Microwave-accelerated Carbon-carbon and Carbon-heteroatom Bond Formation via Multi-component Reactions: A Brief Overview

Author(s): Kantharaju Kamanna*, Santosh Y. Khatavi

Journal Name: Current Microwave Chemistry

Volume 7 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Multi-Component Reactions (MCRs) have emerged as an excellent tool in organic chemistry for the synthesis of various bioactive molecules. Among these, one-pot MCRs are included, in which organic reactants react with domino in a single-step process. This has become an alternative platform for the organic chemists, because of their simple operation, less purification methods, no side product and faster reaction time. One of the important applications of the MCRs can be drawn in carbon- carbon (C-C) and carbon-heteroatom (C-X; X = N, O, S) bond formation, which is extensively used by the organic chemists to generate bioactive or useful material synthesis. Some of the key carbon- carbon bond forming reactions are Grignard, Wittig, Enolate alkylation, Aldol, Claisen condensation, Michael and more organic reactions. Alternatively, carbon-heteroatoms containing C-N, C-O, and C-S bond are also found more important and present in various heterocyclic compounds, which are of biological, pharmaceutical, and material interest. Thus, there is a clear scope for the discovery and development of cleaner reaction, faster reaction rate, atom economy and efficient one-pot synthesis for sustainable production of diverse and structurally complex organic molecules. Reactions that required hours to run completely in a conventional method can now be carried out within minutes. Thus, the application of microwave (MW) radiation in organic synthesis has become more promising considerable amount in resource-friendly and eco-friendly processes. The technique of microwaveassisted organic synthesis (MAOS) has successfully been employed in various material syntheses, such as transition metal-catalyzed cross-coupling, dipolar cycloaddition reaction, biomolecule synthesis, polymer formation, and the nanoparticle synthesis. The application of the microwave-technique in carbon-carbon and carbon-heteroatom bond formations via MCRs with major reported literature examples are discussed in this review.

Keywords: Heterocyclic compounds, microwave irradiation, multicomponent reactions, bioactive, faster reaction, cycloaddition.

(a) Peiretti, F.; Brunel, J.M. Artificial intelligence: The future for organic chemistry? ACS Omega, 2018, 3(10), 13263-13266.
[http://dx.doi.org/10.1021/acsomega.8b01773] [PMID: 31458044]
(b) Davies, H.M.L.; Itami, K.; Stoltz, B.M. New directions in natural product synthesis. Chem. Soc. Rev., 2018, 47(21), 7828-7829.
[http://dx.doi.org/10.1039/C8CS90115E] [PMID: 30345443]
(c) Damien, D.; Gad, F.; Joakim, H.; Emilie, M.; Alexis, P.; Xuyang, Y.; Nicolas, G. Design of collective motions from synthetic molecular switches rotors, and motors. Chem. Rev., 2020, 120, 310-433.
[http://dx.doi.org/10.1021/acs.chemrev.9b00288] [PMID: 31869214]
(d) Galloway, W.R.; Isidro-Llobet, A.; Spring, D.R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun., 2010, 1(8), 80-92.
[http://dx.doi.org/10.1038/ncomms1081] [PMID: 20865796]
(a) Sun, A.W.; Lackner, S.; Stoltz, B.M. modularity: adding new dimensions to total synthesis. Trends in Chemistry, 2019, 1(7), 630-643.
(b) Hong, J. Natural product synthesis at the interface of chemistry and biology. Chemistry, 2014, 20(33), 10204-10212.
[http://dx.doi.org/10.1002/chem.201402804] [PMID: 25043880]
(c) Brown, D.G.; Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone? J. Med. Chem., 2016, 59(10), 4443-4458.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01409] [PMID: 26571338]
(a) Elavarasan, S.; Bhakiaraj, D.; Elavarasan, T.; Gopalakrishnan, M. An efficient green procedure for synthesis of some fluorinated curcumin analogues catalyzed by calcium oxide under microwave irradiation and its antibacterial evaluation. J. Chem., 2013, 2013, 2-8.
(b) Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev., 2018, 47(23), 8572-8610.
[http://dx.doi.org/10.1039/C8CS00162F] [PMID: 30177983]
(c) Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules, 2014, 19(4), 4256-4283.
[http://dx.doi.org/10.3390/molecules19044256] [PMID: 24714190]
(d) Olugbenga, S.B.; Kayode, A.A.; Rhoda, O.O. Biomimetic materials in our world: A Review. IOSR J. App. Chem., 2013, 5(3), 22-35.
(a) Woodward, R.B.; Doerixg, W.E. The Total synthesis of quinine. J. Am. Chem. Soc., 1944, 66(5), 849-849.
(b) Nicolaou, K.C. Inspirations, discoveries, and future perspectives in total synthesis. J. Org. Chem., 2009, 74(3), 951-972.
[http://dx.doi.org/10.1021/jo802351b] [PMID: 19152273]
(c) Nicolaou, K.C.; Petasis, N.A.; Uenishi, J.; Zipkin, R.E. The endiandric acid cascade. electrocyclizations in organic synthesis-2-stepwise, stereo controlled total synthesis of endiandric acids C-G. J. Am. Chem. Soc., 1982, 104, 5558-5560.
(a) Mukherjee, P.; Das, A.R. Diastereoselective synthesis of structurally and stereo chemically diversified 2-oxa-7-azabicyclo [4.1.0] hept-3-enyl carboxylates and their potential application towards the synthesis of functionalized pyranooxazolone and pyrrole derivatives through skeletal transformations. J. Org. Chem., 2016, 81(13), 5513-5524.
[http://dx.doi.org/10.1021/acs.joc.6b00849] [PMID: 27227655]
(b) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
(c) Di Mola, A.; Tiffner, M.; Scorzelli, F.; Palombi, L.; Filosa, R.; De Caprariis, P.; Waser, M.; Massa, A. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones. Beilstein J. Org. Chem., 2015, 11, 2591-2599.
[http://dx.doi.org/10.3762/bjoc.11.279] [PMID: 26734105]
(a) Cheng, X.M.; Liu, X.W. Microwave-enhanced one-pot synthesis of diversified 3-acyl-5-hydroxybenzofurans. J. Comb. Chem., 2007, 9(6), 906-908.
[http://dx.doi.org/10.1021/cc070015u] [PMID: 17760414]
(b) Sayyad, M.; Mal, A.; Wani, I.A.; Ghorai, M.K. A synthetic route to chiral tetrahydropyrroloindoles via ring opening of activated aziridines with 2-bromoindoles followed by copper-catalyzed C-N cyclization. J. Org. Chem., 2016, 81(15), 6424-6432.
