Nanobulges: A Duplex Nanosystem for Multidimensional Applications

Author(s): Pravin Shende*, Adrita Mondal

Journal Name: Current Nanoscience

Volume 16 , Issue 5 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Nanoparticulate systems like nanospheres, nanocrystals, and nanofluids show immense advancement in the fields of nanoelectronic and agriculture. Nanobulges are duplexed nanoparticles comprising the interaction of two nanoparticles for the formation of a curved bulge on the surface of the nanoparticle.

Objective: This review focuses on properties, mechanism of action, methods of preparation and applications of nanobulges in optoelectronic devices and controlled release of fertilizers.

Methods: Mostly pulsed laser deposition and multilayered palladium-catalysts fabrication with nanobulges structure are used to prepare nanobulges.

Results: Nanobulges are advantageous over the conventional nanoparticles due to their high electrical density, improved catalytic drug loading and good electronic conductivity.

Conclusion: In the near future, nanobulges will emerge as a promising material for commercial preparation of bioanalytical sensors and microfluidic systems.

Keywords: Nanoparticle, curved bulge, electronic conductivity, sensors, microfluidic devices, nanobulges.

Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[] [PMID: 29379334]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[] [PMID: 19186176]
Shende, P.K.; Desai, D.; Gaud, R.S. Role of solid-gas interface of nanobubbles for therapeutic applications. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(5), 469-494.
[] [PMID: 30317946]
Barratt, G.M. Therapeutic applications of colloidal drug carriers. Pharm. Sci. Technol. Today, 2000, 3(5), 163-171.
[] [PMID: 10785658]
Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287(5459), 1801-1804.
[] [PMID: 10710305]
Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453), 622-625.
[] [PMID: 10649989]
Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes--the route toward applications. Science, 2002, 297(5582), 787-792.
[] [PMID: 12161643]
Shende, P.; Patil, S.; Gaud, R.S. A combinatorial approach of inclusion complexation and dendrimer synthesization for effective targeting EGFR-TK. Mater. Sci. Eng. C, 2017, 76, 959-965.
[] [PMID: 28482613]
Gillies, E.R.; Fréchet, J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[] [PMID: 15676297]
Sonke, S.; Tomalia, D.A. Dendrimers in biomedical applicationsreflections on the field. Adv. Drug Deliv. Rev., 2012, 64, 102-115.
Shende, P.K.; Desai, D.; Yawalkar, R.; Patil, M.; Desai, H. Multidrug liposomes of glycolic acid and nutraceuticals for cosmetic application. Nov. Appro. Drug Des. Dev., 2017, 2(5), 1-4.
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[] [PMID: 15688077]
Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251), 933-937.
Petryayeva, E.; Algar, W.R.; Medintz, I.L. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc., 2013, 67(3), 215-252.
[] [PMID: 23452487]
Molaei, M.J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta, 2019, 196, 456-478.
[] [PMID: 30683392]
Mikhailov, O.V. Achievements in the synthesis of elemental silver nanoparticles with various geometric forms. Curr. Nanosci., 2019, 15(2), 112-128.
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[] [PMID: 21180459]
Shende, P.; Desai, D.; Gaud, R.S. Hybrid nanosponges. In: Trotta, F.; Mele, A. (eds.). Nanosponges: Synthesis and Applications, Wiley‐VCH Verlag GmbH & Co. KGaA; , 2019, pp. 173-192.
