Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Review Article

Role of Cytochrome P450 in Prostate Cancer and its Therapy

Author(s): Rishabh Kaushik, Sheeza Khan, Meesha Sharma, Srinivasan Hemalatha, Zeba Mueed and Nitesh K. Poddar*

Volume 16, Issue 1, 2020

Page: [63 - 73] Pages: 11

DOI: 10.2174/1573408016666200218122044

Price: $65

Abstract

Prostate cancer has become a global health concern as it is one of the leading causes of mortality in males. With the emerging drug resistance to conventional therapies, it is imperative to unravel new molecular targets for disease prevention. Cytochrome P450 (P450s or CYPs) represents a unique class of mixed-function oxidases which catalyses a wide array of biosynthetic and metabolic functions including steroidogenesis and cholesterol metabolism. Several studies have reported the overexpression of the genes encoding CYPs in prostate cancer cells and how they can be used as molecular targets for drug discovery. But due to functional redundancy and overlapping expression of CYPs in several other metabolic pathways there are several impediments in the clinical efficacy of the novel drugs reported till now. Here we review the most crucial P450 enzymes which are involved in prostate cancer and how they can be used as molecular targets for drug discovery along with the clinical limitations of the currently existing CYP inhibitors.

Keywords: Androgenesis, antimetastatic, Cytochrome P450, prostate cancer, xenobiotic, cancer cells.

