An Overview on Chemotherapy-induced Cognitive Impairment and Potential Role of Antidepressants

Author(s): Ankit Das, Niraja Ranadive, Manas Kinra, Madhavan Nampoothiri, Devinder Arora, Jayesh Mudgal*

Journal Name: Current Neuropharmacology

Volume 18 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Cognitive impairment is an adverse reaction of cancer chemotherapy and is likely to affect up to 75% of patients during the treatment and 35% of patients experience it for several months after the chemotherapy. Patients manifest symptoms like alteration in working ability, awareness, concentration, visual-verbal memory, attention, executive functions, processing speed, fatigue and behavioural dysfunctions. Post-chemotherapy, cancer survivors have a reduced quality of life due to the symptoms of chemobrain. Apart from this, there are clinical reports which also associate mood disorders, vascular complications, and seizures in some cases. Therefore, the quality of lifestyle of cancer patients/ survivors is severely affected and only worsens due to the absence of any efficacious treatments. With the increase in survivorship, it’s vital to identify effective strategies, until then only symptomatic relief for chemobrain can be provided. The depressive symptoms were causally linked to the pathophysiological imbalance between the pro and antiinflammatory cytokines.

Conclusion: The common causative factor, cytokines can be targeted for the amelioration of an associated symptom of both depression and chemotherapy. Thus, antidepressants can have a beneficial effect on chemotherapy-induced inflammation and cognitive dysfunction via cytokine balance. Also, neurogenesis property of certain antidepressant drugs rationalises their evaluation against CICI. This review briefly glances upon chemotherapy-induced cognitive impairment (CICI), and the modulatory effect of antidepressants on CICI pathomechanisms.

Keywords: Antidepressants, chemobrain, chemotherapy, cognitive impairment, cytokines, neuroinflammation.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Henderson, F.M.; Cross, A.J.; Baraniak, A.R. ‘A new normal with chemobrain’: Experiences of the impact of chemotherapy-related cognitive deficits in long-term breast cancer survivors. Health Psychol. Open, 2019, 6(1), 2055102919832234
[http://dx.doi.org/10.1177/2055102919832234] [PMID: 30873289]
[3]
Staat, K.; Segatore, M. The phenomenon of chemo brain. Clin. J. Oncol. Nurs., 2005, 9(6), 713-721.
[http://dx.doi.org/10.1188/05.CJON.713-721] [PMID: 16381547]
[4]
DeSantis, C.; Siegel, R.; Jemal, A. Cancer treatment and survivorship: facts and figures 2014-2015; Am Cancer Soc, 2014, pp. 3-6.
[5]
Wang, X-M.; Walitt, B.; Saligan, L.; Tiwari, A.F.; Cheung, C.W.; Zhang, Z-J. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine, 2015, 72(1), 86-96.
[http://dx.doi.org/10.1016/j.cyto.2014.12.006] [PMID: 25573802]
[6]
Ahles, T.A.; Saykin, A.J.; McDonald, B.C.; Li, Y.; Furstenberg, C.T.; Hanscom, B.S.; Mulrooney, T.J.; Schwartz, G.N.; Kaufman, P.A. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J. Clin. Oncol., 2010, 28(29), 4434-4440.
[http://dx.doi.org/10.1200/JCO.2009.27.0827] [PMID: 20837957]
[7]
de Ruiter, M.B.; Reneman, L.; Boogerd, W.; Veltman, D.J.; Caan, M.; Douaud, G.; Lavini, C.; Linn, S.C.; Boven, E.; van Dam, F.S.; Schagen, S.B. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Hum. Brain Mapp., 2012, 33(12), 2971-2983.
[http://dx.doi.org/10.1002/hbm.21422] [PMID: 22095746]
[8]
Kreukels, B.P.; Schagen, S.B.; Ridderinkhof, K.R.; Boogerd, W.; Hamburger, H.L.; Muller, M.J.; van Dam, F.S. Effects of high-dose and conventional-dose adjuvant chemotherapy on long-term cognitive sequelae in patients with breast cancer: an electrophysiologic study. Clin. Breast Cancer, 2006, 7(1), 67-78.