[http://dx.doi.org/10.1021/acs.joc.6b01049] [PMID: 27399283]
(c) Hans, M.; Lorkowski, J.; Demonceau, A.; Delaude, L. Efficient synthetic protocols for the preparation of common N-heterocyclic carbene precursors. Beilstein J. Org. Chem., 2015, 11, 2318-2325.
[http://dx.doi.org/10.3762/bjoc.11.252] [PMID: 26734080]
(d) Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
(a) Wender, P.A.; Miller, B.L. Synthesis at the molecular frontier. Nature, 2009, 460(7252), 197-201.
[http://dx.doi.org/10.1038/460197a] [PMID: 19587760]
(b) Gaich, T.; Baran, P.S. Aiming for the ideal synthesis. J. Org. Chem., 2010, 75(14), 4657-4673.
[http://dx.doi.org/10.1021/jo1006812] [PMID: 20540516]
(c) Wender, P.A. Toward the ideal synthesis and transformative therapies: The roles of step economy and function oriented synthesis. Tetrahedron, 2013, 69(36), 7529-7550.
[http://dx.doi.org/10.1016/j.tet.2013.06.004] [PMID: 23956471]
(a) Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
(b) Cortés-Borda, D.; Wimmer, E.; Gouilleux, B.; Barré, E.; Oger, N.; Goulamaly, L.; Peault, L.; Charrier, B.; Truchet, C.; Giraudeau, P.; Rodriguez-Zubiri, M.; Le Grognec, E.; Felpin, F.X. An autonomous self-optimizing flow reactor for the synthesis of natural product carpanone. J. Org. Chem., 2018, 83(23), 14286-14299.
[http://dx.doi.org/10.1021/acs.joc.8b01821] [PMID: 30212208]
(c) Nicolaou, K.C.; Sorensen, E.J.; Winssinger, N. the art and science of organic and natural products synthesis. J. Chem. Educ., 1998, 75(10), 1225-1258.
(a) Shukla, C.A.; Kulkarni, A.A. Automating multistep flow synthesis: approach and challenges in integrating chemistry, machines and logic. Beilstein J. Org. Chem., 2017, 13, 960-987.
[http://dx.doi.org/10.3762/bjoc.13.97] [PMID: 28684977]
(b) Sun, K.; Xiao, Z.; Lu, S.; Zajaczkowski, W.; Pisula, W.; Hanssen, E.; White, J.M.; Williamson, R.M.; Subbiah, J.; Ouyang, J.; Holmes, A.B.; Wong, W.W.; Jones, D.J. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun., 2015, 6, 6013.
[http://dx.doi.org/10.1038/ncomms7013] [PMID: 25586307]
(c) Lignell, A.; Gudipati, M.S. Mixing of the immiscible: hydrocarbons in water-ice near the ice crystallization temperature. J. Phys. Chem. A, 2015, 119(11), 2607-2613.
[http://dx.doi.org/10.1021/jp509513s] [PMID: 25302532]
(a) Biswa, M.S.; Ravi Kumar, B.V.V.; Jnyanaranjan, P.; Dinda, S.C. Ecofriendly and facile one-pot multicomponent synthesis of thiopyrimidines under microwave irradiation. J. Nanoparticles, 2013, 2103, 1-6.
(b) Tatsuta, K. Total synthesis of the big four antibiotics and related antibiotics. J. Antibiot. (Tokyo), 2013, 66(3), 107-129.
[http://dx.doi.org/10.1038/ja.2012.126] [PMID: 23532019]
(c) Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via Multicomponent Reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
(d) Chanteau, S.H.; Tour, J.M. Synthesis of anthropomorphic molecules: the NanoPutians. J. Org. Chem., 2003, 68(23), 8750-8766.
[http://dx.doi.org/10.1021/jo0349227] [PMID: 14604341]
(a) Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
(b) Liu, S.; Xu, L.; Wei, Y. One-pot, multistep reactions for the modular synthesis of N, N′-diarylindazol-3-ones. J. Org. Chem., 2019, 84(3), 1596-1604.
[http://dx.doi.org/10.1021/acs.joc.8b02548] [PMID: 30586499]
(a) Drège, E.; Venot, P.E.; Le Bideau, F.; Retailleau, P.; Joseph, D. Two-component domino reactions initiated from ketenes: Serendipitous synthesis of quinolizidinones analogous to chelated Lobeline’s conformation. J. Org. Chem., 2015, 80(20), 10119-10126.
[http://dx.doi.org/10.1021/acs.joc.5b01727] [PMID: 26366609]
(b) Estévez, V.; Villacampa, M.; Menéndez, J.C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev., 2010, 39(11), 4402-4421.
[http://dx.doi.org/10.1039/b917644f] [PMID: 20601998]
Sunderhaus, J.D.; Dockendorff, C.; Martin, S.F. Applications of multicomponent reactions for the synthesis of diverse heterocyclic scaffolds. Org. Lett., 2007, 9(21), 4223-4226.
[http://dx.doi.org/10.1021/ol7018357] [PMID: 17887692]
Ajay, L.C.; Alexander, D. Convergent three-component tetrazole synthesis. Eur. J. Org. Chem., 2016, 14, 2383-2387.
(a) Razvan, C.C.; Eelco, R.; Romano, V.A.O. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem., 2014, 16, 2958-2975.
(b) Weber, L. Multi-component reactions and evolutionary chemistry. Drug Discov. Today, 2002, 7(2), 143-147.
[http://dx.doi.org/10.1016/S1359-6446(01)02090-6] [PMID: 11790626]
Yukako, A.; Shigenori, T.; Yoshishige, E. Improvement in the yield of an equilibrium esterification reaction using a microreactor for water separation. J. Chem. Eng. of Jpn, 2013, 46, 313-318.
(a) Heiner, E. Synergy effects in the chemical synthesis and extensions of multicomponent reactions (MCRs)-the low energy way to ultra-short syntheses of tailor-made molecules. Molecules, 2017, 22, 349.
(b) Panday, A.K.; Mishra, R.; Jana, A.; Parvin, T.; Choudhury, L.H. Synthesis of pyrimidine fused quinolines by ligand-free copper-catalyzed domino reactions. J. Org. Chem., 2018, 83(7), 3624-3632.
[http://dx.doi.org/10.1021/acs.joc.7b03272] [PMID: 29570285]
(c) Johnston, C.P.; West, T.H.; Dooley, R.E.; Reid, M.; Jones, A.B.; King, E.J.; Leach, A.G.; Lloyd-Jones, G.C. Anion-Initiated trifluoromethylation by TMSCF3: Deconvolution of the siliconate-carbanion dichotomy by stopped-flow NMR/IR. J. Am. Chem. Soc., 2018, 140(35), 11112-11124.
[http://dx.doi.org/10.1021/jacs.8b06777] [PMID: 30080973]
(a) Gu, Y. Multicomponent reactions in unconventional solvents: State of the art. Green Chem., 2012, 14(8), 2091-2128.