Shende, P.; Deshmukh, K.; Trotta, F.; Caldera, F. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. Int. J. Pharm., 2013, 456(1), 95-100.
[] [PMID: 23954237]
Deshmukh, K.; Tanwar, Y.S.; Shende, P.; Cavalli, R. Biomimetic estimation of glucose using non-molecular and molecular imprinted polymer nanosponges. Int. J. Pharm., 2015, 494(1), 244-248.
[] [PMID: 26276257]
Duran, N.; Seabra, A.B. Biogenic synthesized Ag/Au nanoparticles: production, characterization, and applications. Curr. Nanosci., 2018, 14(2), 82-94.
Patil, A.; Mishra, V.; Thakur, S.; Riyaz, B.; Kaur, A.; Khursheed, R.; Patil, K.; Sathe, B. Nanotechnology derived nanotools in biomedical perspectives: An update. Curr. Nanosci., 2019, 15(2), 137-146.
Tran, H.N.; Nghiem, T.H.L.; Vu, T.T.D.; Chu, V.H.; Le, Q.H.; Hoang, T.M.N.; Nguyen, L.T.; Pham, D.M.; Tong, K.T.; Do, Q.H.; Vu, D. Optical nanoparticles: synthesis and biomedical application. Adv. Nat. Sci. Nanosci. Nanotechnol., 2015, 6(2), 023002.
Mallakpour, S.; Behranvand, V. Polymeric nanoparticles: Recent development in synthesis and application. Express Polym. Lett., 2016, 10(11), 895-913.
Dastmalchi, N.; Safaralizadeh, R.; Latifi-Navid, S. Nanoparticles as therapeutic delivery systems in relation to cancer diagnosis and therapy. Curr. Nanosci., 2019, 15(3), 218-233.
Yang, B.; Yu, L.; Liu, Q.; Liu, J.; Yang, W.; Zhang, H.; Wang, F.; Hu, S.; Yuan, Y.; Wang, J. The growth and assembly of the multidimensional hierarchical Ni3S2 for aqueous asymmetric supercapacitors. CrystEngComm, 2015, 17(24), 4495-4501.
Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of nanoparticles in biomedical imaging. Nanoscale, 2019, 11(3), 799-819.
[] [PMID: 30603750]
DeLouise, L.A. Applications of nanotechnology in dermatology. J. Invest. Dermatol., 2012, 132(3 Pt 2), 964-975.
[] [PMID: 22217738]
Hao, X.; Li, H.; Song, X.; Li, L.; He, N. Tribological properties of textured cemented carbide surfaces of different wettability produced by pulse laser. J. Micro Nano-Manuf., 2018, 6(2), 021001.
Bahamon, D.A.; Qi, Z.; Park, H.S.; Pereira, V.M.; Campbell, D.K. Conductance signatures of electron confinement induced by strained nanobubbles in graphene. Nanoscale, 2015, 7(37), 15300-15309.
[] [PMID: 26325579]
Svetlichnyi, A.M.; Jityaev, I.L. Effect of the topology of a graphene/SiC nanotip emitter on the formation of rings in high electric fields. JETP Lett., 2017, 106(9), 613-616.
Heeger, A.J. Semiconducting polymers: the third generation. Chem. Soc. Rev., 2010, 39(7), 2354-2371.
[] [PMID: 20571667]
Stamplecoskie, K.G.; Scaiano, J.C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Am. Chem. Soc., 2010, 132(6), 1825-1827.
[] [PMID: 20102152]
Park, J.H.; Lim, Y.T.; Park, O.O.; Kim, J.K.; Yu, J.W.; Kim, Y.C. Polymer/gold nanoparticle nanocomposite light-emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers. Chem. Mater., 2004, 16(4), 688-692.
Verma, J.; Islam, S.M.; Verma, A.; Protasenko, V.; Jena, D. Nitride LEDs based on quantum wells and quantum dots. In: Huang, J.-J.; Kuo, H.-C.; Shen, S.-C. (eds.). Nitride Semiconductor Light- Emitting Diodes (LEDs), Woodhead Publishing , 2018, pp. 368-408.
Yin, Z.; Tang, X. A review of energy bandgap engineering in III–V semiconductor alloys for mid-infrared laser applications. Solid-State Electron., 2007, 51(1), 6-15.
Gu, L.; Srot, V.; Sigle, W.; Koch, C.; van Aken, P.; Scholz, F.; Thapa, S.B.; Kirchner, C.; Jetter, M.; Rühle, M. Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Phys. Rev. B Condens. Matter Mater. Phys., 2007, 75(19), 195214.