[http://dx.doi.org/10.3816/CBC.2006.n.015] [PMID: 16764746]
[9]
Winocur, G.; Berman, H.; Nguyen, M.; Binns, M.A.; Henkelman, M.; van Eede, M.; Piquette-Miller, M.; Sekeres, M.J.; Wojtowicz, J.M.; Yu, J.; Zhang, H.; Tannock, I.F. Neurobiological mechanisms of chemotherapy-induced cognitive impairment in a transgenic model of breast cancer. Neuroscience, 2018, 369, 51-65.
[http://dx.doi.org/10.1016/j.neuroscience.2017.10.048] [PMID: 29113931]
[10]
Fardell, J.E.; Vardy, J.; Johnston, I.N.; Winocur, G. Chemotherapy and cognitive impairment: treatment options. Clin. Pharmacol. Ther., 2011, 90(3), 366-376.
[http://dx.doi.org/10.1038/clpt.2011.112] [PMID: 21814191]
[11]
Ahles, T.A.; Saykin, A.J.; Noll, W.W.; Furstenberg, C.T.; Guerin, S.; Cole, B.; Mott, L.A. The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psychooncology, 2003, 12(6), 612-619.
[http://dx.doi.org/10.1002/pon.742] [PMID: 12923801]
[12]
Small, B.J.; Rawson, K.S.; Walsh, E.; Jim, H.S.; Hughes, T.F.; Iser, L.; Andrykowski, M.A.; Jacobsen, P.B. Catechol-O-methyltransferase genotype modulates cancer treatment-related cognitive deficits in breast cancer survivors. Cancer, 2011, 117(7), 1369-1376.
[http://dx.doi.org/10.1002/cncr.25685] [PMID: 21425136]
[13]
McDonald, B.C.; Conroy, S.K.; Ahles, T.A.; West, J.D.; Saykin, A.J. Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Res. Treat., 2010, 123(3), 819-828.
[http://dx.doi.org/10.1007/s10549-010-1088-4] [PMID: 20690040]
[14]
McDonald, B.C.; Conroy, S.K.; Ahles, T.A.; West, J.D.; Saykin, A.J. Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. J. Clin. Oncol., 2012, 30(20), 2500-2508.
[http://dx.doi.org/10.1200/JCO.2011.38.5674] [PMID: 22665542]
[15]
Bagnall-Moreau, C.; Chaudhry, S.; Salas-Ramirez, K.; Ahles, T.; Hubbard, K. Chemotherapy-induced cognitive impairment is associated with increased inflammation and oxidative damage in the hippocampus. Mol. Neurobiol., 2019, 56(10), 7159-7172.
[http://dx.doi.org/10.1007/s12035-019-1589-z] [PMID: 30989632]
[16]
Bruno, J.; Hosseini, S.M.; Kesler, S. Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiol. Dis., 2012, 48(3), 329-338.
[http://dx.doi.org/10.1016/j.nbd.2012.07.009] [PMID: 22820143]
[17]
Deprez, S.; Amant, F.; Yigit, R.; Porke, K.; Verhoeven, J.; Van den Stock, J.; Smeets, A.; Christiaens, M.R.; Leemans, A.; Van Hecke, W.; Vandenberghe, J.; Vandenbulcke, M.; Sunaert, S. Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum. Brain Mapp., 2011, 32(3), 480-493.
[http://dx.doi.org/10.1002/hbm.21033] [PMID: 20725909]
[18]
Stemmer, S.M.; Stears, J.C.; Burton, B.S.; Jones, R.B.; Simon, J.H. White matter changes in patients with breast cancer treated with high-dose chemotherapy and autologous bone marrow support. Am. J. Neuroradiol., 1994, 15(7), 1267-1273.
[PMID: 7976937]
[19]
Inagaki, M.; Yoshikawa, E.; Matsuoka, Y.; Sugawara, Y.; Nakano, T.; Akechi, T.; Wada, N.; Imoto, S.; Murakami, K.; Uchitomi, Y. Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer, 2007, 109(1), 146-156.
[http://dx.doi.org/10.1002/cncr.22368] [PMID: 17131349]
[20]
Ren, X.; St Clair, D.K.; Butterfield, D.A. Dysregulation of cytokine mediated chemotherapy induced cognitive impairment. Pharmacol. Res., 2017, 117, 267-273.