Graphical Abstract
[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Zong, Y.; Goldstein, A.S. Adaptation or selection--mechanisms of castration-resistant prostate cancer. Nat. Rev. Urol., 2013, 10(2), 90-98.
[http://dx.doi.org/10.1038/nrurol.2012.237] [PMID: 23247694]
[3]
Gomez, L.; Kovac, J.R.; Lamb, D.J. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids, 2015, 95, 80-87.
[http://dx.doi.org/10.1016/j.steroids.2014.12.021] [PMID: 25560485]
[4]
Bostwick, D.G.; Burke, H.B.; Djakiew, D.; Euling, S.; Ho, S.M.; Landolph, J.; Morrison, H.; Sonawane, B.; Shifflett, T.; Waters, D.J.; Timms, B. Human prostate cancer risk factors. Cancer, 2004, 101(10)(Suppl.), 2371-2490.
[http://dx.doi.org/10.1002/cncr.20408] [PMID: 15495199]
[5]
Bidoli, E.; Talamini, R.; Bosetti, C.; Negri, E.; Maruzzi, D.; Montella, M.; Franceschi, S.; La Vecchia, C. Macronutrients, fatty acids, cholesterol and prostate cancer risk. Ann. Oncol., 2005, 16(1), 152-157.
[http://dx.doi.org/10.1093/annonc/mdi010] [PMID: 15598953]
[6]
Nithipatikom, K.; Campbell, W.B. Roles of eicosanoids in prostate cancer. Future Lipidol., 2008, 3(4), 453-467.
[http://dx.doi.org/10.2217/17460875.3.4.453] [PMID: 24563660]
[7]
Liu, Q.; Luo, Q.; Halim, A.; Song, G. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer. Cancer Lett., 2017, 401, 39-45.
[http://dx.doi.org/10.1016/j.canlet.2017.05.002] [PMID: 28527945]
[8]
Nelson, D.R.; Zeldin, D.C.; Hoffman, S.M.; Maltais, L.J.; Wain, H.M.; Nebert, D.W. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmaco genet Genom., 2004, 14, 1-8.
[9]
Bruno, R.D.; Njar, V.C. Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorg. Med. Chem., 2007, 15(15), 5047-5060.
[http://dx.doi.org/10.1016/j.bmc.2007.05.046] [PMID: 17544277]
[10]
Maksymchuk, O.; Kashuba, V. Dietary lipids and environmental xenobiotics as risk factors for prostate cancer: The role of cytochrome P450. Pharmacol. Rep., 2019, 71, 826-832.
[http://dx.doi.org/10.1016/j.pharep.2019.04.011]
[11]
Elfaki, I.; Mir, R.; Almutairi, F.M.; Duhier, F.M.A. Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac. J. Cancer Prev., 2018, 19(8), 2057-2070.
[PMID: 30139042]
[12]
Maksymchuk, O.; Shysh, A.; Chashchyn, M.; Moibenko, O. Dietary omega-3 polyunsaturated fatty acids alter fatty acid composition of lipids and CYP2E1 expression in rat liver tissue. Int. J. Vitam. Nutr. Res., 2015, 85(5-6), 322-328.
[http://dx.doi.org/10.1024/0300-9831/a000296] [PMID: 27442787]
[13]
Maksymchuk, O.V.; Bobyk, V.I.; Sydoryk, L.L.; Chashchyn, M.O. [Influence of long-term combined gamma-radiation and ethanol on cytochrome P450 2E1 expression in the mice liver]. Ukr Biokhim Zh (1999), 2008, 80(5), 105-111.
[PMID: 19248623]
[14]
Chashchyn, M. The impact of psychogenic stressors on oxidative stress markers and patterns of CYP2E1 expression in mice liver. Patho Phys., 2012, 19, 215-219.
[15]
Nishimura, M.; Yaguti, H.; Yoshitsugu, H.; Naito, S.; Satoh, T. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi, 2003, 123(5), 369-375.
[http://dx.doi.org/10.1248/yakushi.123.369] [PMID: 12772594]
[16]
Nebert, D.W.; Russell, D.W. Clinical importance of the cytochromes P450. Lancet, 2002, 360(9340), 1155-1162.
[http://dx.doi.org/10.1016/S0140-6736(02)11203-7] [PMID: 12387968]
[17]
Thelen, K.; Dressman, J.B. Cytochrome P450-mediated metabolism in the human gut wall. J. Pharm. Pharmacol., 2009, 61(5), 541-558.
[http://dx.doi.org/10.1211/jpp.61.05.0002] [PMID: 19405992]
[18]
