Matrix Metalloproteinase 9 is Regulated by LOX-1 and erk1/2 Pathway in Dental Peri-Implantitis

Author(s): Qian Zhang, Haitao Xu, Na Bai, Fei Tan, Huirong Xu, Jie Liu*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background and Objective: Dental peri-implantitis, which can be caused by several different microbial factors, is characterized by inflammatory lesions of the surrounding hard and soft tissues of an oral implant. Matrix Metalloproteinase 9 (MMP9) is thought to be involved in the pathogenesis of peri-implantitis. However, the regulatory mechanism of MMP9 in peri-implantitis has not been fully elucidated. In this study, we tried to evaluate the regulatory mechanism of MMP9 in peri-implantitis.

Methods: We collected Peri-Implant Crevicular Fluid (PICF) from ten healthy implants and ten periimplantitis patients and compared their expression level of MMP9. We also cultured macrophages from the peripheral blood of healthy volunteers infected by Porphyromonas gingivalis to reveal the regulatory mechanism of MMP9 in peri-implantitis. Western blot, immunofluorescence staining and quantitative Polymerase Chain Reaction (RT-PCR) were used to better characterize the mechanism of MMP9.

Results: The expression of MMP9 was up-regulated in peri-implantitis patient PICF and P. gingivalis infected human macrophages. LOX-1, not dectin-1, was found to mediate MMP9 expression in human macrophages with P. gingivalis infection. Expression of Erk1/2 was responsible for infection-induced MMP9 expression. Finally, use of a broad-spectrum metalloproteinase inhibitor impaired LOX-1 expression in infected macrophages.

Conclusion: Our results demonstrate that MMP9 is involved in dental peri-implantitis and is regulated by LOX-1 and Erk1/2. This LOX-1/MMP9 signaling pathway may represent a potential drug target for peri-implantitis.

Keywords: Peri-implantitis, innate immunity, Porphyromonas gingivalis, MMP9, LOX-1, Erk1/2.

[1]
Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; Hämmerle, C.H.F.; Heitz-Mayfield, L.J.A.; Huynh-Ba, G.; Iacono, V.; Koo, K.T.; Lambert, F.; McCauley, L.; Quirynen, M.; Renvert, S.; Salvi, G.E.; Schwarz, F.; Tarnow, D.; Tomasi, C.; Wang, H.L.; Zitzmann, N. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol., 2018, 89(Suppl. 1), S313-S318.
[http://dx.doi.org/10.1002/JPER.17-0739] [PMID: 29926955]
[2]
Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; Hämmerle, C.H.F.; Heitz-Mayfield, L.J.A.; Huynh-Ba, G.; Iacono, V.; Koo, K.T.; Lambert, F.; McCauley, L.; Quirynen, M.; Renvert, S.; Salvi, G.E.; Schwarz, F.; Tarnow, D.; Tomasi, C.; Wang, H.L.; Zitzmann, N. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol., 2018, 45(Suppl. 20), S286-S291.
[http://dx.doi.org/10.1111/jcpe.12957] [PMID: 29926491]
[3]
Lindhe, J.; Meyle, J. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J. Clin. Periodontol., 2008, 35(8 Suppl.), 282-285.
[http://dx.doi.org/10.1111/j.1600-051X.2008.01283.x] [PMID: 18724855]
[4]
Renvert, S.; Polyzois, I.; Persson, G.R. Treatment modalities for peri-implant mucositis and peri-implantitis. Am. J. Dent., 2013, 26(6), 313-318.
[PMID: 24640434]
[5]
Jemt, T. A retro-prospective effectiveness study on 3448 implant operations at one referral clinic: A multifactorial analysis. Part II: Clinical factors associated to peri-implantitis surgery and late implant failures. Clin. Implant Dent. Relat. Res., 2017, 19(6), 972-979.
[http://dx.doi.org/10.1111/cid.12538] [PMID: 28884882]
[6]
Valente, N.A.; Andreana, S. Peri-implant disease: What we know and what we need to know. J. Periodontal Implant Sci., 2016, 46(3), 136-151.