[http://dx.doi.org/10.1016/j.phrs.2017.01.001] [PMID: 28063894]
[21]
Gibson, E.M.; Nagaraja, S.; Ocampo, A.; Tam, L.T.; Wood, L.S.; Pallegar, P.N.; Greene, J.J.; Geraghty, A.C.; Goldstein, A.K.; Ni, L. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell,, 2019, , 176(1-2), 43-55. e13..
[http://dx.doi.org/10.1016/j.cell.2018.10.049.]
[22]
Parikh, S. The neurologic manifestations of mitochondrial disease. Dev. Disabil. Res. Rev., 2010, 16(2), 120-128.
[http://dx.doi.org/10.1002/ddrr.110] [PMID: 20818726]
[23]
Briones, T.L.; Woods, J. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications. BMC Neurosci., 2011, 12(1), 124.
[http://dx.doi.org/10.1186/1471-2202-12-124] [PMID: 22152030]
[24]
Seigers, R.; Fardell, J.E. Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci. Biobehav. Rev., 2011, 35(3), 729-741.
[http://dx.doi.org/10.1016/j.neubiorev.2010.09.006] [PMID: 20869395]
[25]
Seigers, R.; Timmermans, J.; van der Horn, H.J.; de Vries, E.F.; Dierckx, R.A.; Visser, L.; Schagen, S.B.; van Dam, F.S.; Koolhaas, J.M.; Buwalda, B. Methotrexate reduces hippocampal blood vessel density and activates microglia in rats but does not elevate central cytokine release. Behav. Brain Res., 2010, 207(2), 265-272.
[http://dx.doi.org/10.1016/j.bbr.2009.10.009] [PMID: 19840821]
[26]
Keeney, J.T.R.; Ren, X.; Warrier, G.; Noel, T.; Powell, D.K.; Brelsfoard, J.M.; Sultana, R.; Saatman, K.E.; Clair, D.K.S.; Butterfield, D.A. Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”). Oncotarget, 2018, 9(54), 30324-30339.
[http://dx.doi.org/10.18632/oncotarget.25718] [PMID: 30100992]
[27]
Cardoso, S.; Santos, R.X.; Carvalho, C.; Correia, S.; Pereira, G.C.; Pereira, S.S.; Oliveira, P.J.; Santos, M.S.; Proença, T.; Moreira, P.I. Doxorubicin increases the susceptibility of brain mitochondria to Ca(2+)-induced permeability transition and oxidative damage. Free Radic. Biol. Med., 2008, 45(10), 1395-1402.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.08.008] [PMID: 18775776]
[28]
Tangpong, J.; Cole, M.P.; Sultana, R.; Joshi, G.; Estus, S.; Vore, M.; St Clair, W.; Ratanachaiyavong, S.; St Clair, D.K.; Butterfield, D.A. Adriamycin-induced, TNF-α-mediated central nervous system toxicity. Neurobiol. Dis., 2006, 23(1), 127-139.
[http://dx.doi.org/10.1016/j.nbd.2006.02.013] [PMID: 16697651]
[29]
Cheung, Y.T.; Ng, T.; Shwe, M.; Ho, H.K.; Foo, K.M.; Cham, M.T.; Lee, J.A.; Fan, G.; Tan, Y.P.; Yong, W.S.; Madhukumar, P.; Loo, S.K.; Ang, S.F.; Wong, M.; Chay, W.Y.; Ooi, W.S.; Dent, R.A.; Yap, Y.S.; Ng, R.; Chan, A. Association of proinflammatory cytokines and chemotherapy-associated cognitive impairment in breast cancer patients: a multi-centered, prospective, cohort study. Ann. Oncol., 2015, 26(7), 1446-1451.
[http://dx.doi.org/10.1093/annonc/mdv206] [PMID: 25922060]
[30]
Kitamura, Y.; Hattori, S.; Yoneda, S.; Watanabe, S.; Kanemoto, E.; Sugimoto, M.; Kawai, T.; Machida, A.; Kanzaki, H.; Miyazaki, I.; Asanuma, M.; Sendo, T. Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: Possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation. Behav. Brain Res., 2015, 292, 184-193.
[http://dx.doi.org/10.1016/j.bbr.2015.06.007] [PMID: 26057360]
[31]
Konat, G.W.; Kraszpulski, M.; James, I.; Zhang, H-T.; Abraham, J. Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats. Metab. Brain Dis., 2008, 23(3), 325-333.