Bloom, S.; Harbeke, G.; Meier, E.; Ortenburger, I.B. Band structure and reflectivity of GaN. Phys. Status Solidi, 1974, 66(1), 161-168.
Lazar, S.; Botton, G.A.; Wu, M.Y.; Tichelaar, F.D.; Zandbergen, H.W. Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy. Ultramicroscopy, 2003, 96(3-4), 535-546.
[] [PMID: 12871814]
Yuan, L.D.; Deng, H.X.; Li, S.S.; Wei, S.H.; Luo, J.W. Unified theory of direct or indirect band-gap nature of conventional semiconductors. Phys. Rev. B, 2018, 98(24), 245203.
Liang, D.; Bowers, J.E. Recent progress in lasers on silicon. Nat. Photonics, 2010, 4(8), 511-517.
Tsybeskov, L.; Lockwood, D.J.; Ichikawa, M. Silicon photonics: CMOS going optical. Proc. IEEE, 2009, 97(7), 1161-1165.
Ateh, D.D.; Navsaria, H.A.; Vadgama, P. Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interface, 2006, 3(11), 741-752.
[] [PMID: 17015302]
Diaz, A. Electrochemical preparation and characterisation of conducting polymers. Chem. Scr., 1981, 17, 145-148.
Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron., 2002, 17(5), 345-359.
[] [PMID: 11888724]
Yuan, J.; Liu, J.; Song, Q.; Wang, D.; Xie, W.; Yan, H.; Zhou, J.; Wei, Y.; Sun, X.; Zhao, L. Photoinduced mild hyperthermia and synergistic chemotherapy by one-pot-synthesized docetaxel-loaded poly (lactic-co-glycolic acid)/polypyrrole nanocomposites. ACS Appl. Mater. Interfaces, 2016, 8(37), 24445-24454.
[] [PMID: 27565002]
Kong, G.; Braun, R.D.; Dewhirst, M.W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res., 2001, 61(7), 3027-3032.
[PMID: 11306483]
Song, C.W.; Park, H.J.; Lee, C.K.; Griffin, R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int. J. Hyperthermia, 2005, 21(8), 761-767.
[] [PMID: 16338859]
Ashfold, M.N.; Claeyssens, F.; Fuge, G.M.; Henley, S.J. Pulsed laser ablation and deposition of thin films. Chem. Soc. Rev., 2004, 33(1), 23-31.
[] [PMID: 14737506]
Lowndes, D.H.; Geohegan, D.B.; Puretzky, A.A.; Norton, D.P.; Rouleau, C.M. Synthesis of novel thin-film materials by pulsed laser deposition. Science, 1996, 273(5277), 898-903.
[] [PMID: 8688065]
Willmott, P.R.; Huber, J.R. Pulsed laser vaporization and deposition. Rev. Mod. Phys., 2000, 72, 315.
Huang, W.Q.; Liu, S.; Huang, Z.M.; Miao, X.J.; Qin, C.J.; Lv, Q. Nanobulges on surface of silicon film and Si–Yb quantum cascade laser. Opt. Commun., 2014, 323, 178-182.
Shi-Rong, L.; Wei-Qi, H.; Chao-Jian, Q.; Quan, L.; Li, X. Nano-laser on silicon quantum dots. Opt. Commun., 2011, 284(7), 1992-1996.
Wei-Qi, H.; Zhong-Mei, H.; Han-Qiong, C.; Xin-Jian, M.; Qin, S.; Shi-Rong, L.; Chao-Jian, Q. Electronic states and curved surface effect of silicon quantum dots. Appl. Phys. Lett., 2012, 101171601
Marine, W.; Patrone, L.; Luk’yanchuk, B.; Sentis, M. Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation. Appl. Surf. Sci., 2000, 154, 345-352.
Okada, T.; Agung, B.H.; Nakata, Y. ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition. Appl. Phys., A Mater. Sci. Process., 2004, 79(4-6), 1417-1419.
Wu, J.J.; Liu, S.C. Low‐temperature growth of well‐aligned ZnO nanorods by chemical vapor deposition. Adv. Mater., 2002, 14(3), 215-218.
Kong, Y.C.; Yu, D.P.; Zhang, B.; Fang, W.; Feng, S.Q. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett., 2000, 78(4), 407.
Tatsuo, O.; Kou, K.; Yoshiki, N.; Xu, N. Synthesis of ZnO nanorods by laser ablation of ZnO and Zn targets in He and O2 background gas. Jpn. J. Appl. Phys., 2005, 44, 688.
Feng, H.; Zhang, B.; Zhu, X.; Chen, R.; Liao, Q.; Ye, D.D.; Liu, J.; Liu, M.; Chen, G. Multilayered Pd nanocatalysts with nano-bulge structure in a microreactor for multiphase catalytic reaction. Chem. Eng. Res. Des., 2018, 138, 190-199.
Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849), 426-430.
[] [PMID: 17947576]
Lee, B.P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res., 2011, 41, 99-132.
[] [PMID: 22058660]
Kataoka, S.; Takeuchi, Y.; Harada, A.; Takagi, T.; Takenaka, Y.; Fukaya, N.; Yasuda, H.; Ohmori, T.; Endo, A. Microreactor containing platinum nanoparticles for nitrobenzene hydrogenation. Appl. Catal. A Gen., 2012, 427, 119-124.
Haywood, T.; Miller, P.W. Microfluidic hydrogenation reactions by using a channel-supported rhodium catalyst. ChemCatChem, 2014, 6, 1199-1203.
Feng, H.; Zhu, X.; Chen, R.; Liao, Q.; Liu, J.; Li, L. High-performance gas–liquid–solid microreactor with polydopamine functionalized surface coated by Pd nanocatalyst for nitrobenzene hydrogenation. Chem. Eng. J., 2016, 306, 1017-1025.
Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual., 2010, 39(6), 1909-1924.
[] [PMID: 21284288]
Delgado, A.V.; González-Caballero, F.; Hunter, R.J.; Koopal, L.K.; Lyklema, J. Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci., 2007, 309(2), 194-224.
[] [PMID: 17368660]
He, Y.T.; Wan, J.; Tokunaga, T. Kinetic stability of hematite nanoparticles: The effect of particle sizes. J. Nanopart. Res., 2008, 10, 321-332.
Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R.D.; Lowry, G.V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol., 2007, 41(1), 284-290.
[] [PMID: 17265960]
Huang, W.; Sunami, Y.; Kimura, H.; Zhang, S. Applications of nanosheets in frontier cellular research. Nanomaterials (Basel), 2018, 8(7), 519.
[] [PMID: 30002280]
Kong, X.; Liu, Q.; Zhang, C.; Peng, Z.; Chen, Q. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev., 2017, 46(8), 2127-2157.
[] [PMID: 28327714]
Zhao, M.; Huang, Y.; Peng, Y.; Huang, Z.; Ma, Q.; Zhang, H. Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem. Soc. Rev., 2018, 47(16), 6267-6295.
[] [PMID: 29971309]
Kang, H.; Jung, S.; Jeong, S.; Kim, G.; Lee, K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun., 2015, 6, 6503.
[] [PMID: 25790133]
Fang, X.; Zhai, T.; Gautam, U.K.; Li, L.; Wu, L.; Bando, Y.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci., 2011, 56(2), 175-287.
Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics, 2012, 6, 809-817.
Liao, S.H.; Jhuo, H.J.; Cheng, Y.S.; Chen, S.A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater., 2013, 25(34), 4766-4771.
[] [PMID: 23939927]
Parton, R.G.; Hanzal-Bayer, M.; Hancock, J.F. Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J. Cell Sci., 2006, 119(Pt 5), 787-796.
[] [PMID: 16495479]
Parton, R.G. Caveolae: Structure, function, and relationship to disease. Annu. Rev. Cell Dev. Biol., 2018, 34, 111-136.
[] [PMID: 30296391]
Parton, R.G.; Way, M.; Zorzi, N.; Stang, E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol., 1997, 136(1), 137-154.
[] [PMID: 9008709]
Thomas, C.M.; Smart, E.J. Caveolae structure and function. J. Cell. Mol. Med., 2008, 12(3), 796-809.
[] [PMID: 18315571]
Han, B.; Copeland, C.A.; Tiwari, A.; Kenworthy, A.K. Assembly and turnover of caveolae: What do we really know? Front. Cell Dev. Biol., 2016, 4, 68.
[] [PMID: 27446919]
Austin, E.D.; Ma, L.; LeDuc, C.; Berman Rosenzweig, E.; Borczuk, A.; Phillips, J.A., III; Palomero, T.; Sumazin, P.; Kim, H.R.; Talati, M.H.; West, J.; Loyd, J.E.; Chung, W.K. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ. Cardiovasc. Genet., 2012, 5(3), 336-343.
[] [PMID: 22474227]
Cohen, A.W.; Hnasko, R.; Schubert, W.; Lisanti, M.P. Role of caveolae and caveolins in health and disease. Physiol. Rev., 2004, 84(4), 1341-1379.