[http://dx.doi.org/10.5051/jpis.2016.46.3.136] [PMID: 27382503]
[7]
de Waal, Y.C.; Eijsbouts, H.V.; Winkel, E.G.; van Winkelhoff, A.J. microbial characteristics of peri-implantitis: a case-control study. J. Periodontol., 2017, 88(2), 209-217.
[http://dx.doi.org/10.1902/jop.2016.160231] [PMID: 27666672]
[8]
Guler, B.; Uraz, A.; Yalım, M.; Bozkaya, S. The comparison of porous titanium granule and xenograft in the surgical treatment of peri-implantitis: A prospective clinical study. Clin. Implant Dent. Relat. Res., 2017, 19(2), 316-327.
[http://dx.doi.org/10.1111/cid.12453] [PMID: 27704683]
[9]
Suárez-López Del Amo, F.; Yu, S.H.; Wang, H.L. Non-surgical therapy for peri-implant diseases: A systematic review. J. Oral Maxillofac. Res., 2016, 7(3) e13
[http://dx.doi.org/10.5037/jomr.2016.7313] [PMID: 27833738]
[10]
Wang, Y.; Zhang, Y.; Miron, R.J. Health, maintenance, and recovery of soft tissues around implants. Clin. Implant Dent. Relat. Res., 2016, 18(3), 618-634.
[http://dx.doi.org/10.1111/cid.12343] [PMID: 25873299]
[11]
Janska, E.; Mohr, B.; Wahl, G. Correlation between peri-implant sulcular fluid rate and expression of collagenase2 (MMP8). Clin. Oral Investig., 2016, 20(2), 261-266.
[http://dx.doi.org/10.1007/s00784-015-1501-9] [PMID: 26077894]
[12]
Kuula, H.; Salo, T.; Pirilä, E.; Tuomainen, A.M.; Jauhiainen, M.; Uitto, V.J.; Tjäderhane, L.; Pussinen, P.J.; Sorsa, T. Local and systemic responses in matrix metalloproteinase 8-deficient mice during Porphyromonas gingivalis-induced periodontitis. Infect. Immun., 2009, 77(2), 850-859.
[http://dx.doi.org/10.1128/IAI.00873-08] [PMID: 19029300]
[13]
Cosyn, J.; Christiaens, V.; Koningsveld, V.; Coucke, P.J.; De Coster, P.; De Paepe, A.; De Bruyn, H. an exploratory case-control study on the impact of il-1 gene polymorphisms on early implant failure. Clin. Implant Dent. Relat. Res., 2016, 18(2), 234-240.
[http://dx.doi.org/10.1111/cid.12237] [PMID: 25066406]
[14]
Wang, X.; Yu, Y.Y.; Lieu, S.; Yang, F.; Lang, J.; Lu, C.; Werb, Z.; Hu, D.; Miclau, T.; Marcucio, R.; Colnot, C. MMP9 regulates the cellular response to inflammation after skeletal injury. Bone, 2013, 52(1), 111-119.
[http://dx.doi.org/10.1016/j.bone.2012.09.018] [PMID: 23010105]
[15]
Li, W.L.; Wu, C.H.; Yang, J.; Tang, M.; Chen, L.J.; Zhao, S.L. Local inflammation alters MMP-2 and MMP-9 gelatinase expression associated with the severity of nifedipine-induced gingival overgrowth: A Rat model study. Inflammation, 2015, 38(4), 1517-1528.
[http://dx.doi.org/10.1007/s10753-015-0126-0] [PMID: 25652432]
[16]
Alexander, K.A.; Raggatt, L.J.; Millard, S.; Batoon, L.; Chiu-Ku Wu, A.; Chang, M.K.; Hume, D.A.; Pettit, A.R. Resting and injury induced inflamed periosteum contain multiple macrophage subsets that are located at sites of bone growth and regeneration. Immunol. Cell Biol., 2017, 95(1), 7-16.