[http://dx.doi.org/10.1007/s11011-008-9100-y] [PMID: 18690526]
[32]
Mignone, R.G.; Weber, E.T. Potent inhibition of cell proliferation in the hippocampal dentate gyrus of mice by the chemotherapeutic drug thioTEPA. Brain Res., 2006, 1111(1), 26-29.
[http://dx.doi.org/10.1016/j.brainres.2006.06.093] [PMID: 16879810]
[33]
Tangpong, J.; Cole, M.P.; Sultana, R.; Estus, S.; Vore, M.; St Clair, W.; Ratanachaiyavong, S.; St Clair, D.K.; Butterfield, D.A. Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J. Neurochem., 2007, 100(1), 191-201.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04179.x] [PMID: 17227439]
[34]
Wood, L.J.; Nail, L.M.; Perrin, N.A.; Elsea, C.R.; Fischer, A.; Druker, B.J. The cancer chemotherapy drug etoposide (VP-16) induces proinflammatory cytokine production and sickness behavior-like symptoms in a mouse model of cancer chemotherapy-related symptoms. Biol. Res. Nurs., 2006, 8(2), 157-169.
[http://dx.doi.org/10.1177/1099800406290932] [PMID: 17003255]
[35]
Chovanec, M.; Vasilkova, L.; Setteyova, L.; Obertova, J.; Palacka, P.; Rejlekova, K.; Sycova‐Mila, Z.; Kalavska, K.; Svetlovska, D.; Cingelova, S. Long‐term cognitive functioning in testicular germ‐cell tumor survivors. Oncologist, 2018, 23(5), 617-623.
[http://dx.doi.org/10.1634/theoncologist.2017-0457]
[36]
John, T.; Lomeli, N.; Bota, D.A. Systemic cisplatin exposure during infancy and adolescence causes impaired cognitive function in adulthood. Behav. Brain Res., 2017, 319, 200-206.
[http://dx.doi.org/10.1016/j.bbr.2016.11.013] [PMID: 27851909]
[37]
Zhou, W.; Kavelaars, A.; Heijnen, C.J. Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice. PLoS One, 2016, 11(3), e0151890
[http://dx.doi.org/10.1371/journal.pone.0151890] [PMID: 27018597]
[38]
Lacourt, T.E.; Heijnen, C.J. Mechanisms of neurotoxic symptoms as a result of breast cancer and its treatment: considerations on the contribution of stress, inflammation, and cellular bioenergetics. Curr. Breast Cancer Rep., 2017, 9(2), 70-81.
[http://dx.doi.org/10.1007/s12609-017-0245-8] [PMID: 28616125]
[39]
Vichaya, E.G.; Chiu, G.S.; Krukowski, K.; Lacourt, T.E.; Kavelaars, A.; Dantzer, R.; Heijnen, C.J.; Walker, A.K. Mechanisms of chemotherapy-induced behavioral toxicities. Front. Neurosci., 2015, 9, 131.
[http://dx.doi.org/10.3389/fnins.2015.00131] [PMID: 25954147]
[40]
Janes, K.; Esposito, E.; Doyle, T.; Cuzzocrea, S.; Tosh, D.K.; Jacobson, K.A.; Salvemini, D. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain, 2014, 155(12), 2560-2567.
[http://dx.doi.org/10.1016/j.pain.2014.09.016] [PMID: 25242567]
[41]
Makker, P.G.; Duffy, S.S.; Lees, J.G.; Perera, C.J.; Tonkin, R.S.; Butovsky, O.; Park, S.B.; Goldstein, D.; Moalem-Taylor, G. Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS One, 2017, 12(1), e0170814
[http://dx.doi.org/10.1371/journal.pone.0170814] [PMID: 28125674]
[42]
Melli, G.; Taiana, M.; Camozzi, F.; Triolo, D.; Podini, P.; Quattrini, A.; Taroni, F.; Lauria, G. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp. Neurol., 2008, 214(2), 276-284.
[http://dx.doi.org/10.1016/j.expneurol.2008.08.013] [PMID: 18809400]
[43]
Flatters, S.J.; Bennett, G.J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain, 2006, 122(3), 245-257.