(b) Tzu-Ting, K.; Bo-Kai, P.; Min-Chieh, L.; Chia-Jui, L. I-Chia, C.; Kak-Shan, S.; Yen-Ku, Wu. Temperature-controlled thiation of α-Cyano-β-alkynyl carbonyl derivatives for De Novo synthesis of 2-aminothiophenes and thieno[2,3-c]isothiazoles. J. Org. Chem., 2018, 83(23), 14219-14842.
[PMID: 30223647]
(c) Ming, Rao.; Wanhua, Wu.; Cheng, Y. Effects of temperature and host concentration on the supramolecular enantiodierentiating [4+4] photodimerization of 2-anthracenecarboxylate through triplet-triplet annihilation catalyzed by Pt-modified cyclodextrins. Molecules, 2019, 24, 1502.
(a) Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
(b) Lutz, W.; Katrin, I.; Michael, A. Discovery of new multi component reactions with combinatorial methods. Synlett, 1999, 3, 366-374.
(c) Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
(a) Adam, T.; Eniko, S.; Franc, P.; Gyorgy, K.; Erika, B. Microwave-assisted kabachnik-fields reaction with amino alcohols as the amine component. Molecules, 2019, 24, 1640.
(b) Felicia, P.L.L.; Lin, Y.T.; Edward, R.T.T.; Anton, V.D. A one-pot, multicomponent reaction for the synthesis of novel 2-alkyl substituted 4-aminoimidazo[1,2-a][1,3,5]triazines. RSC Advances, 2018, 8, 1495-21504.
(c) Ibarra, I.A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem., 2018, 16(9), 1402-1418.
[http://dx.doi.org/10.1039/C7OB02305G] [PMID: 29238790]
(a) Azad, I.; Hassan, F.; Saquib, M.; Ahmad, N.; Khan, A.R.; Al-Sehemi, A.G.; Nasibullah, M.A. Critical review on advances in the multicomponent synthesis of pyrroles. Orient. J. Chem., 2018, 34(4), 1670-1700.
(b) Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry, 2009, 15(6), 1300-1308.
[http://dx.doi.org/10.1002/chem.200802140] [PMID: 19132705]
(c) Musawwer, Md. K.; Raveed, Y.; Sarfaraz, K.; Shafiullah. Recent advances in multicomponent reactions involving carbohydrates. RSC Advances, 2015, 5, 57883-57905.
(a) Driowya, M.; Saber, A.; Marzag, H.; Demange, L.; Benhida, R.; Bougrin, K. Microwave-assisted synthesis of bioactive six-membered heterocycles and their fused analogues. Molecules, 2016, 21(4), 492.
[http://dx.doi.org/10.3390/molecules21040492] [PMID: 27089315]
(b) Gomha, S.M.; Farghaly, T.A.; Mabkhot, Y.N.; Zayed, M.E.; Mohamed, A.M. Microwave-assisted synthesis of some novel azoles and azolopyrimidines as antimicrobial agents. Molecules, 2017, 22(3), 346.
[http://dx.doi.org/10.3390/molecules22030346] [PMID: 28241500]
(c) Byk, G.; Gottlieb, H.E.; Herscovici, J.; Mirkin, F. New regioselective multicomponent reaction: one pot synthesis of spiro heterobicyclic aliphatic rings. J. Comb. Chem., 2000, 2(6), 732-735.
[http://dx.doi.org/10.1021/cc000056p] [PMID: 11126301]
(d) Paul, S.; Eelco, R.; Romano, V.A.O. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3, 1189-2118.
(a) Liang, B.; Kalidindi, S.; Porco, J.A., Jr; Stephenson, C.R.J. Multicomponent reaction discovery: three-component synthesis of spirooxindoles. Org. Lett., 2010, 12(3), 572-575.
[http://dx.doi.org/10.1021/ol902764k] [PMID: 20050598]
(b) Tu, S.J.; Zhang, X.H.; Han, Z.G.; Cao, X.D.; Wu, S.S.; Yan, S.; Hao, W.J.; Zhang, G.; Ma, N. Synthesis of isoxazolo[5,4-b]pyridines by microwave-assisted multi-component reactions in water. J. Comb. Chem., 2009, 11(3), 428-432.
[http://dx.doi.org/10.1021/cc800212v] [PMID: 19364093]
(c) Zhu, J. Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, 7, 1133-1144.
(a) Hamzeh, K.; Fatemeh, G. Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. Res. Chem. Intermed., 2015, 41, 2653-2664.
(b) Eman, M.H.A.; Sobhi, M.G.; Thoraya, A.F. Multicomponent reactions for synthesis of bioactive polyheterocyclic ring systems under controlled microwave irradiation. Arab. J. Chem., 2014, 7(5), 623-629.
(c) Liu, S.; Yao, W.; Liu, Y.; Wei, Q.; Chen, J.; Wu, X.; Xia, F.; Hu, W. A Rh(II)-catalyzed multicomponent reaction by trapping an α-amino enol intermediate in a traditional two-component reaction pathway. Sci. Adv., 2017, 3(3) e1602467
[http://dx.doi.org/10.1126/sciadv.1602467] [PMID: 28345053]
(a) Aiba, S.; Takamatsu, N.; Sasai, T.; Tokunaga, Y.; Kawasaki, T. Replication of α-amino acids via Strecker synthesis with amplification and multiplication of chiral intermediate aminonitriles. Chem. Commun. (Camb.), 2016, 52(72), 10834-10837.
[http://dx.doi.org/10.1039/C6CC05544C] [PMID: 27492553]
(b) Lerner, N.R.; Peterson, E.; Chang, S. The Strecker synthesis as a source of amino acids in carbonaceous chondrites: Deuterium retention during synthesis Gmchrmrcae. Cosmochrmrca Acla, 1993, 51, 4713-4123.
(c) Behzad, Z.; Masumeh, G. Microwave-promoted three-component Hantzsch synthesis of acridinediones under green conditions Cur. Chem. Lett., 2020, 9, 71-78.
(d) Qingjian, L.; Ning, P.; Jiehua, X.; Wenwen, Z. Fanpeng, Kong. Microwave-Assisted and Iodine-Catalyzed synthesis of dihydropyrimidin-2-thiones via Biginelli reaction under solvent-free conditions, Syntt. Commu., 2013, 43(1), 139-146.
(e) Joao, F. Allochio, Filho.; Barbara, C. L.; Acacio, S. de S.; Sergio, P.; Sandro, J.G. Multicomponent Mannich reactions: General aspects, methodologies and applications. Tetrahedron, 2017, 73, 6977-7004.
(f) Barbero, A.; Diez-Varga, A.; Pulido, F.J. Multicomponent prins cyclization from allylsilyl alcohols leading to dioxaspirodecanes. Org. Lett., 2013, 15(20), 5234-5237.