[http://dx.doi.org/10.1038/icb.2016.74] [PMID: 27553584]
[17]
Rocha, C.A.; Cestari, T.M.; Vidotti, H.A.; de Assis, G.F.; Garlet, G.P.; Taga, R. Sintered anorganic bone graft increases autocrine expression of VEGF, MMP-2 and MMP-9 during repair of critical size bone defects. J. Mol. Histol., 2014, 45(4), 447-461.
[http://dx.doi.org/10.1007/s10735-014-9565-4] [PMID: 24482159]
[18]
Puolakkainen, P.; Koski, A.; Vainionpää, S.; Shen, Z.; Repo, H.; Kemppainen, E.; Mustonen, H.; Seppänen, H. Anti-inflammatory macrophages activate invasion in pancreatic adenocarcinoma by increasing the MMP9 and ADAM8 expression. Med. Oncol., 2014, 31(3), 884.
[http://dx.doi.org/10.1007/s12032-014-0884-9] [PMID: 24526468]
[19]
Kelly, E.A.; Esnault, S.; Johnson, S.H.; Liu, L.Y.; Malter, J.S.; Burnham, M.E.; Jarjour, N.N. Human eosinophil activin A synthesis and mRNA stabilization are induced by the combination of IL-3 plus TNF. Immunol. Cell Biol., 2016, 94(7), 701-708.
[http://dx.doi.org/10.1038/icb.2016.30] [PMID: 27001469]
[20]
Campos, K.; Gomes, C.C.; Farias, L.C.; Silva, R.M.; Letra, A.; Gomez, R.S. DNA methylation of MMP9 is associated with high levels of MMP-9 messenger RNA in periapical inflammatory lesions. J. Endod., 2016, 42(1), 127-130.
[http://dx.doi.org/10.1016/j.joen.2015.10.002] [PMID: 26549219]
[21]
Fan, J.; Zhao, J.; Shao, J.; Wei, X.; Zhu, X.; Li, M. I-BET151 inhibits expression of RANKL, OPG, MMP3 and MMP9 in ankylosing spondylitis in vivo and in vitro. Exp. Ther. Med., 2017, 14(5), 4602-4606.
[http://dx.doi.org/10.3892/etm.2017.5032] [PMID: 29067128]
[22]
Bhawal, U.K.; Lee, H.J.; Arikawa, K.; Shimosaka, M.; Suzuki, M.; Toyama, T.; Sato, T.; Kawamata, R.; Taguchi, C.; Hamada, N.; Nasu, I.; Arakawa, H.; Shibutani, K. Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis induced alveolar bone loss. Int. J. Oral Sci., 2015, 7(4), 242-249.
[http://dx.doi.org/10.1038/ijos.2015.28] [PMID: 26674426]
[23]
Gao, A.; Wang, X.; Yu, H.; Li, N.; Hou, Y.; Yu, W. Effect of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteoclasts. In Vitro Cell. Dev. Biol. Anim., 2016, 52(2), 228-234.
[http://dx.doi.org/10.1007/s11626-015-9965-0] [PMID: 26559065]
[24]
Lam, R.S.; O’Brien-Simpson, N.M.; Hamilton, J.A.; Lenzo, J.C.; Holden, J.A.; Brammar, G.C.; Orth, R.K.; Tan, Y.; Walsh, K.A.; Fleetwood, A.J.; Reynolds, E.C. GM-CSF and uPA are required for Porphyromonas gingivalis-induced alveolar bone loss in a mouse periodontitis model. Immunol. Cell Biol., 2015, 93(8), 705-715.
[http://dx.doi.org/10.1038/icb.2015.25] [PMID: 25753270]
[25]
Pessoa, R.S.; Sousa, R.M.; Pereira, L.M.; Neves, F.D.; Bezerra, F.J.; Jaecques, S.V.; Sloten, J.V.; Quirynen, M.; Teughels, W.; Spin-Neto, R. Bone remodeling around implants with external hexagon and morse-taper connections: A randomized, controlled, split mouth, clinical trial. Clin. Implant Dent. Relat. Res., 2017, 19(1), 97-110.
