Solubility-Permeability Interplay of Hydrotropic Solubilization Using Response Surface Methodology

Author(s): Nidhi Nainwal*, Sunil Jawala, Ranjit Singh, Vikas A. Saharan

Journal Name: Drug Delivery Letters

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: The solubility/dissolution of a drug in the gastrointestinal (GI) region and the permeability of a drug through the GI membrane are the two key parameters governing drug absorption. Poor aqueous solubility is the rate-limiting factor for the absorption of poorly soluble drugs through the GI region.

Objective: The purpose of this work is to investigate the influence of two different hydrotropes, namely sodium benzoate (SB), and nicotinamide (NA), at different levels (10-40%) and in combination on the solubility and permeability of poorly soluble drug glibenclamide (GLB). The work will find out, whether the solubility enhancement of glibenclamide using hydrotropes and hydrotropic blends also affects the GI permeability of glibenclamide.

Methods: A 32 full factorial design was employed to study the influence of hydrotropic blends of sodium benzoate and nicotinamide on the solubility and permeability of GLB. The solubility and permeability of drugs at different levels (10-40%) of hydrotropes (SB, NA) and their blends are determined using a magnetic stirrer and in vitro Franz diffusion cell, respectively.

Results: The results of preliminary studies revealed an increase in the solubility and reduction in the apparent permeability of GLB as a function of increasing levels of both hydrotropes.

Conclusion: In this work, it was found that an increase in solubility with hydrotropes results in a decrease in permeability of GLB. The solubility enhancement and the permeability decrease were observed more in hydrotropic blends in comparison to individual hydrotropes. Therefore, it is concluded that both factors, solubility and permeability, must be optimized to achieve appreciable gains in bioavailability.

Keywords: Hydrotropy, solubility, permeability, solubility-permeability interplay, nicotinamide, sodium benzoate, response surface methodology.

