29109407]
[127]
Nery, E.W.; Kubota, L.T. Sensing approaches on paper based devices: A review. Anal. Bioanal. Chem., 2013, 405(24), 7573-7595.
[http://dx.doi.org/10.1007/s00216-013-6911-4] [PMID: 23604524]
[128]
Smith, D.S.; Al-Hakiem, M.H.; Landon, J. A review of fluoroimmunoassay and immunofluorometric assay. Ann. Clin. Biochem., 1981, 18(Pt 5), 253-274.
[http://dx.doi.org/10.1177/000456328101800501] [PMID: 7030187]
[129]
Liang, J.; Wang, Y.Y.; Liu, B. Based fluoroimmunoassay for rapid and sensitive detection of antigen. RSC Advances, 2012, 2(9), 3878-3884.
[http://dx.doi.org/10.1039/c2ra20156a]
[130]
Tian, T.; Li, L.; Zhang, Y. Dual-mode fluorescence biosensor platform based on T-shaped duplex structure for detection of microRNA and folate receptor. Sens. Actuators B Chem., 2018, 261, 44-50.
[http://dx.doi.org/10.1016/j.snb.2018.01.129]
[131]
Kurosawa, N.; Ogita, Z.I. Method for the detection of substrate specific protease activity by using cellulose acetate membrane as a absorbant of substrate. Seibutsu Butsuri Kagaku, 1988, 32(32), 49-54.
[http://dx.doi.org/10.2198/sbk.32.49]
[132]
Ishida, A.; Imamura, A.; Ueda, Y.; Shimizu, T.; Marumoto, R.; Jung, C.G.; Hida, H. A novel biosensor with high signal to-noise ratio for real-time measurement of dopamine levels in vivo. J. Neurosci. Res., 2018, 96(5), 817-827.
[http://dx.doi.org/10.1002/jnr.24193] [PMID: 29090830]
[133]
Dinh Duong, H.; Il Rhee, J. Development of a ratiometric fluorescent urea biosensor based on the urease immobilized onto the oxazine 170 perchlorate-ethyl cellulose membrane. Talanta, 2015, 134, 333-339.
[http://dx.doi.org/10.1016/j.talanta.2014.10.064] [PMID: 25618676]
[134]
Chu, C.S.; Su, C.J. Optical fiber sensor for dual sensing of H2O2 and DO based on CdSe/ZnS QDs and Ru (dpp)32+ embedded in EC matrix. Sens. Actuators B Chem., 2018, 255, 1079-1086.
[http://dx.doi.org/10.1016/j.snb.2017.08.071]
[135]
Weng, B.; Morrin, A.; Shepherd, R.; Crowley, K.; Killard, A.J.; Innis, P.C.; Wallace, G.G. Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(7), 793-799.
[http://dx.doi.org/10.1039/C3TB21378A] [PMID: 32261311]
[136]
Ma, Z.W.; Kotaki, M.; Ramakrishna, S. Electrospun cellulose nanofiber as affinity membrane. J. Membr. Sci., 2005, 265(1-2), 115-123.
[http://dx.doi.org/10.1016/j.memsci.2005.04.044 ]
[137]
Liu, S.; Tan, L.; Hu, W.; Li, X.; Chen, Y. Cellulose acetate nanofibers with photochromic property: fabrication and characterization. Mater. Lett., 2010, 64(22), 2427-2430.
[http://dx.doi.org/10.1016/j.matlet.2010.08.018]
[138]
Gilbert, L.; Jenkins, A.T.; Browning, S.; Hart, J.P. Development of an amperometric assay for phosphate ions in urine based on a chemically modified screen-printed carbon electrode. Anal. Biochem., 2009, 393(2), 242-247.
[http://dx.doi.org/10.1016/j.ab.2009.06.038] [PMID: 19576165]
[139]
Liu, H. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci., B, Polym. Phys., 2002, 40(18), 2119-2129.