[http://dx.doi.org/10.1111/cid.12437] [PMID: 27353076]
[26]
Che, C.; Liu, J.; Ma, L.; Xu, H.; Bai, N.; Zhang, Q. LOX-1 is involved in IL-1β production and extracellular matrix breakdown in dental peri-implantitis. Int. Immunopharmacol., 2017, 52, 127-135.
[http://dx.doi.org/10.1016/j.intimp.2017.09.003] [PMID: 28898769]
[27]
Modhiran, N.; Watterson, D.; Blumenthal, A.; Baxter, A.G.; Young, P.R.; Stacey, K.J. Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol. Cell Biol., 2017, 95(5), 491-495.
[http://dx.doi.org/10.1038/icb.2017.5] [PMID: 28220810]
[28]
Sanyal, R.; Polyak, M.J.; Zuccolo, J.; Puri, M.; Deng, L.; Roberts, L.; Zuba, A.; Storek, J.; Luider, J.M.; Sundberg, E.M.; Mansoor, A.; Baigorri, E.; Chu, M.P.; Belch, A.R.; Pilarski, L.M.; Deans, J.P. MS4A4A: A novel cell surface marker for M2 macrophages and plasma cells. Immunol. Cell Biol., 2017, 95(7), 611-619.
[http://dx.doi.org/10.1038/icb.2017.18] [PMID: 28303902]
[29]
Park, E.; Na, H.S.; Kim, S.M.; Wallet, S.; Cha, S.; Chung, J. Xylitol, an anticaries agent, exhibits potent inhibition of inflammatory responses in human THP-1-derived macrophages infected with Porphyromonas gingivalis. J. Periodontol., 2014, 85(6), e212-e223.
[http://dx.doi.org/10.1902/jop.2014.130455] [PMID: 24592909]
[30]
Azuma, M.M.; Balani, P.; Boisvert, H.; Gil, M.; Egashira, K.; Yamaguchi, T.; Hasturk, H.; Duncan, M.; Kawai, T.; Movila, A. Endogenous acid ceramidase protects epithelial cells from Porphyromonas gingivalis-induced inflammation in vitro. Biochem. Biophys. Res. Commun., 2018, 495(4), 2383-2389.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.137] [PMID: 29278706]
[31]
Zhao, G.Q.; Qiu, X.Y.; Lin, J.; Li, Q.; Hu, L.T.; Wang, Q.; Li, H. Co-regulation of Dectin-1 and TLR2 in inflammatory response of human corneal epithelial cells induced by Aspergillus fumigates. Int. J. Ophthalmol., 2016, 9(2), 185-190.
[PMID: 26949633]
[32]
Akamatsu, T.; Dai, H.; Mizuguchi, M.; Goto, Y.; Oka, A.; Itoh, M. LOX-1 is a novel therapeutic target in neonatal hypoxic-ischemic encephalopathy. Am. J. Pathol., 2014, 184(6), 1843-1852.
[http://dx.doi.org/10.1016/j.ajpath.2014.02.022] [PMID: 24731447]
[33]
Gao, X.; Zhao, G.; Li, C.; Lin, J.; Jiang, N.; Wang, Q.; Hu, L.; Xu, Q.; Peng, X.; He, K.; Zhu, G. LOX-1 and TLR4 affect each other and regulate the generation of ROS in A. fumigatus keratitis. Int. Immunopharmacol., 2016, 40, 392-399.