[] [PMID: 15383654]
Hansen, C.G.; Nichols, B.J. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol., 2010, 20(4), 177-186.
[] [PMID: 20153650]
Burton, R.A.B.; Rog-Zielinska, E.A.; Corbett, A.D.; Peyronnet, R.; Bodi, I.; Fink, M.; Sheldon, J.; Hoenger, A.; Calaghan, S.C.; Bub, G.; Kohl, P. Caveolae in rabbit ventricular myocytes: distribution and dynamic diminution after cell isolation. Biophys. J., 2017, 113(5), 1047-1059.
[] [PMID: 28877488]
Musumeci, T.; Ventura, C.A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm., 2006, 325(1-2), 172-179.
[] [PMID: 16887303]
Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J. Review of the applications of microreactors. Renew. Sustain. Energy Rev., 2015, 47, 519-539.
Huang, H.; Chen, A. Polymer surface with t-shaped microstructure and fabrication method therefor and applications thereof. US20180280904A1, Oct 4, 2018.
Ajwa, H.; Ntow, W.J.; Qin, R.; Gao, S. Properties of soil fumigants and their fate in the environment. In: Krieger, R., (ed.).Hayes’ Handbook of Pesticide Toxicology, 3rd Ed; Academic Press, 2010, pp. 315-330.
Nicollian, E.H.; Brews, J.R. MOS (Metal Oxide Semiconductor) Physics and Technology; Wiley: New York, 1987.
Ouyang, W.; Teng, F.; He, J.H.; Fang, X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge‐carrier engineering. Adv. Funct. Mater., 2019, 29(9), 1807672.
Liu, B.; Gao, L.; Zhou, F.; Duan, G. Preferentially epitaxial growth of β-FeOOH nanoflakes on SnO2 hollow spheres allows the synthesis of SnO2/α-Fe2O3 hetero-nanocomposites with enhanced gas sensing performance for dimethyl disulfide. Sens. Actuators B Chem., 2018, 272, 348-360.
Pavlov, V.G. Field-desorption microscopy study of the deformation of a tungsten tip subjected to thermal treatment in an electric field. Phys. Solid State, 2005, 47(11), 2180-2185.
Mickael, M.; Catherine, J.; Christophe, A.; Purcell, S.T. Ring patterns in high-current field emission from carbon nanotubes. Phys. Rev. B Condens. Matter Mater. Phys., 2009, 80, 245425.
Konakova, R.V.; Okhrimenko, O.B.; Kolomys, A.F.; Strel’chuk, V.V.; Svetlichnyi, A.M.; Ageev, O.A.; Volkov, E.Y.; Kolomiitsev, A.S.; Zhityaev, I.L.; Spiridonov, O.B. Field emission properties of pointed cathodes based on graphene films on SiC. J. Superhard Mater., 2016, 38(4), 235-240.
Azeem, B. KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release, 2014, 181, 11-21.
[] [PMID: 24593892]
Yang, Y.C.; Zhang, M.; Li, Y.; Fan, X.H.; Geng, Y.Q. Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets. J. Agric. Food Chem., 2012, 60(45), 11229-11237.
[] [PMID: 23094596]
Das, S.; Hossain, M.J.; Leung, S.F.; Lenox, A.; Jung, Y.; Davis, K.; He, J.H.; Roy, T. A leaf-inspired photon management scheme using optically tuned bilayer nanoparticles for ultra-thin and highly efficient photovoltaic devices. Nano Energy, 2019, 58, 47-56.
Liu, J.; Yang, Y.; Gao, B.; Li, Y.C.; Xie, J. Bio-based elastic polyurethane for controlled-release urea fertilizer: Fabrication, properties, swelling and nitrogen release characteristics. J. Clean. Prod., 2019, 209, 528-537.
Zhang, S.; Yang, Y.; Gao, B.; Li, Y.C.; Liu, Z. Superhydrophobic controlled-release fertilizers coated with bio-based polymers with organosilicon and nano-silica modifications. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(37), 19943-19953.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 05 October, 2020
Page: [668 - 675]
Pages: 8
DOI: 10.2174/1573413716666200218130452
Price: $65

Article Metrics

PDF: 19