[http://dx.doi.org/10.1002/polb.10261]
[140]
Khatri, Z.; Wei, K.; Kim, B.S.; Kim, I.S. Effect of deacetylation on wicking behavior of co-electrospun cellulose acetate/polyvinyl alcohol nanofibers blend. Carbohydr. Polym., 2012, 87(3), 2183-2188.
[http://dx.doi.org/10.1016/j.carbpol.2011.10.046]
[141]
Guo, Z.; Yang, Q.; Liu, H. The study of a disposable reagentless biosensor for fast test of aspartate aminotransferase. Electroanalysis, 2008, 20(10), 1135-1141.
[http://dx.doi.org/10.1002/elan.200704165]
[142]
Lima, M.M.D.S.; Wong, J.T.; Paillet, M.; Borsali, R.; Pecora, R. Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir, 2003, 19(1), 24-29.
[http://dx.doi.org/10.1021/la020475z]
[143]
Shin, Y.; Bae, I.; Arey, B.W.; Exarhos, G.J. Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J. Phys. Chem. C, 2008, 112(13), 4844-4848.
[http://dx.doi.org/10.1021/jp710767w]
[144]
He, J.H.; Kunitake, T.; Nakao, A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater., 2003, 15(23), 4401-4406.
[http://dx.doi.org/10.1021/cm034720r]
[145]
Maver, T.; Maver, U.; Mostegel, F.; Griesser, T.; Spirk, S.; Smrke, D. Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose, 2015, 22(1), 749-761.
[http://dx.doi.org/10.1007/s10570-014-0515-9]
[146]
Serena, T.E. Development of a novel technique to collect proteases from chronic wounds. Adv. Wound Care (New Rochelle), 2014, 3(12), 729-732.
[http://dx.doi.org/10.1089/wound.2013.0463] [PMID: 25493206]
[147]
Fontenot, K.R.; Edwards, J.V.; Haldane, D.; Graves, E. Human neutrophil elastase detection with fluorescent peptide sensors conjugated to cellulosic and nanocellulosic materials: part II, structure/function analysis. Cellulose, 2016, 23(2), 1297-1309.
[http://dx.doi.org/10.1007/s10570-016-0873-6]
[148]
Esmaeili, C.; Abdi, M.M.; Mathew, A.P.; Jonoobi, M.; Oksman, K.; Rezayi, M. Synergy effect of nanocrystalline cellulose for the biosensing detection of glucose. Sensors (Basel), 2015, 15(10), 24681-24697.
[http://dx.doi.org/10.3390/s151024681] [PMID: 26404269]
[149]
Arola, S.; Tammelin, T.; Setälä, H.; Tullila, A.; Linder, M.B. Immobilization-stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation. Biomacromolecules, 2012, 13(3), 594-603.
[http://dx.doi.org/10.1021/bm201676q] [PMID: 22248303]
[150]
Gericke, M.; Trygg, J.; Fardim, P. Functional cellulose beads: preparation, characterization, and applications. Chem. Rev., 2013, 113(7), 4812-4836.
[http://dx.doi.org/10.1021/cr300242j] [PMID: 23540980]
[151]
Sehaqui, H.; Zhou, Q.; Berglund, L.A. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos. Sci. Technol., 2011, 71(13), 1593-1599.
[http://dx.doi.org/10.1016/j.compscitech.2011.07.003]
[152]
Hu, L.; Zheng, G.; Yao, J.; Liu, N.; Weil, B.; Eskilsson, M.; Karabulut, E.; Ruan, Z.; Fan, S.; Bloking, J.T. Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci., 2013, 6(2), 513-518.
[http://dx.doi.org/10.1039/C2EE23635D]
[153]
Barr, M.C.; Rowehl, J.A.; Lunt, R.R.; Xu, J.; Wang, A.; Boyce, C.M.; Im, S.G.; Bulović, V.; Gleason, K.K. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater., 2011, 23(31), 3499-3505.
[http://dx.doi.org/10.1002/adma.201190123] [PMID: 21739489]
[154]
Chan, A.; Wong, F.; Arumanayagam, M.; Clin, A. Serum ultrafiltrable copper, total copper and caeruloplasmin concentrations in gynaecological carcinomas. Ann. Clin. Biochem., 1993, 30(Pt 6), 545-549.