[http://dx.doi.org/10.1016/j.pain.2006.01.037] [PMID: 16530964]
[44]
Tanimukai, H.; Kudo, T. Fluvoxamine alleviates paclitaxel-induced neurotoxicity. Biochem. Biophys. Rep., 2015, 4, 202-206.
[http://dx.doi.org/10.1016/j.bbrep.2015.09.014] [PMID: 29124205]
[45]
Li, Y.; Zhang, H.; Kosturakis, A.K.; Cassidy, R.M.; Zhang, H.; Kennamer-Chapman, R.M.; Jawad, A.B.; Colomand, C.M.; Harrison, D.S.; Dougherty, P.M. MAPK signaling downstream to TLR4 contributes to paclitaxel-induced peripheral neuropathy. Brain Behav. Immun., 2015, 49, 255-266.
[http://dx.doi.org/10.1016/j.bbi.2015.06.003] [PMID: 26065826]
[46]
Morris, G.M.; Hopewell, J.W.; Morris, A.D. A comparison of the effects of methotrexate and misonidazole on the germinal cells of the subependymal plate of the rat. Br. J. Radiol., 1995, 68(808), 406-412.
[http://dx.doi.org/10.1259/0007-1285-68-808-406] [PMID: 7795978]
[47]
Yang, M.; Kim, J-S.; Kim, J.; Jang, S.; Kim, S-H.; Kim, J-C.; Shin, T.; Wang, H.; Moon, C. Acute treatment with methotrexate induces hippocampal dysfunction in a mouse model of breast cancer. Brain Res. Bull., 2012, 89(1-2), 50-56.
[http://dx.doi.org/10.1016/j.brainresbull.2012.07.003] [PMID: 22796103]
[48]
English, J.; Aherne, G.W.; Arendt, J.; Marks, V. The effect of abolition of the endogenous corticosteroid rhythm on the circadian variation in methotrexate toxicity in the rat. Cancer Chemother. Pharmacol., 1987, 19(4), 287-290.
[http://dx.doi.org/10.1007/BF00261474] [PMID: 3594715]
[49]
ElBeltagy, M.; Mustafa, S.; Umka, J.; Lyons, L.; Salman, A.; Chur-yoe, G.T.; Bhalla, N.; Bennett, G.; Wigmore, P.M. Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil. Behav. Brain Res., 2010, 208(1), 112-117.
[http://dx.doi.org/10.1016/j.bbr.2009.11.017] [PMID: 19914299]
[50]
Lyons, L.; ElBeltagy, M.; Bennett, G.; Wigmore, P. Fluoxetine counteracts the cognitive and cellular effects of 5-fluorouracil in the rat hippocampus by a mechanism of prevention rather than recovery. PLoS One, 2012, 7(1), e30010
[http://dx.doi.org/10.1371/journal.pone.0030010] [PMID: 22272269]
[51]
Han, R.; Yang, Y.M.; Dietrich, J.; Luebke, A.; Mayer-Pröschel, M.; Noble, M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J. Biol., 2008, 7(4), 12.
[http://dx.doi.org/10.1186/jbiol69] [PMID: 18430259]
[52]
Mizusawa, S.; Kondoh, Y.; Murakami, M.; Nakamichi, H.; Sasaki, H.; Komatsu, K.; Takahashi, A.; Kudoh, Y.; Watanabe, K.; Ono, Y. Effect of methotrexate on local cerebral blood flow in conscious rats. Jpn. J. Pharmacol., 1988, 48(4), 499-501.
[http://dx.doi.org/10.1254/jjp.48.499] [PMID: 3244204]
[53]
Briones, T.L.; Woods, J. Dysregulation in myelination mediated by persistent neuroinflammation: possible mechanisms in chemotherapy-related cognitive impairment. Brain Behav. Immun., 2014, 35, 23-32.
[http://dx.doi.org/10.1016/j.bbi.2013.07.175] [PMID: 23916895]
[54]
Weymann, K.B.; Wood, L.J.; Zhu, X.; Marks, D.L. A role for orexin in cytotoxic chemotherapy-induced fatigue. Brain Behav. Immun., 2014, 37, 84-94.