[http://dx.doi.org/10.1021/ol402425u] [PMID: 24090371]
(g) Wang, K.; Kim, D.; Dömling, A. Cyanoacetamide MCR (III): three-component Gewald reactions revisited. J. Comb. Chem., 2010, 12(1), 111-118.
[http://dx.doi.org/10.1021/cc9001586] [PMID: 19958011]
Gian, C.T.; Alberto, M.; Giovanni, A. Pietro Biginelli: The Man behind the reaction. Eur. J. Org. Chem., 2011, 5541-5550.
(a) Marcaccini, S.; Torroba, T. The use of the Ugi four-component condensation. Nat. Protoc., 2007, 2(3), 632-639.
[http://dx.doi.org/10.1038/nprot.2007.71] [PMID: 17406624]
(b) Rodrigo, A.; Juan, C.C. Recent contributions to the Diversity-Oriented Synthesis (DOS) mediated byiminium ions through multicomponent Mannich-type reactions. ARKIVOC, 2018, 2, 170-191.
(c) Boukis, A.C.; Reiter, K.; Frölich, M.; Hofheinz, D.; Meier, M.A.R. Multicomponent reactions provide key molecules for secret communication. Nat. Commun., 2018, 9(1), 1439.
[http://dx.doi.org/10.1038/s41467-018-03784-x] [PMID: 29651145]
(d) Kalinski, C.; Umkehrer, M.; Weber, L.; Kolb, J.; Burdack, C.; Ross, G. On the industrial applications of MCRs: molecular diversity in drug discovery and generic drug synthesis. Mol. Divers., 2010, 14(3), 513-522.
[http://dx.doi.org/10.1007/s11030-010-9225-x] [PMID: 20229364]
(a) Sveva, P.; Ilenia, A.A.; Ubaldina, G.; Ettore, N.; Mariateresa, G.; Gian, C.T. α-Amino acids as synthons in the Ugi-5-centers-4-components reaction: Chemistry and applications. Symmetry (Basel), 2019, 11, 798.
(b) Mal, D.; De, S.R. Total synthesis of euplectin, a natural product with a chromone fused indenone. Org. Lett., 2009, 11(19), 4398-4401.
[http://dx.doi.org/10.1021/ol901817r] [PMID: 19736910]
(a) Yamashkin, S.A.; Oreshkina, E.A. Traditional and modern approaches to the synthesis of quinoline systems by the skraup and doebner-miller methods. (Review) Chem. Het. Compounds, 2006, 42(6), 701-718.
(b) Pelle, L.; Jason, T.; Bernard, W.; Jacob, W. Microwave assisted organic synthesis-a review. Tetrahedron, 2001, 57, 9225-9283.
(c) Ghosh, M.; Shinde, V.S.; Rueping, M. A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions. Beilstein J. Org. Chem., 2019, 15, 2710-2746.
[http://dx.doi.org/10.3762/bjoc.15.264] [PMID: 31807206]
de la Hoz, A.; Díaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
(a) William, B.J. The origin of the bunsen burner. J. Chem. Educ., 2005, 82(4), 518.
(b) Kremsner, J.M.; Kappe, C.O. Silicon carbide passive heating elements in microwave-assisted organic synthesis. J. Org. Chem., 2006, 71(12), 4651-4658.
[http://dx.doi.org/10.1021/jo060692v] [PMID: 16749800]
(c) Joana, P.; Vera, L.M.S.; Ana, M.G.S.; Artur, M.S.S.; Jose, C.S.C.; Luis, M.N.B.F.S.; Roger, E.; Jose, A.S.C.; Antonio, A.M.O.S.V.; Jose, A.C.T. Ohmic heating as a new efficient process for organic synthesis in water. Green Chem., 2013, 15, 970-975.
(a) Ivar, U.; Alexandor, D.; Werner, H. Multicomponent reactions in organic synthesis. Endeavour, 1994, 18(3), 115-122.
(b) Sumitra, N.; Ruchi, S.; Subramanian, R. Importance of microwave heating in organic synthesis. Adv. J. Chem-Section A., 2019, 2(2), 94-104.
Pradeep, P.S.; Seerwan, A.A.; Won, C.S.J.; Sang-Eun, O.; Sanghoon, K. Potentials of microwave heating technology for select food processing applications. A Brief Overview and Update. J. Food Process. Technol., 2013, 4, 2-9.
(a) Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
(b) Zhou, M.; Cheng, K.; Sun, H.; Jia, G. Investigation of nonlinear output-input microwave power of DMSO-ethanol mixture by molecular dynamics simulation. Sci. Rep., 2018, 8(1), 7186.
[http://dx.doi.org/10.1038/s41598-018-21846-4] [PMID: 29739957]
(a) Naween, D.; Stephany, G.; Jiping, Zhou.; Simon, M.H. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano, 2012, 6(11), 9433-9446.
(b) Murray, J.K.; Gellman, S.H. Microwave-assisted parallel synthesis of a 14-helical β-peptide library. J. Comb. Chem., 2006, 8(1), 58-65.
[http://dx.doi.org/10.1021/cc0501099] [PMID: 16398554]
(c) Flores, E.M.; Barin, J.S.; Paniz, J.N.; Medeiros, J.A.; Knapp, G. Microwave-assisted sample combustion: a technique for sample preparation in trace element determination. Anal. Chem., 2004, 76(13), 3525-3529.
[http://dx.doi.org/10.1021/ac0497712] [PMID: 15228320]
(a) Melucci, M.; Barbarella, G.; Zambianchi, M.; Di Pietro, P.; Bongini, A. Solution-phase microwave-assisted synthesis of unsubstituted and modified alpha-quinque- and sexithiophenes. J. Org. Chem., 2004, 69(14), 4821-4828.
[http://dx.doi.org/10.1021/jo035723q] [PMID: 15230609]
(b) Charde, M.; Shukla, A.; Bukhariya, V.; Mehta, J.; Chakole, R. A review on: a significance of microwave assist technique in. Green Chem., 2012, 2(2), 39-50.
(c) Monika, G.; Neelima, D. Microwave chemistry: General features and applications. Ind J Pharm Edu. Res., 2011, 45, 175-183.
(a) Mehta, V.P.; Modha, S.G.; Ruijter, E.; Van Hecke, K.; Van Meervelt, L.; Pannecouque, C.; Balzarini, J.; Orru, R.V.; Van der Eycken, E. A microwave-assisted diastereoselective multicomponent reaction to access dibenzo[c,e]azepinones: synthesis and biological evaluation. J. Org. Chem., 2011, 76(8), 2828-2839.