[http://dx.doi.org/10.1177/000456329303000603] [PMID: 8304722]
[155]
Squitti, R.; Ventriglia, M.; Barbati, G.; Cassetta, E.; Ferreri, F.; Dal Forno, G.; Ramires, S.; Zappasodi, F.; Rossini, P.M. ‘Free’ copper in serum of Alzheimer’s disease patients correlates with markers of liver function. J. Neural Transm. (Vienna), 2007, 114(12), 1589-1594.
[http://dx.doi.org/10.1007/s00702-007-0777-6] [PMID: 17641816]
[156]
Puangploy, P.; Oaew, S.; Surareungchai, W. Development of fluorescent phycocyanin-Cu2+ chemosensor for detection of homocysteine. Int. J. Biosci. Biochem. Bioinform., 2015, 5(4), 241-248.
[http://dx.doi.org/10.17706/ijbbb.2015.5.4.241-248]
[157]
Weishaupt, R.; Siqueira, G.; Schubert, M.; Kämpf, M.M.; Zimmermann, T. A protein-nanocellulose paper for sensing copper ions at the nano-to micromolar level. Adv. Funct. Mater., 2017, 27(4), 1604291-1604300.
[http://dx.doi.org/10.1002/adfm.201604291]
[158]
Zhang, Y.; Rojas, O.J. Immunosensors for C-reactive protein based on ultrathin films of carboxylated cellulose nanofibrils. Biomacromolecules, 2017, 18(2), 526-534.
[http://dx.doi.org/10.1021/acs.biomac.6b01681] [PMID: 28036163]
[159]
Korhonen, J.T.; Kettunen, M.; Ras, R.H.A.; Ikkala, O. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces, 2011, 3(6), 1813-1816.
[http://dx.doi.org/10.1021/am200475b] [PMID: 21627309]
[160]
Zhang, C.; Zhang, R.Z.; Ma, Y.Q.; Guan, W.B.; Wu, X.L.; Liu, X.; Li, H.; Du, Y.L.; Pan, C.P. Preparation of cellulose/graphene composite and its applications for triazine pesticides adsorption from water. ACS Sustain. Chem.& Eng., 2015, 3(3), 396-405.
[http://dx.doi.org/10.1021/sc500738k]
[161]
Balasubramanian, P.; Balamurugan, T.S.T.; Chen, S.M. A simple architecture of cellulose microfiber/reduced graphene oxide nanocomposite for the electrochemical determination of nitrobenzene in sewage water. Cellulose, 2018, 25(4), 2381-2391.
[http://dx.doi.org/10.1007/s10570-018-1719-1]
[162]
Molina, J. Graphene-based fabrics and their applications: a review. RSC Advances, 2016, 6(72), 68261-68291.
[http://dx.doi.org/10.1039/C6RA12365A]
[163]
Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent advances in graphene-based biosensors. Biosens. Bioelectron., 2011, 26(12), 4637-4648.
[http://dx.doi.org/10.1016/j.bios.2011.05.039] [PMID: 21683572]
[164]
Xu, H.; Dai, H.; Chen, G. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta, 2010, 81(1-2), 334-338.
[http://dx.doi.org/10.1016/j.talanta.2009.12.006] [PMID: 20188928]
[165]
Zhang, L.; Han, G.; Liu, Y.; Tang, J.; Tang, W. Immobilizing haemoglobin on gold/grapheme-chitosan nanocomposite as efficient hydrogen peroxide biosensor. Sens. Actuators B Chem., 2014, 197, 164-171.
[http://dx.doi.org/10.1016/j.snb.2014.02.077]
[166]
Wang, L.; Zhang, X.; Xiong, H.; Wang, S. A novel nitromethane biosensor based on biocompatible conductive redox graphene-chitosan/hemoglobin/graphene/room temperature ionic liquid matrix. Biosens. Bioelectron., 2010, 26(3), 991-995.