[http://dx.doi.org/10.1016/j.bbi.2013.11.003] [PMID: 24216337]
[55]
Shi, D-D.; Huang, Y-H.; Lai, C.S.W.; Dong, C.M.; Ho, L.C.; Wu, E.X.; Li, Q.; Wang, X-M.; Chung, S.K.; Sham, P.C.; Zhang, Z.J. Chemotherapy-induced cognitive impairment is associated with cytokine dysregulation and disruptions in neuroplasticity. Mol. Neurobiol., 2019, 56(3), 2234-2243.
[http://dx.doi.org/10.1007/s12035-018-1224-4] [PMID: 30008071]
[56]
Zhang, J-M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[57]
Kraft, A.D.; Harry, G.J. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int. J. Environ. Res. Public Health, 2011, 8(7), 2980-3018.
[http://dx.doi.org/10.3390/ijerph8072980] [PMID: 21845170]
[58]
Kim, Y-K.; Na, K-S.; Myint, A-M.; Leonard, B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 277-284.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.008] [PMID: 26111720]
[59]
Myers, J.S.; Pierce, J.; Pazdernik, T. Neurotoxicology of chemotherapy in relation to cytokine release, the blood-brain barrier, and cognitive impairment. Oncol. Nurs. Forum, 2008, 35(6), 916-920.
[http://dx.doi.org/10.1188/08.ONF.916-920] [PMID: 18980922]
[60]
Borsini, A.; Alboni, S.; Horowitz, M.A.; Tojo, L.M.; Cannazza, G.; Su, K-P.; Pariante, C.M.; Zunszain, P.A. Rescue of IL-1β-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants. Brain Behav. Immun., 2017, 65, 230-238.
[http://dx.doi.org/10.1016/j.bbi.2017.05.006] [PMID: 28529072]
[61]
Barry, M.A.; Behnke, C.A.; Eastman, A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol., 1990, 40(10), 2353-2362.
[http://dx.doi.org/10.1016/0006-2952(90)90733-2] [PMID: 2244936]
[62]
Seruga, B.; Zhang, H.; Bernstein, L.J.; Tannock, I.F. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer, 2008, 8(11), 887-899.
[http://dx.doi.org/10.1038/nrc2507] [PMID: 18846100]
[63]
Zunszain, P.A.; Anacker, C.; Cattaneo, A.; Choudhury, S.; Musaelyan, K.; Myint, A.M.; Thuret, S.; Price, J.; Pariante, C.M. Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology, 2012, 37(4), 939-949.
[http://dx.doi.org/10.1038/npp.2011.277] [PMID: 22071871]
[64]
Caiaffo, V.; Oliveira, B.D.; de Sá, F.B.; Evêncio Neto, J. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine. Pharmacol. Res. Perspect., 2016, 4(3), e00231
[http://dx.doi.org/10.1002/prp2.231] [PMID: 27433341]
[65]
Loftis, J.M.; Huckans, M.; Morasco, B.J. Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol. Dis., 2010, 37(3), 519-533.
[http://dx.doi.org/10.1016/j.nbd.2009.11.015] [PMID: 19944762]
[66]
Zhang, J.; Groff, R.F.; Dayawansa, S. Imipramine treatment increases cell proliferation following fluid percussion brain injury in rats. Neurol. Res., 2013, 35(3), 247-254.
[http://dx.doi.org/10.1179/1743132813Y.0000000164] [PMID: 23485052]
[67]
Chen, Z.; Palmer, T.D. Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis. Brain Behav. Immun., 2013, 30, 45-53.
[http://dx.doi.org/10.1016/j.bbi.2013.01.083] [PMID: 23402793]
[68]
Lee, S-Y.; Lee, S-J.; Han, C.; Patkar, A.A.; Masand, P.S.; Pae, C-U. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 224-235.
[http://dx.doi.org/10.1016/j.pnpbp.2012.09.008] [PMID: 23022673]
[69]
Ma, J.; Kavelaars, A.; Dougherty, P.M.; Heijnen, C.J. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer, 2018, 124(11), 2289-2298.
[http://dx.doi.org/10.1002/cncr.31248] [PMID: 29461625]
[70]
Dietrich, J.; Han, R.; Yang, Y.; Mayer-Pröschel, M.; Noble, M. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J. Biol., 2006, 5(7), 22.