[http://dx.doi.org/10.1021/jo200251q] [PMID: 21391618]
(b) Ahmed, A.; Joakim, B.; Jonas, B.; Jonas, S.; Mats, L. Continuous flow synthesis under high-temperature/high-pressure conditions using a resistively heated flow reactor. Org. Process Res. Dev., 2017, 21, 947-955.
(c) Pol, S.V.; Pol, V.G.; Gedanken, A. Reactions under autogenic pressure at elevated temperature (RAPET) of various alkoxides: formation of metals/metal oxides-carbon core-shell structures. Chemistry, 2004, 10(18), 4467-4473.
[http://dx.doi.org/10.1002/chem.200400014] [PMID: 15378624]
(d) Solmaz, A.P.; Amiri, C. Effect of catalyst, temperature, and hydrogen pressure on slurry hydrocracking reactions of naphthalene. Chem. Eng. Technol., 2015, 38(5), 917-930.
Ajay, K.B.; Maghar, S.M.; Malay, G.; Mamta, S.; Vegesna, S.R.; Shamsher, S.B.; Sarder, N.N.; Bimal, K.B.; Ashok, G.C.; Khaled, J.B. Microwave-Induced organic reaction enhancement chemistry. 2. simplified techniques. J. Org. Chem., 1991, 56, 6968-6970.
Kappe, C.O. My twenty years in microwave chemistry: from kitchen ovens to microwaves that aren’t microwaves. Chem. Rec., 2018, 18, 1-26.
[PMID: 29905399]
Horikoshi, S.; Watanabe, T.; Narita, A.; Suzuki, Y.; Serpone, N. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS). Sci. Rep., 2018, 8(1), 5151.
[http://dx.doi.org/10.1038/s41598-018-23465-5] [PMID: 29581443]
Curnutte, B. Principles of microwave radiation. J. Food Prot., 1980, 43(8), 618-624.
[http://dx.doi.org/10.4315/0362-028X-43.8.618] [PMID: 30822982]
(a) Yang, G.; Kong, Y.; Hou, W.; Yan, Q. Heating behavior and crystal growth mechanism in microwave field. J. Phys. Chem. B, 2005, 109(4), 1371-1379.
[http://dx.doi.org/10.1021/jp0470905] [PMID: 16851105]
(b) Haghi, A.K.; Amanifard, N. Analysis of Heat and Mass Transfer During Microwave Drying of FoodProducts, 2008, 25(3), 491-501.
(c) Datta, A. K.; Rakesh, V. Principles of microwave combination heating. J. Food production, 2013, 12(1), 24-39.
(a) Emiko, K.; Noriko, I.; Jun-ichi, S.; Joshua, P.B.; Yasuo, N.; Reiko, A.; Noriyuki, O. Yoshinobu.; O.; Takeo, Y.; Hiromichi, O.; Tadashi, O. A continuous-flow resonator-type microwave reactor for high-efficiency organic synthesis and Claisen rearrangement as a model reaction. J. Flow Chem., 2018, 8, 147-156.
(b) Metaxas, A.C. Microwave heating. Power Eng., 1991, 5(5), 237-247.
(a) Beatrice, B.; Aurore, F.; Anne-Sylvie, F-T. Emmanuel, P.; Fathi, M.; Farid, C.; Evelyne, O. Extraction by solvent using microwave and ultrasound assisted techniques followed by HPLC analysis of Harpagoside from Harpagophytum procumbens and comparison with conventional solvent extraction methods. C. R. Chim., 2016, 30, 1-7.
(b) Furkan, K.; Kadhim, A.H.; Mohammed, S.; Ahmed, A.A-A. Microwave-assisted solvent-free synthesis of new Polyimine. Cogent Chemistry, 2015, 1 1075853
(c) Rodríguez, A.M.; Prieto, P.; de la Hoz, A.; Díaz-Ortiz, Á.; Martín, D.R.; García, J.I. Influence of polarity and activation energy in microwave-assisted organic synthesis (MAOS). ChemistryOpen, 2015, 4(3), 308-317.
[http://dx.doi.org/10.1002/open.201402123] [PMID: 26246993]
Nuchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis-a critical technology. Overview. Green Chem., 2004, 6, 128-141.
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
(a) Jun, M.K.; Surajit, K.G.; Supriya, S.; Mayurakhi, D. Rational design and microwave assisted synthesis of some novel phenyl thiazolylclubbed s-Triazine derivatives as antimalarial antifolate. Fut. J. Pharm. Sci., 2017, 3(1), 11-17.
(b) Biswa, M.S. Microwave Assisted Drug Synthesis (MADS): A green technology in medicinal chemistry. J App Pharm, 2016, 8, 11-17.
(a) Botao, L.; Yaping, H.; Liping, H.; Vikramjeet, S.; Xiaonan, X.; Tao, G.; Fanyue, M.; Xu, X.; Peter, Y.; Zhaoxin, L.; Jiwen, Z. Microwave-Assisted rapid synthesis of γ-cyclodextrin metal−organic frameworks for size control and efficient drug loading. Cryst. Growth Des., 2017, 17, 1654-1660.
(b) Gour, J.; Gatadi, S.; Malasala, S.; Yaddanpudi, M.V.; Nanduri, S. A microwave-assisted SmI2-catalyzed direct N-Alkylation of anilines with alcohols. J. Org. Chem., 2019, 84(11), 7488-7494.
[http://dx.doi.org/10.1021/acs.joc.9b00717] [PMID: 31066282]
Portela-Cubillo, F.; Scott, J.S.; Walton, J.C. Microwave-promoted syntheses of quinazolines and dihydroquinazolines from 2-aminoarylalkanone O-phenyl oximes. J. Org. Chem., 2009, 74(14), 4934-4942.
[http://dx.doi.org/10.1021/jo900629g] [PMID: 19449842]
(a) Ravichandran, S.; Karthikeyan, E. Microwave synthesis-A potential tool for green chemistry. Int. J. Chemtech Res., 2011, 3(1), 466-470.
(b) Montes, I.; Sanabria, D.; Garcia, M.; Castro, J.; Fajardo, J. A greener approach to aspirin synthesis using microwave irradiation. J. Chem. Educ., 2006, 83(4), 628-631.
Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov., 2006, 5(1), 51-63.
[http://dx.doi.org/10.1038/nrd1926] [PMID: 16374514]
Nagahata, R.; Takeuchi, K. Encouragements for the use of microwaves in industrial chemistry. Chem. Rec., 2019, 19(1), 51-64.
[http://dx.doi.org/10.1002/tcr.201800064] [PMID: 30211475]
Calcio Gaudino, E.; Rinaldi, L.; Rotolo, L.; Carnaroglio, D.; Pirola, C.; Cravotto, G. Heterogeneous phase microwave-assisted reactions under CO2 or CO pressure. Molecules, 2016, 21(3), 253.