Dahan, A.; Wolk, O.; Kim, Y.H.; Ramachandran, C.; Crippen, G.M.; Takagi, T.; Bermejo, M.; Amidon, G.L. Purely in silico BCS classification: science based quality standards for the world’s drugs. Mol. Pharm., 2013, 10(11), 4378-4390.
[] [PMID: 24094040]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[] [PMID: 11259830]
Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res., 1995, 12(3), 413-420.
[] [PMID: 7617530]
Lennernäs, H. Human intestinal permeability. J. Pharm. Sci., 1998, 87(4), 403-410.
[] [PMID: 9548891]
Yu, L.X.; Lipka, E.; Crison, J.R.; Amidon, G.L. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv. Drug Deliv. Rev., 1996, 19(3), 359-376.
[] [PMID: 11540095]
Dahan, A.; Miller, J.M.; Amidon, G.L. Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J., 2009, 11(4), 740-746.
[] [PMID: 19876745]
Löbenberg, R.; Amidon, G.L. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm., 2000, 50(1), 3-12.
[] [PMID: 10840189]
Martinez, M.N.; Amidon, G.L. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J. Clin. Pharmacol., 2002, 42(6), 620-643.
[] [PMID: 12043951]
Dahan, A.; Beig, A.; Lindley, D.; Miller, J.M. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one. Adv. Drug Deliv. Rev., 2016, 101, 99-107.
[] [PMID: 27129443]
Dahan, A.; Miller, J.M. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J., 2012, 14(2), 244-251.
[] [PMID: 22391790]
Beig, A.; Agbaria, R.; Dahan, A. The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: Comparison to HPβCD and the solubility-permeability interplay. Eur. J. Pharm. Sci., 2015, 77, 73-78.
[] [PMID: 26006306]
Dahan, A.; Miller, J.M.; Hoffman, A.; Amidon, G.E.; Amidon, G.L. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J. Pharm. Sci., 2010, 99(6), 2739-2749.
[] [PMID: 20039391]
Miller, J.M.; Dahan, A. Predicting the solubility-permeability interplay when using cyclodextrins in solubility-enabling formulations: model validation. Int. J. Pharm., 2012, 430(1-2), 388-391.
[] [PMID: 22465550]
Miller, J.M.; Beig, A.; Krieg, B.J.; Carr, R.A.; Borchardt, T.B.; Amidon, G.E.; Amidon, G.L.; Dahan, A. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Mol. Pharm., 2011, 8(5), 1848-1856.
[] [PMID: 21800883]
Beig, A.; Miller, J.M.; Dahan, A. Accounting for the solubility-permeability interplay in oral formulation development for poor water solubility drugs: the effect of PEG-400 on carbamazepine absorption. Eur. J. Pharm. Biopharm., 2012, 81(2), 386-391.
[] [PMID: 22387337]
Beig, A.; Miller, J.M.; Lindley, D.; Dahan, A. Striking the optimal solubility-permeability balance in oral formulation development for lipophilic drugs: maximizing carbamazepine blood levels. Mol. Pharm., 2017, 14(1), 319-327.
[] [PMID: 27981848]
Miller, J.M.; Beig, A.; Carr, R.A.; Webster, G.K.; Dahan, A. The solubility-permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol. Pharm., 2012, 9(3), 581-590.
[] [PMID: 22280478]
Miller, J.M.; Beig, A.; Carr, R.A.; Spence, J.K.; Dahan, A. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol. Pharm., 2012, 9(7), 2009-2016.
[] [PMID: 22632106]
Beig, A.; Fine-Shamir, N.; Lindley, D.; Miller, J.M.; Dahan, A. Advantageous Solubility-Permeability Interplay When Using Amorphous Solid Dispersion (ASD) Formulation for the BCS Class IV P-gp Substrate Rifaximin: Simultaneous Increase of Both the Solubility and the Permeability. AAPS J., 2017, 19(3), 806-813.
[] [PMID: 28204967]
Neuberg, C. Hydrotropy. Biochem. Z., 1961, 76, 107-109.
Shimizu, S.; Booth, J.J.; Abbott, S. Hydrotropy: binding models vs. statistical thermodynamics. Phys. Chem. Chem. Phys., 2013, 15(47), 20625-20632.
[] [PMID: 24189644]
Herbig, M.E.; Evers, D.H. Correlation of hydrotropic solubilization by urea with logD of drug molecules and utilization of this effect for topical formulations. Eur. J. Pharm. Biopharm., 2013, 85(1), 158-160.
[] [PMID: 23958327]
El-Houssieny, B.M.; El-Dein, E.Z.; El-Messiry, H.M. Enhancement of solubility of dexibuprofen applying mixed hydrotropic solubilization technique. Drug Discov. Ther., 2014, 8(4), 178-184.
[] [PMID: 25262596]
Rowe Raymond, C.; Sheskey Paul, J. Owen Sia^n, C. In: Handbook of Pharmaceutical Excipients; , 2006; 5, pp. 662-664.
Knip, M.; Douek, I.F.; Moore, W.P.T.; Gillmor, H.A.; McLean, A.E.; Bingley, P.J.; Gale, E.A. European Nicotinamide Diabetes Intervention Trial Group. Safety of high-dose nicotinamide: a review. Diabetologia, 2000, 43(11), 1337-1345.
[] [PMID: 11126400]
Inactive ingredient search for approved drug products., https://www.Accessdata.Fda.Gov/Scripts/Cder/Iig/Index.Cfm2018
Pan, W.; Qin, M.; Zhang, G.; Long, Y.; Ruan, W.; Pan, J.; Wu, Z.; Wan, T.; Wu, C.; Xu, Y. Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery. Int. J. Nanomedicine, 2016, 11, 4037-4050.
[] [PMID: 27578973]
Ooya, T. Lee, Sang Cheon Lee.; Kang Moo Huh.; and Kinam, Park. Hydrotropic nanocarriers for poorly soluble drugs. Nanocarrier Technologies: Frontiers of Nanotherapy; Mozafari, M.R., Ed.; , 2006, pp. 51-73.
Ooya, T.; Lee, J.; Park, K. Hydrotropic dendrimers of generations 4 and 5: Synthesis, characterization, and hydrotropic solubilization of paclitaxel; Bioconjugate Chem, 2004, p. 32.
Marble, A. Glibenclamide, a new sulphonylurea: whither oral hypoglycaemic agents? Drugs, 1971, 1(2), 109-115.
[] [PMID: 4999930]
Chakraborti, C.K.; Sahoo, S.; Behera, P.K. Effect of different polymers on in vitro and ex vivo permeability of Ofloxacin from its mucoadhesive suspensions. Saudi Pharm. J., 2015, 23(2), 195-201.
[] [PMID: 25972741]
Bolton, S. Pharmaceutical Statistics, 2nd ed; Marcel Decker Inc.: New York, USA, 1990, p. 234.
Mendenhall, W.; Sincich, T. Multiple regression, 3rd ed; Dellen Publishing Co.: San Francisco, CA, USA, 1989, pp. 141-226.
Franz, R.M.; Browne, J.E.; Lewis, A.R. Experiment design, modeling and optimization strategies for product and process development. Pharmaceutical Dosage Forms: Disperse Systems, 1st; Marcel Decker Inc.: New York, USA,. 1988, 1

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 10 September, 2020
Page: [209 - 218]
Pages: 10
DOI: 10.2174/2210303110666200220124230
Price: $25

Article Metrics

PDF: 25
PRC: 1