[http://dx.doi.org/10.1016/j.bios.2010.08.027] [PMID: 20833016]
[167]
Palanisamy, S.; Wang, Y.T.; Chen, S.M.; Thirumalraj, B.; Lou, B.S. Direct electrochemistry of immobilized hemoglobin and sensing of bromate at a glassy carbon electrode modified with graphene and β-cyclodextrin. Mikrochim. Acta, 2016, 183(6), 1953-1961.
[http://dx.doi.org/10.1007/s00604-016-1811-x]
[168]
Velusamy, V.; Palanisamy, S.; Chen, S.M.; Chen, T.W.; Selvam, S.; Ramaraj, S.K.; Lou, B.S. Graphene dispersed cellulose microfibers composite for efficient immobilization of hemoglobin and selective biosensor for detection of hydrogen peroxide. Sens. Actuators B Chem., 2017, 252, 175-182.
[http://dx.doi.org/10.1016/j.snb.2017.05.041]
[169]
Palanisamy, S.; Ramaraj, S.K.; Chen, S.M.; Yang, T.C.; Yi- Fan, P.; Chen, T.W.; Velusamy, V.; Selvam, S. A novel laccase biosensor based on laccase immobilized graphene cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol. Sci. Rep., 2017, 7, 41214-41225.
[http://dx.doi.org/10.1038/srep41214] [PMID: 28117357]
[170]
Warsinke, A. Point-of-care testing of proteins. Anal. Bioanal. Chem., 2009, 393(5), 1393-1405.
[http://dx.doi.org/10.1007/s00216-008-2572-0] [PMID: 19130044]
[171]
Lee, W.M. Acute liver failure. N. Engl. J. Med., 1993, 329(25), 1862-1872.
[http://dx.doi.org/10.1056/NEJM199312163292508] [PMID: 8305063]
[172]
Dion, J.R.; Burns, D.H. Ultrasonic frequency analysis of antibody-linked hydrogel biosensors for rapid point of care testing. Talanta, 2011, 83(5), 1364-1370.
[http://dx.doi.org/10.1016/j.talanta.2010.11.010] [PMID: 21238722]
[173]
Li, G.; Sun, K.; Li, D.; Lv, P.; Wang, Q.; Huang, F.; Wei, Q. Biosensor based on bacterial cellulose-Au nanoparticles electrode modified with laccase for hydroquinone detection. Colloids Surf. A Physicochem. Eng. Asp., 2016, 509, 408-414.
[http://dx.doi.org/10.1016/j.colsurfa.2016.09.028]
[174]
Li, D.W.; Ao, K.L.; Wang, Q.Q.; Lv, P.F.; Wei, Q.F. Preparation of Pd/bacterial cellulose hybrid nanofibers for dopamine detection. Molecules, 2016, 21(5), 618-628.
[http://dx.doi.org/10.3390/molecules21050618]
[175]
Ovalle, M.; Arroyo, E.; Stoytcheva, M.; Zlatev, R.; Enriquez, L.; Olivas, A. An amperometric microbial biosensor for the determination of vitamin B12. Anal. Methods, 2015, 7(19), 8185-8189.
[http://dx.doi.org/10.1039/C5AY01599E]
[176]
Zhang, B.; Zhou, J.; Li, S.; Zhang, X.; Huang, D.; He, Y.; Wang, M.; Yang, G.; Shen, Y. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film. Talanta, 2015, 131, 243-248.
[http://dx.doi.org/10.1016/j.talanta.2014.07.027] [PMID: 25281099]
[177]
Wang, W.; Li, H.Y.; Zhang, D.W. Fabrication of bienzymatic glucose Biosensor based on novel gold nanoparticles bacteria cellulose nanofibers nanocomposite. Electroanalysis, 2010, 22(21), 2543-2550.
[http://dx.doi.org/10.1002/elan.201000235]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 28
Year: 2020
Published on: 06 August, 2020
Page: [4593 - 4612]
Pages: 20
DOI: 10.2174/0929867327666200221145543
Price: $65

Article Metrics

PDF: 33
HTML: 3