[http://dx.doi.org/10.3390/molecules21030253] [PMID: 26927033]
Britton, J.; Raston, C.L. Multi-step continuous-flow synthesis. Chem. Soc. Rev., 2017, 46(5), 1250-1271.
[http://dx.doi.org/10.1039/C6CS00830E] [PMID: 28106210]
(a) Gholami, M.; Behkami, S.; Zain, S.M.; Bakirdere, S. A simple design for microwave assisted digestion vessel with low reagent consumption suitable for food and environmental samples. Sci. Rep., 2016, 6, 37186.
[http://dx.doi.org/10.1038/srep37186] [PMID: 27853264]
(b) Jignasa, K.S.; Ketan, T.S.; Bhumika, S.P.; Anuradha, K.G. Microwave assisted organic synthesis: an alternative synthetic strategy. Pharma Chem., 2010, 2(1), 342-353.
Dąbrowska, S.; Chudoba, T.; Wojnarowicz, J.; Łojkowski, W. Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review. Crystals (Basel), 2018, 8, 379.
Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted C-C bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2011, 40(10), 4925-4936.
[http://dx.doi.org/10.1039/c1cs15094d] [PMID: 21717007]
(a) Goutam, B. design for carbon-carbon bond forming reactions at ambient conditions. RSC Advances, 2016, 6, 64676-64725.
(b) Devdutt, C.; Nabin, C.B. Recent Developments on Carbon-Carbon Bond Forming Reactions in Water. Curr. Org. Synth., 2012, 9, 17-30.
(c) Ashish, K.J.; Swagatika, S. Review on Fe-catalyzed carbon-carbon, carbon-heteroatom oxidative coupling reactions: En route to heterocycles. J. Chem. Pharm. Res., 2017, 9(10), 315-341.
Hallen, M.A.; Donald, B.R. CATS (Coordinates of Atoms by Taylor Series): protein design with backbone flexibility in all locally feasible directions. Bioinformatics, 2017, 33(14), i5-i12.
[http://dx.doi.org/10.1093/bioinformatics/btx277] [PMID: 28882005]
Ciriminna, R.; Pagliaro, M. Green chemistry in the fine chemicals and pharmaceutical industries. Org. Process Res. Dev., 2013, 17(12), 1479-1484.
Ravelli, D.; Protti, S.; Fagnoni, M. Carbon-Carbon bond forming reactions via photogenerated intermediates. Chem. Rev., 2016, 116(17), 9850-9913.
[http://dx.doi.org/10.1021/acs.chemrev.5b00662] [PMID: 27070820]
Min, G.; Seo, J.; Ko, H.M. Three-Component reactions of arynes, amines, and nucleophiles via a one-pot process. Research-article. J. Org. Chem., 2018, 83(15), 8417-8425.
[http://dx.doi.org/10.1021/acs.joc.8b01058] [PMID: 29969034]
(a) Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118(2), 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
(b) Xingchao, D.; Feng, S. Green synthesis of N-alkyl-amines and amides via the building and transformation ofcarbonyl-containing molecules. Curr. Opin. Green Sustain. Chem., 2020, 22, 1-6.
Delgado Arcano, Y.; Valmana Garcia, O.D.; Mandelli, D.; Carvalho, W.A.; Magalhaes Pontes, L.A. Xylitol: A review on the progress and challenges of its production by chemical route. Catal. Today, 2020, 344, 2-14.
(a) Bryan, M.C.; Dunn, P.J.; Entwistle, D.; Gallou, F.; Koenig, S.G.; Hayler, J.D.; Weiberth, F.J. Key green chemistry research areas from a pharmaceutical manufacturer’s perspective revisited. Green Chem., 2018, 20(22), 5082-5103.
(b) Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[http://dx.doi.org/10.1021/ar010065m] [PMID: 12234198]
(a) De Rosa, M.; La Manna, P.; Talotta, C.; Soriente, A.; Gaeta, C.; Neri, P. Supramolecular organocatalysis in water mediated by macrocyclic compounds. Front Chem., 2018, 6, 84.
[http://dx.doi.org/10.3389/fchem.2018.00084] [PMID: 29666791]
(b) Li, D.D.; Li, Z.Y.; Wang, G.W. Catalyst-free approach to construct C-C bond initiated by N-O bond cleavage under thermal conditions. J. Org. Chem., 2015, 80(1), 190-195.
[http://dx.doi.org/10.1021/jo502287y] [PMID: 25423187]
(c) Han, M.Y.; Lin, J.; Li, W.; Luan, W.Y.; Mai, P.L.; Zhang, Y. Catalyst-free nucleophilic addition reactions of silyl glyoxylates in water. Green Chem., 2018, 20(6), 1228-1232.
Volla, C.M.; Atodiresei, I.; Rueping, M. Catalytic C-C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev., 2014, 114(4), 2390-2431.
[http://dx.doi.org/10.1021/cr400215u] [PMID: 24304297]
Vanna, R.S.; Dahiya, R.; Kumar, S. Microwave-assisted Henry reaction: Solventless synthesis of conjugated nitroalkenes. Tetrahedron Lett., 1997, 38(29), 5131-5134.
Lehmann, F.; Pilotti, A.; Luthman, K. Efficient large scale microwave assisted Mannich reactions using substituted acetophenones. Mol. Divers., 2003, 7(2-4), 145-152.
[http://dx.doi.org/10.1023/B:MODI.0000006809.48284.ed] [PMID: 14870843]
Girard, P.M.; Riballo, E.; Begg, A.C.; Waugh, A.; Jeggo, P.A. Microwave assisted Mannich reaction of terminal alkynes on alumina. Monatsh. Chem., 2002, 133(2), 199-204.
Matić, J.; Nekola, I.; Višnjevac, A.; Kobetić, R.; Martin-Kleiner, I.; Kralj, M.; Žinić, B. C5-Morpholinomethylation of N1-sulfonylcytosines by a one-pot microwave assisted Mannich reaction. Org. Biomol. Chem., 2018, 16(15), 2678-2687.
[http://dx.doi.org/10.1039/C8OB00253C] [PMID: 29577137]
Roca-López, D.; Polo, V.; Tejero, T.; Merino, P. Understanding bond formation in polar one-step reactions. Topological analyses of the reaction between nitrones and lithium ynolates. J. Org. Chem., 2015, 80(8), 4076-4083.
[http://dx.doi.org/10.1021/acs.joc.5b00413] [PMID: 25803829]
Wojcik, L.; Michaud, F.; Gauthier, S.; Cabon, N.; Le Poul, P.; Gloaguen, F.; Le Poul, N. Reversible redox switching of chromophoric phenylmethylenepyrans by carbon-carbon bond making/breaking. J. Org. Chem., 2017, 82(23), 12395-12405.