[http://dx.doi.org/10.1186/jbiol50] [PMID: 17125495]
[71]
Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med., 2010, 48(6), 749-762.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.022] [PMID: 20045723]
[72]
Akpinar, A.; Uğuz, A.C.; Nazıroğlu, M. Agomelatine and duloxetine synergistically modulates apoptotic pathway by inhibiting oxidative stress triggered intracellular calcium entry in neuronal PC12 cells: role of TRPM2 and voltage-gated calcium channels. J. Membr. Biol., 2014, 247(5), 451-459.
[http://dx.doi.org/10.1007/s00232-014-9652-1] [PMID: 24682240]
[73]
Walker, F.R. A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology, 2013, 67, 304-317.
[http://dx.doi.org/10.1016/j.neuropharm.2012.10.002] [PMID: 23085335]
[74]
Greenberg, M.E.; Xu, B.; Lu, B.; Hempstead, B.L. New insights in the biology of BDNF synthesis and release: implications in CNS function. J. Neurosci., 2009, 29(41), 12764-12767.
[http://dx.doi.org/10.1523/JNEUROSCI.3566-09.2009] [PMID: 19828787]
[75]
Wei, Z.; Liao, J.; Qi, F.; Meng, Z.; Pan, S. Evidence for the contribution of BDNF-TrkB signal strength in neurogenesis: An organotypic study. Neurosci. Lett., 2015, 606, 48-52.
[http://dx.doi.org/10.1016/j.neulet.2015.08.032] [PMID: 26306653]
[76]
Seigers, R.; Schagen, S.B.; Beerling, W.; Boogerd, W.; van Tellingen, O.; van Dam, F.S.; Koolhaas, J.M.; Buwalda, B. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav. Brain Res., 2008, 186(2), 168-175.
[http://dx.doi.org/10.1016/j.bbr.2007.08.004] [PMID: 17854921]
[77]
Monje, M.; Dietrich, J. Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behav. Brain Res., 2012, 227(2), 376-379.
[http://dx.doi.org/10.1016/j.bbr.2011.05.012] [PMID: 21621557]
[78]
Salerno, E.A.; Rowland, K.; Kramer, A.F.; McAuley, E. Acute aerobic exercise effects on cognitive function in breast cancer survivors: a randomized crossover trial. BMC Cancer, 2019, 19(1), 371.
[http://dx.doi.org/10.1186/s12885-019-5589-1] [PMID: 31014267]
[79]
Winocur, G.; Wojtowicz, J.M.; Huang, J.; Tannock, I.F. Physical exercise prevents suppression of hippocampal neurogenesis and reduces cognitive impairment in chemotherapy-treated rats. Psychopharmacology (Berl.), 2014, 231(11), 2311-2320.
[http://dx.doi.org/10.1007/s00213-013-3394-0] [PMID: 24343419]
[80]
Munzer, A.; Sack, U.; Mergl, R.; Schönherr, J.; Petersein, C.; Bartsch, S.; Kirkby, K.C.; Bauer, K.; Himmerich, H. Impact of antidepressants on cytokine production of depressed patients in vitro. Toxins (Basel), 2013, 5(11), 2227-2240.
[http://dx.doi.org/10.3390/toxins5112227] [PMID: 24257035]
[81]
Diamond, M.; Kelly, J.P.; Connor, T.J. Antidepressants suppress production of the Th1 cytokine interferon-γ, independent of monoamine transporter blockade. Eur. Neuropsychopharmacol., 2006, 16(7), 481-490.
[http://dx.doi.org/10.1016/j.euroneuro.2005.11.011] [PMID: 16388933]
[82]
Hashioka, S.; Klegeris, A.; Monji, A.; Kato, T.; Sawada, M.; McGeer, P.L.; Kanba, S. Antidepressants inhibit interferon-γ-induced microglial production of IL-6 and nitric oxide. Exp. Neurol., 2007, 206(1), 33-42.
[http://dx.doi.org/10.1016/j.expneurol.2007.03.022] [PMID: 17481608]
[83]
Dello Russo, C.; Boullerne, A.I.; Gavrilyuk, V.; Feinstein, D.L. Inhibition of microglial inflammatory responses by norepinephrine: effects on nitric oxide and interleukin-1β production. J. Neuroinflammation, 2004, 1(1), 9.