Renaud, H.J.; Cui, J.Y.; Khan, M.; Klaassen, C.D. Tissue distribution and gender-divergent expression of 78 cytochrome P450 mRNAs in mice. Toxicol. Sci., 2011, 124(2), 261-277.
[http://dx.doi.org/10.1093/toxsci/kfr240] [PMID: 21920951]
[19]
Guengerich, F.P. Mechanisms of cytochrome P450 substrate oxidation: MiniReview. J. Biochem. Mol. Toxicol., 2007, 21(4), 163-168.
[http://dx.doi.org/10.1002/jbt.20174] [PMID: 17936929]
[20]
Porter, T.D.; Coon, M.J. Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J. Biol. Chem., 1991, 266(21), 13469-13472.
[PMID: 1856184]
[21]
Chang, G.W.; Kam, P.C. The physiological and pharmacological roles of cytochrome P450 isoenzymes. Anaesthesia, 1999, 54(1), 42-50.
[http://dx.doi.org/10.1046/j.1365-2044.1999.00602.x] [PMID: 10209369]
[22]
Ingelman-Sundberg, M.; Oscarson, M.; McLellan, R.A. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol. Sci., 1999, 20(8), 342-349.
[http://dx.doi.org/10.1016/S0165-6147(99)01363-2] [PMID: 10431214]
[23]
Bernard, S.; Neville, K.A.; Nguyen, A.T.; Flockhart, D.A. Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist, 2006, 11(2), 126-135.
[http://dx.doi.org/10.1634/theoncologist.11-2-126] [PMID: 16476833]
[24]
Pikuleva, I.A.; Waterman, M.R. Cytochromes p450: roles in diseases. J. Biol. Chem., 2013, 288(24), 17091-17098.
[http://dx.doi.org/10.1074/jbc.R112.431916] [PMID: 23632021]
[25]
Meng, F.D.; Ma, P.; Sui, C.G.; Tian, X.; Jiang, Y.H. Association between cytochrome P450 1A1 (CYP1A1) gene polymorphisms and the risk of renal cell carcinoma: a meta-analysis. Sci. Rep., 2015, 5, 8108.
[http://dx.doi.org/10.1038/srep08108] [PMID: 25630554]
[26]
Mittal, B.; Tulsyan, S.; Kumar, S.; Mittal, R.D.; Agarwal, G. Cytochrome P450 in cancer susceptibility and treatment. Adv. Clin. Chem., 2015, 71, 77-139.
[http://dx.doi.org/10.1016/bs.acc.2015.06.003] [PMID: 26411412]
[27]
Silvestri, L.; Sonzogni, L.; De Silvestri, A.; Gritti, C.; Foti, L.; Zavaglia, C.; Leveri, M.; Cividini, A.; Mondelli, M.U.; Civardi, E.; Silini, E.M. CYP enzyme polymorphisms and susceptibility to HCV-related chronic liver disease and liver cancer. Int. J. Cancer, 2003, 104(3), 310-317.
[http://dx.doi.org/10.1002/ijc.10937] [PMID: 12569554]
[28]
Tokizane, T.; Shiina, H.; Igawa, M.; Enokida, H.; Urakami, S.; Kawakami, T.; Ogishima, T.; Okino, S.T.; Li, L.C.; Tanaka, Y.; Nonomura, N.; Okuyama, A.; Dahiya, R. Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin. Cancer Res., 2005, 11(16), 5793-5801.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2545] [PMID: 16115918]
[29]
Leskelä, S.; Honrado, E.; Montero-Conde, C.; Landa, I.; Cascón, A.; Letón, R.; Talavera, P.; Cózar, J.M.; Concha, A.; Robledo, M.; Rodríguez-Antona, C. Cytochrome P450 3A5 is highly expressed in normal prostate cells but absent in prostate cancer. Endocr. Relat. Cancer, 2007, 14(3), 645-654.
[http://dx.doi.org/10.1677/ERC-07-0078] [PMID: 17914095]
[30]
Vijayalakshmi, K.; Vettriselvi, V.; Krishnan, M.; Shroff, S.; Jayanth, V.R.; Paul, S.F. Cytochrome p4501A1 gene variants as susceptibility marker for prostate cancer. Cancer Biomark., 2005, 1(4-5), 251-258.
[http://dx.doi.org/10.3233/CBM-2005-14-508] [PMID: 17192049]
[31]
Ding, G.; Xu, W.; Liu, H.; Zhang, M.; Huang, Q.; Liao, Z. CYP1A1 MspI polymorphism is associated with prostate cancer susceptibility: evidence from a meta-analysis. Mol. Biol. Rep., 2013, 40(5), 3483-3491.
[http://dx.doi.org/10.1007/s11033-012-2423-0] [PMID: 23475304]
[32]
Chen, T.C. 25-Hydroxyvitamin D-1 alpha-hydroxylase (CYP27B1) is a new class of tumor suppressor in the prostate. Anticancer Res., 2008, 28(4A), 2015-2017.