[http://dx.doi.org/10.1016/j.intimp.2016.09.027] [PMID: 27694040]
[34]
Jiang, N.; Zhao, G.; Lin, J.; Hu, L.; Che, C.; Li, C.; Wang, Q.; Xu, Q.; Peng, X. Indoleamine 2,3-Dioxygenase Is Involved in the Inflammation Response of Corneal Epithelial Cells to Aspergillus fumigatus Infections. PLoS One, 2015, 10(9) e0137423
[http://dx.doi.org/10.1371/journal.pone.0137423] [PMID: 26361229]
[35]
Dou, C.Y.; Cao, C.J.; Wang, Z.; Zhang, R.H.; Huang, L.L.; Lian, J.Y.; Xie, W.L.; Wang, L.T. EFEMP1 inhibits migration of hepatocellular carcinoma by regulating MMP2 and MMP9 via ERK1/2 activity. Oncol. Rep., 2016, 35(6), 3489-3495.
[http://dx.doi.org/10.3892/or.2016.4733] [PMID: 27108677]
[36]
Gioia, M.; Vindigni, G.; Testa, B.; Raniolo, S.; Fasciglione, G.F.; Coletta, M.; Biocca, S. Membrane cholesterol modulates LOX-1 shedding in endothelial cells. PLoS One, 2015, 10(10) e0141270
[http://dx.doi.org/10.1371/journal.pone.0141270] [PMID: 26495844]
[37]
Carcuac, O.; Berglundh, T. Composition of human peri-implantitis and periodontitis lesions. J. Dent. Res., 2014, 93(11), 1083-1088.
[http://dx.doi.org/10.1177/0022034514551754] [PMID: 25261052]
[38]
Mombelli, A.; Müller, N.; Cionca, N. The epidemiology of peri implantitis. Clin. Oral Implants Res., 2012, 23(Suppl. 6), 67-76.
[http://dx.doi.org/10.1111/j.1600-0501.2012.02541.x] [PMID: 23062130]
[39]
Al-Sowygh, Z.H.; Aldamkh, M.K.; Binmahfooz, A.M.; Al-Aali, K.A.; Akram, Z.; Qutub, O.A.; Javed, F.; Abduljabbar, T. Assessment of matrix metalloproteinase-8 and -9 levels in the peri-implant sulcular fluid among waterpipe (narghile) smokers and never-smokers with peri-implantitis. Inhal. Toxicol., 2018, 30(2), 72-77.
[http://dx.doi.org/10.1080/08958378.2018.1449273] [PMID: 29564945]
[40]
Degidi, M.; Artese, L.; Franceschini, N.; Sulpizio, S.; Piattelli, A.; Piccirilli, M.; Perrotti, V.; Iezzi, G. Matrix metalloproteinases 2; 3; 8; 9; and 13 in the peri-implant soft tissues around titanium and zirconium oxide healing caps. Int. J. Oral Maxillofac. Implants, 2013, 28, 1546-1551.
[http://dx.doi.org/10.11607/jomi.2502] [PMID: 24278923]
[41]
Akram, Z.; Vohra, F.; Bukhari, I.A.; Sheikh, S.A.; Javed, F. Clinical and radiographic peri-implant parameters and proinflammatory cytokine levels among cigarette smokers, smokeless tobacco users, and nontobacco users. Clin. Implant Dent. Relat. Res., 2018, 20(1), 76-81.
[http://dx.doi.org/10.1111/cid.12575] [PMID: 29243410]
[42]
Yang, L.; Zhu, Q.; Gong, J.; Xie, M.; Jiao, T. cypa and emmprin play a role in peri-implantitis. Clin. Implant Dent. Relat. Res., 2018, 20(2), 102-109.
[http://dx.doi.org/10.1111/cid.12549] [PMID: 29057571]
[43]
Lu, S.H.; Liang, X.; Xie, Z.G.; Zhang, J.Y.; Xu, L.; Sun, H.Q. Evaluation of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in peri-implant sulcular fluid. Sichuan Da Xue Xue Bao Yi Xue Ban, 2004, 35(2), 274-276.
[PMID: 15071939]
[44]
Tang, H.; Mattheos, N.; Yao, Y.; Jia, Y.; Ma, L.; Gong, P. In vivo osteoprotegerin gene therapy preventing bone loss induced by periodontitis. J. Periodontal Res., 2015, 50(4), 434-443.