[http://dx.doi.org/10.1021/acs.joc.7b02199] [PMID: 29058426]
Rivnay, J.; Inal, S.; Collins, B.A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D.M.; Malliaras, G.G. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun., 2016, 7, 11287.
[http://dx.doi.org/10.1038/ncomms11287] [PMID: 27090156]
Bodhak, C.; Pramanik, A. One-Pot, three-component synthesis of 5-Sulfenyl-2-iminothiazolines by cross-dehydrogenative C-S coupling using I2/DMSO in open air. Research-article. J. Org. Chem., 2019, 84(11), 7265-7278.
[http://dx.doi.org/10.1021/acs.joc.9b00785] [PMID: 31074279]
Terzidis, M.A.; Zarganes-Tzitzikas, T.; Tsimenidis, C.; Stephanidou-Stephanatou, J.; Tsoleridis, C.A.; Kostakis, G.E. One-pot five-component synthesis of spirocyclopenta[b]chromene derivatives and their acid-catalyzed rearrangement. J. Org. Chem., 2012, 77(20), 9018-9028.
[http://dx.doi.org/10.1021/jo3014947] [PMID: 22978377]
Mardani, H.R.; Forouzani, M.; Emami, R. Efficient and green synthesis of trisubstituted imidazoles by magnetically nanocatalyst and microwave assisted. Asian J Green Chem., 2019, 3, 525-535.
Kidwai, M.; Saxena, S.; Khan, M.K.R.; Thukral, S.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg. Med. Chem. Lett., 2005, 15(19), 4295-4298.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.041] [PMID: 16040241]
Surpur, M.P.; Kshirsagar, S.; Samant, S.D. Exploitation of the catalytic efficacy of Mg/Al hydrotalcite for the rapid synthesis of 2-aminochromene derivatives via a multicomponent strategy in the presence of microwaves. Tetrahedron Lett., 2009, 50(6), 719-722.
Desale, K.R.; Nandre, K.P.; Patil, S.L. p-Dimethylaminopyridine (DMAP): A highly efficient catalyst for one pot, solvent free synthesis of substituted 2-amino-2-chromenes under microwave irradiation. Org. Commun, 2012, 5(4), 179-185.
Kantharaju, K.; Khatavi, S.Y. Microwave accelerated synthesis of 2-Amino-4H-chromenes catalyzed by WELFSA: A green protocol. ChemistrySelect, 2018, 3(18), 5016-5024.
Pourkazemi, A.; Zare, A. Characterization and application of SO3H-functionalized phthalimide (SFP) as an efficient and recyclable catalyst for the solvent-free synthesis of 2-amino-4H-chromenes. Org. Chem. Res., 2016, 2(1), 88-95.
Ramazani, A. Taghavi fardood, E.B.; Azimzadeh, A.P.; Bigdeli, F.Y. Microwave-assisted multicomponent reaction for the synthesis of 2-amino-4H-chromene derivatives using ilmenite (FeTiO3) as a magnetic catalyst under solvent-free conditions. Asian J. Green Chem., 2017, 1(1), 34-40.
Mobinikhaledi, A.; Moghanian, H.; Sasani, F. Microwave-assisted one-pot synthesis of 2-Amino-2-chromenes using piperazine as a catalyst under solvent-free conditions. Synthesis and reactivity in inorganic. Metal-Org. and Nano-Metal Chem., 2011, 41(3), 262-265.
Kantharaju, K.; Khatavi, S.Y. Green method synthesis and antimicrobial activity of 2-amino-4H-chromene derivatives. Asian J. Chem., 2018, 30(7), 1496-1502.
Wang, S.L.; Wu, F.Y.; Cheng, C.; Zhang, G.; Liu, Y.P.; Jiang, B.; Shi, F.; Tu, S.J. Multicomponent synthesis of poly-substituted benzo[a]pyrano[2,3-c]phenazine derivatives under microwave heating. ACS Comb. Sci., 2011, 13(2), 135-139.
[http://dx.doi.org/10.1021/co1000376] [PMID: 21218828]
Shah, N.K.; Shah, N.M.; Patel, M.P.; Patel, R.G. Synthesis of 2-amino-4H-chromene derivatives under microwave irradiation and their antimicrobial activity. J. Chem. Sci., 2013, 125(3), 525-530.
Navjeet, K.; Dharma, K. Microwave-assisted synthesis of six-membered O,O- Heterocycles. Synth. Commun., 2014, 44, 3047-3081.
Rupnar, B.D.; Kachave, T.R.; Jawale, P.D.; Shisodia, S.U.; Rajendra, P.; Rupnar, B.D. Microwave assisted, cesium carbonate catalyzed mild and efficient synthesis of pyranochromenes. Pharma Chem., 2017, 9(11), 120-124.
Takano, H.; Narumi, T.; Nomura, W.; Tamamura, H. Microwave-assisted synthesis of azacoumarin fluorophores and the fluorescence characterization. J. Org. Chem., 2017, 82(5), 2739-2744.
[http://dx.doi.org/10.1021/acs.joc.6b02656] [PMID: 28150494]
(a) Goli, N.; Kallepu, S.; Mainkar, P.S.; Lakshmi, J.K.; Chegondi, R.; Chandrasekhar, S. Synthetic strategy toward the pentacyclic core of melodinus alkaloids. J. Org. Chem., 2018, 83(4), 2244-2249.
[http://dx.doi.org/10.1021/acs.joc.7b03138] [PMID: 29338221]
(b) Blair, L.M.; Sperry, J. Natural products containing a nitrogen-nitrogen bond. J. Nat. Prod., 2013, 76(4), 794-812.
[http://dx.doi.org/10.1021/np400124n] [PMID: 23577871]
(a) Karnail, S.A.; George, C.R. Brian, O’Reilly, C.; Joseph, S. Substituted 1,4-dihydropyrimidines,3,synthesis of selectively functionalized 2-hetero-l,4-dihydropyrimidines. J. Org. Chem., 1989, 54, 5898-5907.
(b) Bahrami, K.; Khodaei, M.M.; Naali, F. Mild and highly efficient method for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. J. Org. Chem., 2008, 73(17), 6835-6837.
[http://dx.doi.org/10.1021/jo8010232] [PMID: 18652508]
(a) Vo, C.V.T.; Luescher, M.U.; Bode, J.W. SnAP reagents for the one-step synthesis of medium-ring saturated N-heterocycles from aldehydes. Nat. Chem., 2014, 6(4), 310-314.
[http://dx.doi.org/10.1038/nchem.1878] [PMID: 24651197]
(b) Deiters, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev., 2004, 104(5), 2199-2238.
[http://dx.doi.org/10.1021/cr0200872] [PMID: 15137789]
(a) Nekrasov, D.D. Biological activity of 5-and 6-membered azaheterocycles and their synthesis from 5-aryl-2,3-dihydrofuran-2,3-diones. (Review) Chem. Het. Compounds., 2001, 37(3), 263-275.