[PMID: 18649741]
[33]
Chen, T.C.; Sakaki, T.; Yamamoto, K.; Kittaka, A. The roles of cytochrome P450 enzymes in prostate cancer development and treatment. Anticancer Res., 2012, 32(1), 291-298.
[PMID: 22213318]
[34]
Cavalieri, E.L.; Devanesan, P.; Bosland, M.C.; Badawi, A.F.; Rogan, E.G. Catechol estrogen metabolites and conjugates in different regions of the prostate of Noble rats treated with 4-hydroxyestradiol: implications for estrogen-induced initiation of prostate cancer. Carcinogenesis, 2002, 23(2), 329-333.
[http://dx.doi.org/10.1093/carcin/23.2.329] [PMID: 11872641]
[35]
Williams, J.A.; Martin, F.L.; Muir, G.H.; Hewer, A.; Grover, P.L.; Phillips, D.H. Metabolic activation of carcinogens and expression of various cytochromes P450 in human prostate tissue. Carcinogenesis, 2000, 21(9), 1683-1689.
[http://dx.doi.org/10.1093/carcin/21.9.1683] [PMID: 10964100]
[36]
Murray, G.I.; Taylor, M.C.; McFadyen, M.C.; McKay, J.A.; Greenlee, W.F.; Burke, M.D.; Melvin, W.T. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res., 1997, 57(14), 3026-3031.
[PMID: 9230218]
[37]
McFadyen, M.C.; Breeman, S.; Payne, S.; Stirk, C.; Miller, I.D.; Melvin, W.T.; Murray, G.I. Immunohistochemical localization of cytochrome P450 CYP1B1 in breast cancer with monoclonal antibodies specific for CYP1B1. J. Histochem. Cytochem., 1999, 47(11), 1457-1464.
[http://dx.doi.org/10.1177/002215549904701111] [PMID: 10544218]
[38]
McFadyen, M.C.; Cruickshank, M.E.; Miller, I.D.; McLeod, H.L.; Melvin, W.T.; Haites, N.E.; Parkin, D.; Murray, G.I. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br. J. Cancer, 2001, 85(2), 242-246.
[http://dx.doi.org/10.1054/bjoc.2001.1907] [PMID: 11461084]
[39]
Carnell, D.M.; Smith, R.E.; Daley, F.M.; Barber, P.R.; Hoskin, P.J.; Wilson, G.D.; Murray, G.I.; Everett, S.A. Target validation of cytochrome P450 CYP1B1 in prostate carcinoma with protein expression in associated hyperplastic and premalignant tissue. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(2), 500-509.
[http://dx.doi.org/10.1016/j.ijrobp.2003.09.064] [PMID: 14751521]
[40]
Mimura, J.; Fujii-Kuriyama, Y. Functional role of AhR in the expression of toxic effects by TCDD. Biochim. Biophys. Acta, 2003, 1619(3), 263-268.
[http://dx.doi.org/10.1016/S0304-4165(02)00485-3] [PMID: 12573486]
[41]
Reyes, H.; Reisz-Porszasz, S.; Hankinson, O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science, 1992, 256(5060), 1193-1195.
[http://dx.doi.org/10.1126/science.256.5060.1193] [PMID: 1317062]
[42]
Shehin, S.E.; Stephenson, R.O.; Greenlee, W.F. Transcriptional regulation of the human CYP1B1 gene. Evidence for involvement of an aryl hydrocarbon receptor response element in constitutive expression. J. Biol. Chem., 2000, 275(10), 6770-6776.
[http://dx.doi.org/10.1074/jbc.275.10.6770] [PMID: 10702233]
[43]
Wo, Y.Y.; Stewart, J.; Greenlee, W.F. Functional analysis of the promoter for the human CYP1B1 gene. J. Biol. Chem., 1997, 272(42), 26702-26707.
[http://dx.doi.org/10.1074/jbc.272.42.26702] [PMID: 9334254]
[44]
Tang, Y.M.; Wo, Y.Y.; Stewart, J.; Hawkins, A.L.; Griffin, C.A.; Sutter, T.R.; Greenlee, W.F. Isolation and characterization of the human cytochrome P450 CYP1B1 gene. J. Biol. Chem., 1996, 271(45), 28324-28330.
[http://dx.doi.org/10.1074/jbc.271.45.28324] [PMID: 8910454]
[45]