[http://dx.doi.org/10.1111/jre.12224] [PMID: 25203865]
[45]
Jotwani, R.; Eswaran, S.V.; Moonga, S.; Cutler, C.W. MMP-9/TIMP-1 imbalance induced in human dendritic cells by Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol., 2010, 58(3), 314-321.
[http://dx.doi.org/10.1111/j.1574-695X.2009.00637.x] [PMID: 20030715]
[46]
Cui, D.; Lyu, J.; Li, H.; Lei, L.; Bian, T.; Li, L.; Yan, F. Human β-defensin 3 inhibits periodontitis development by suppressing inflammatory responses in macrophages. Mol. Immunol., 2017, 91, 65-74.
[http://dx.doi.org/10.1016/j.molimm.2017.08.012] [PMID: 28886588]
[47]
Santos, J.; Marquis, A.; Epifano, F.; Genovese, S.; Curini, M.; Grenier, D. Collinin reduces Porphyromonas gingivalis growth and collagenase activity and inhibits the lipopolysaccharide-induced macrophage inflammatory response and osteoclast differentiation and function. J. Periodontol., 2013, 84(5), 704-711.
[http://dx.doi.org/10.1902/jop.2012.120118] [PMID: 22897650]
[48]
Nagashima, H.; Shinoda, M.; Honda, K.; Kamio, N.; Hasuike, A.; Sugano, N.; Arai, Y.; Sato, S.; Iwata, K. CXCR4 signaling contributes to alveolar bone resorption in Porphyromonas gingivalis induced periodontitis in mice. J. Oral Sci., 2017, 59(4), 571-577.
[http://dx.doi.org/10.2334/josnusd.16-0830] [PMID: 29093284]
[49]
Trindade, R.; Albrektsson, T.; Tengvall, P.; Wennerberg, A. Foreign body reaction to biomaterials: On mechanisms for buildup and breakdown of osseointegration. Clin. Implant Dent. Relat. Res., 2016, 18(1), 192-203.
[http://dx.doi.org/10.1111/cid.12274] [PMID: 25257971]
[50]
Nakayachi, M.; Ito, J.; Hayashida, C.; Ohyama, Y.; Kakino, A.; Okayasu, M.; Sato, T.; Ogasawara, T.; Kaneda, T.; Suda, N.; Sawamura, T.; Hakeda, Y. Lectin-like oxidized low-density lipoprotein receptor-1 abrogation causes resistance to inflammatory bone destruction in mice, despite promoting osteoclastogenesis in the steady state. Bone, 2015, 75, 170-182.
[http://dx.doi.org/10.1016/j.bone.2015.02.025] [PMID: 25744064]
[51]
Yamasaki, T.; Ariyoshi, W.; Okinaga, T.; Adachi, Y.; Hosokawa, R.; Mochizuki, S.; Sakurai, K.; Nishihara, T. The dectin 1 agonist curdlan regulates osteoclastogenesis by inhibiting Nuclear Factor Of Activated T Cells Cytoplasmic 1 (NFATc1) through Syk kinase. J. Biol. Chem., 2014, 289(27), 19191-19203.
[http://dx.doi.org/10.1074/jbc.M114.551416] [PMID: 24821724]
[52]
Zhu, X.; Zhao, Y.; Jiang, Y.; Qin, T.; Chen, J.; Chu, X.; Yi, Q.; Gao, S.; Wang, S. Dectin-1 signaling inhibits osteoclastogenesis via IL-33-induced inhibition of NFATc1. Oncotarget, 2017, 8(32), 53366-53374.
[http://dx.doi.org/10.18632/oncotarget.18411] [PMID: 28881817]
[53]
Dunn, S.; Vohra, R.S.; Murphy, J.E.; Homer-Vanniasinkam, S.; Walker, J.H.; Ponnambalam, S. The lectin-like oxidized low-density-lipoprotein receptor: A pro-inflammatory factor in vascular disease. Biochem. J., 2008, 409(2), 349-355.