(b) Rani, R.; Granchi, C. Bioactive heterocycles containing endocyclic N-hydroxy groups. Eur. J. Med. Chem., 2015, 97(1), 505-524.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.031] [PMID: 25466924]
(a) Huang, Y.; Yang, Y.; Song, H.; Liu, Y.; Wang, Q. Synthesis of structurally diverse 2,3-fused Indoles via microwave-assisted AgSbF6-catalysed intramolecular difunctionalization of o-alkynylanilines. Sci. Rep., 2015, 5, 13516.
[http://dx.doi.org/10.1038/srep13516] [PMID: 26310858]
(b) Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Microwave-assisted transition-metal-catalyzed synthesis of N-shifted and ring-expanded buflavine analogues. Chemistry, 2007, 13(22), 6452-6460.
[http://dx.doi.org/10.1002/chem.200700177] [PMID: 17508369]
Muzammil, E.M.; Halilovic, D.; Stuparu, M.C. Synthesis of corannulene-based nanographenes. Commun. Chem., 2019, 2(1), 1-13.
(a) Shie, J.J.; Fang, J.M. Microwave-assisted one-pot tandem reactions for direct conversion of primary alcohols and aldehydes to triazines and tetrazoles in aqueous media. J. Org. Chem., 2007, 72(8), 3141-3144.
[http://dx.doi.org/10.1021/jo0625352] [PMID: 17362044]
(b) Wei, G.; Mingming, Z.; Wen, T.; Lvyin, Z.; Kailiang, T.; Xiaolin, F. Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation. Org. Chem. Front., 2019, 6, 2120-2141.
Dalvi, P.B.; Lin, S.F.; Paike, V.; Sun, C.M. Microwave-Assisted Multicomponent Synthesis of Dihydroquinoxalinones on Soluble Polymer Support. ACS Comb. Sci., 2015, 17(7), 421-425.
[http://dx.doi.org/10.1021/acscombsci.5b00053] [PMID: 26101959]
Naresh Yadav, R.; Bobbala, A.; Banik, B. Iodine-Catalyzed Microwave-Induced Multicomponent Aza-Diels Alder [4+2] Cycloaddition Reaction: A Versatile Approach Towards Bicyclo-[2,2,2]-. Octanones. Mod. Chem. App., 2018, 6(2), 8-11.
Singh, S.K.; Singh, K.N. Eco-friendly and facile one-pot multicomponent synthesis of acridinediones in water under microwave. J. Het. Chem., 2011, 48(1), 69-73.
Hamid, R.M.; Mehdi, F.R.E. Efficient and green synthesis of trisubstituted imidazoles by magnetically nanocatalyst and microwave assisted. Asian J. Green Chem., 2019, 3, 525-535.
Besson, T.; Chosson, E. Microwave-assisted synthesis of bioactive quinazolines and quinazolinones. Comb. Chem. High Throughput Screen., 2007, 10(10), 903-917.
[http://dx.doi.org/10.2174/138620707783220356] [PMID: 18288950]
Bora, U.; Saikia, A.; Boruah, R.C. A novel microwave-mediated one-pot synthesis of indolizines via a three-component reaction. Org. Lett., 2003, 5(4), 435-438.
[http://dx.doi.org/10.1021/ol020238n] [PMID: 12583737]
Mourad, A.F.E.; Aly, A.A.; Farag, H.H.; Beshr, E.A. Microwave assisted synthesis of triazoloquinazolinones and benzimidazoquinazolinones. Beilstein J. Org. Chem., 2007, 3, 11.
[http://dx.doi.org/10.1186/1860-5397-3-11] [PMID: 17338816]
Ranu, B.C.; Saha, A.; Jana, R. Microwave-assisted simple and efficient ligand free copper nanoparticle catalyzed aryl-sulfur bond formation. Adv. Synth. Catal., 2007, 349, 2690-2696.
(a) Burghardt, T.E. Developments in the deprotection of thioacetals. J. Sulfur Chem., 2005, 26, 411-427.
(b) Sartori, G.; Ballini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem. Rev., 2004, 104(1), 199-250.
[http://dx.doi.org/10.1021/cr0200769] [PMID: 14719975]
(a) Zou, X.J.; Lai, L.H.; Jin, G.Y.; Zhang, Z.X. Synthesis, fungicidal activity, and 3D-QSAR of pyridazinone-substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. J. Agric. Food Chem., 2002, 50(13), 3757-3760.
[http://dx.doi.org/10.1021/jf0201677] [PMID: 12059155]
(b) McCourt, R.O.; Dénès, F.; Scanlan, E.M. Radical-mediated reactions of α-bromo aluminium thioacetals, α-bromothioesters, and xanthates for thiolactone synthesis. Molecules, 2018, 23(4), 897.
[http://dx.doi.org/10.3390/molecules23040897] [PMID: 29652812]
(c) Farag, M.; Abdel-Mageed, W.M.; Basudan, O.; El-Gamal, A. Persicaline, a new antioxidant sulphur-containing imidazoline alkaloid from salvadora persica roots. Molecules, 2018, 23(2), 483.
[http://dx.doi.org/10.3390/molecules23020483] [PMID: 29473845]
(d) Wang And, X.; Guo, Z. The role of sulfur in platinum anticancer chemotherapy. Anticancer. Agents Med. Chem., 2007, 7(1), 19-34.
[http://dx.doi.org/10.2174/187152007779314062] [PMID: 17266503]
(e) Beno, B.R.; Yeung, K.S.; Bartberger, M.D.; Pennington, L.D.; Meanwell, N.A. A survey of the role of noncovalent sulfur interactions in drug design. J. Med. Chem., 2015, 58(11), 4383-4438.
[http://dx.doi.org/10.1021/jm501853m] [PMID: 25734370]
Besson, T.; Thiery, V. Microwave-assisted synthesis of sulfur and nitrogen-containing heterocycles. Top. Heterocycl. Chem., 2006, 1, 59-78.
Haiying, Z.H.C.; Huifang, Q.; Naiying, L.; Longbin, C.; Jingyun, L.; Huiyin, C.; Jingwen, T. Microwave-assisted C-N and C-S bond-forming reactions: An efficient three-component domino sequence for the synthesis of sulfoether-decorated imidazo[1,2-a]pyridines. RSC Advances, 2015, 5, 32205-32209.
Mistry, K.; Desai, K.R. Microwave assisted rapid and efficient synthesis of nitrogen and sulphur containing heterocyclic compounds and their pharmacological evaluation. Indian J. Chem.-Sec.B Org. and Med. Chem, 2006, 45(7), 1762-1766.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [23 - 39]
Pages: 17
DOI: 10.2174/2213346107666200218124147
Price: $25

Article Metrics

PDF: 14