[http://dx.doi.org/10.1186/1742-2094-1-9] [PMID: 15285793]
[84]
Liu, D.; Wang, Z.; Liu, S.; Wang, F.; Zhao, S.; Hao, A. Anti inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology, 2011, 61(4), 592-599.
[http://dx.doi.org/10.1016/j.neuropharm.2011.04.033] [PMID: 21575647]
[85]
Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Bhaskara Rao, K.V. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One, 2014, 9(3), e90972
[http://dx.doi.org/10.1371/journal.pone.0090972] [PMID: 24618707]
[86]
Sachs, B.D.; Caron, M.G. Chronic fluoxetine increases extra-hippocampal neurogenesis in adult mice. Int. J. Neuropsychopharmacol., 2014, 18(4), pyu029
[http://dx.doi.org/10.1093/ijnp/pyu029] [PMID: 25583694]
[87]
Pachman, D.R.; Linquist, B.M.; Barton, D.L.; Fee-Schroeder, K.C.; Smith, T.J.; Lachance, D.H.; Liu, H.; Seisler, D.K.; Loprinzi, C.L. Pilot study of Scrambler therapy for the treatment of chemotherapy-induced peripheral neuropathy; American Society of Clinical Oncology, 2012.
[88]
Ohira, K.; Miyakawa, T. Chronic treatment with fluoxetine for more than 6 weeks decreases neurogenesis in the subventricular zone of adult mice. Mol. Brain, 2011, 4(1), 10.
[http://dx.doi.org/10.1186/1756-6606-4-10] [PMID: 21385396]
[89]
Ohgi, Y.; Futamura, T.; Kikuchi, T.; Hashimoto, K. Effects of antidepressants on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol. Biochem. Behav., 2013, 103(4), 853-859.
[http://dx.doi.org/10.1016/j.pbb.2012.12.003] [PMID: 23262300]
[90]
Guilloux, J-P.; Mendez-David, I.; Pehrson, A.; Guiard, B.P.; Repérant, C.; Orvoën, S.; Gardier, A.M.; Hen, R.; Ebert, B.; Miller, S.; Sanchez, C.; David, D.J. Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Neuropharmacology, 2013, 73, 147-159.
[http://dx.doi.org/10.1016/j.neuropharm.2013.05.014] [PMID: 23721744]
[91]
Behr, G.A.; Moreira, J.C.; Frey, B.N. Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxid. Med. Cell. Longev., 2012, 2012, 609421
[http://dx.doi.org/10.1155/2012/609421]
[92]
Konieczyńska, M.J. Quality of life in schizophrenia: Impact of psychopathology, patients’ gender and antipsychotic treatment. Int. J. Psychiatry Clin. Pract., 2001, 5(1), 19-26.
[http://dx.doi.org/10.1080/136515001300224854] [PMID: 24936992]
[93]
Smith, E.M.L.; Bridges, C.M.; Kanzawa, G.; Knoerl, R.; Kelly, J.P., IV; Berezovsky, A.; Woo, C. Cancer treatment-related neuropathic pain syndromes--epidemiology and treatment: an update. Curr. Pain Headache Rep., 2014, 18(11), 459.
[http://dx.doi.org/10.1007/s11916-014-0459-7] [PMID: 25239766]
[94]
Pechnick, R.N.; Zonis, S.; Wawrowsky, K.; Cosgayon, R.; Farrokhi, C.; Lacayo, L.; Chesnokova, V. Antidepressants stimulate hippocampal neurogenesis by inhibiting p21 expression in the subgranular zone of the hipppocampus. PLoS One, 2011, 6(11), e27290
[http://dx.doi.org/10.1371/journal.pone.0027290] [PMID: 22076148]
[95]
Gulec, M.; Oral, E.; Dursun, O.B.; Yucel, A.; Hacimuftuoglu, A.; Akcay, F.; Suleyman, H. Mirtazapine protects against cisplatin-induced oxidative stress and DNA damage in the rat brain. Psychiatry Clin. Neurosci., 2013, 67(1), 50-58.
[http://dx.doi.org/10.1111/j.1440-1819.2012.02395.x] [PMID: 23279761]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 9
Year: 2020
Published on: 05 October, 2020
Page: [838 - 851]
Pages: 14
DOI: 10.2174/1570159X18666200221113842
Price: $65

Article Metrics

PDF: 32
HTML: 1