[http://dx.doi.org/10.1042/BJ20071196] [PMID: 18092947]
[54]
Wu, Z.; Sawamura, T.; Kurdowska, A.K.; Ji, H.L.; Idell, S.; Fu, J. LOX-1 deletion improves neutrophil responses, enhances bacterial clearance, and reduces lung injury in a murine polymicrobial sepsis model. Infect. Immun., 2011, 79(7), 2865-2870.
[http://dx.doi.org/10.1128/IAI.01317-10] [PMID: 21576343]
[55]
Lucero, J.; Suwannasual, U.; Herbert, L.M.; McDonald, J.D.; Lund, A.K. The role of the Lectin-Like oxLDL receptor (LOX-1) in traffic-generated air pollution exposure-mediated alteration of the brain microvasculature in Apolipoprotein (Apo) E knockout mice. Inhal. Toxicol., 2017, 29(6), 266-281.
[http://dx.doi.org/10.1080/08958378.2017.1357774] [PMID: 28816559]
[56]
Zhang, C.; Wang, W.; Liu, C.; Lu, J.; Sun, K. Role of NF-κB/GATA3 in the inhibition of lysyl oxidase by IL-1β in human amnion fibroblasts. Immunol. Cell Biol., 2017, 95(10), 943-952.
[http://dx.doi.org/10.1038/icb.2017.73] [PMID: 28878297]
[57]
Velásquez, L.N.; Milillo, M.A.; Delpino, M.V.; Trotta, A.; Mercogliano, M.F.; Pozner, R.G.; Schillaci, R.; Elizalde, P.V.; Giambartolomei, G.H.; Barrionuevo, P. Inhibition of MHC-I by Brucella abortus is an early event during infection and involves EGFR pathway. Immunol. Cell Biol., 2017, 95(4), 388-398.
[http://dx.doi.org/10.1038/icb.2016.111] [PMID: 27811842]
[58]
Ren, H.; Li, Y.; Jiang, H.; Du, M. Porphyromonas gingivalis induces IL-8 and IFN-gamma secretion and apoptosis in human extravillous trophoblast derived HTR8/SVneo cells via activation of ERK1/2 and p38 signaling pathways. Placenta, 2016, 45, 8-15.
[http://dx.doi.org/10.1016/j.placenta.2016.06.010] [PMID: 27577704]
[59]
Chen, H.; Xu, X.; Teng, J.; Cheng, S.; Bunjhoo, H.; Cao, Y.; Liu, J.; Xie, J.; Wang, C.; Xu, Y.; Xiong, W. CXCR4 inhibitor attenuates allergen-induced lung inflammation by down-regulating MMP-9 and ERK1/2. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6700-6707.
[PMID: 26261552]
[60]
Wang, M.F.; Lu, C.Y.; Lai, S.C. Up-regulation of matrix metalloproteinases-2 and -9 via an Erk1/2/NF-κB pathway in murine mast cells infected with Toxoplasma gondii. J. Comp. Pathol., 2013, 149(2-3), 146-155.
[http://dx.doi.org/10.1016/j.jcpa.2013.03.002] [PMID: 23664424]
[61]
Zhang, Q.; Liu, J.; Ma, L.; Bai, N.; Xu, H. Wnt5a is involved in LOX-1 and TLR4 induced host inflammatory response in peri-implantitis. J. Periodontal Res., 2020, 55(2), 199-208.
[http://dx.doi.org/10.1111/jre.12702] [PMID: 31593304]
[62]
Zhang, Q.; Liu, J.; Ma, L.; Bai, N.; Xu, H. LOX-1 is involved in TLR2 induced RANKL regulation in peri-implantitis. Int. Immunopharmacol., 2019,. 77105956
[http://dx.doi.org/10.1016/j.intimp.2019.105956] [PMID: 31655342]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 9
Year: 2020
Page: [862 - 871]
Pages: 10
DOI: 10.2174/1389201021666200221121139
Price: $65

Article Metrics

PDF: 40
HTML: 3