Guo, Y.; Pakneshan, P.; Gladu, J.; Slack, A.; Szyf, M.; Rabbani, S.A. Regulation of DNA methylation in human breast cancer. Effect on the urokinase-type plasminogen activator gene production and tumor invasion. J. Biol. Chem., 2002, 277(44), 41571-41579.
[http://dx.doi.org/10.1074/jbc.M201864200] [PMID: 12198113]
[46]
Takahashi, Y.; Suzuki, C.; Kamataki, T. Silencing of CYP1A1 expression in rabbits by DNA methylation. Biochem. Biophys. Res. Commun., 1998, 247(2), 383-386.
[http://dx.doi.org/10.1006/bbrc.1998.8791] [PMID: 9642136]
[47]
Murray, G.I.; Melvin, W.T.; Greenlee, W.F.; Burke, M.D. Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 297-316.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.297] [PMID: 11264459]
[48]
Chesire, D.R.; Dunn, T.A.; Ewing, C.M.; Luo, J.; Isaacs, W.B. Identification of aryl hydrocarbon receptor as a putative Wnt/beta-catenin pathway target gene in prostate cancer cells. Cancer Res., 2004, 64(7), 2523-2533.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3309] [PMID: 15059908]
[49]
Herman, J.G.; Graff, J.R.; Myöhänen, S.; Nelkin, B.D.; Baylin, S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9821-9826.
[http://dx.doi.org/10.1073/pnas.93.18.9821] [PMID: 8790415]
[50]
Sarosdy, M.F.; Schellhammer, P.F.; Sharifi, R.; Block, N.L.; Soloway, M.S.; Venner, P.M.; Patterson, A.L.; Vogelzang, N.J.; Chodak, G.W.; Klein, E.A.; Schellenger, J.J.; Kolvenbag, G.J. Comparison of goserelin and leuprolide in combined androgen blockade therapy. Urology, 1998, 52(1), 82-88.
[http://dx.doi.org/10.1016/S0090-4295(98)00145-9] [PMID: 9671875]
[51]
Neumann, F. The antiandrogen cyproterone acetate: discovery, chemistry, basic pharmacology, clinical use and tool in basic research. Exp. Clin. Endocrinol., 1994, 102(1), 1-32.
[http://dx.doi.org/10.1055/s-0029-1211261] [PMID: 8005205]
[52]
Wenderoth, U.K.; Jacobi, G.H. [Treatment of advanced cancer of the prostate with an analog of LHRH, buserelin]. Ann. Urol. (Paris), 1986, 20(2), 95-97.
[PMID: 3087269]
[53]
Hartmann, R.W.; Ehmer, P.B.; Haidar, S.; Hector, M.; Jose, J.; Klein, C.D.; Seidel, S.B.; Sergejew, T.F.; Wachall, B.G.; Wächter, G.A.; Zhuang, Y. Inhibition of CYP 17, a new strategy for the treatment of prostate cancer. Arch. Pharm. (Weinheim), 2002, 335(4), 119-128.
[http://dx.doi.org/10.1002/1521-4184(200204)335:4<119:AID-ARDP119>3.0.CO;2-#] [PMID: 12112031]
[54]
Van Wauwe, J.P.; Janssen, P.A. Is there a case for P-450 inhibitors in cancer treatment? J. Med. Chem., 1989, 32(10), 2231-2239.
[http://dx.doi.org/10.1021/jm00130a001] [PMID: 2677377]
[55]
Attard, G.; Reid, A.H.; Auchus, R.J.; Hughes, B.A.; Cassidy, A.M.; Thompson, E.; Oommen, N.B.; Folkerd, E.; Dowsett, M.; Arlt, W.; de Bono, J.S. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J. Clin. Endocrinol. Metab., 2012, 97(2), 507-516.
[http://dx.doi.org/10.1210/jc.2011-2189] [PMID: 22170708]
[56]
Pont, A.; Williams, P.L.; Azhar, S.; Reitz, R.E.; Bochra, C.; Smith, E.R.; Stevens, D.A. Ketoconazole blocks testosterone synthesis. Arch. Intern. Med., 1982, 142(12), 2137-2140.
[http://dx.doi.org/10.1001/archinte.1982.00340250097015] [PMID: 6291475]
[57]
Haidar, S.; Ehmer, P.B.; Barassin, S.; Batzl-Hartmann, C.; Hartmann, R.W. Effects of novel 17α-hydroxylase/C17, 20-lyase (P450 17, CYP 17) inhibitors on androgen biosynthesis in vitro and in vivo. J. Steroid Biochem. Mol. Biol., 2003, 84(5), 555-562.
[http://dx.doi.org/10.1016/S0960-0760(03)00070-0] [PMID: 12767280]
[58]
Reid, A.H.; Attard, G.; Barrie, E.; de Bono, J.S. CYP17 inhibition as a hormonal strategy for prostate cancer. Nat. Clin. Pract. Urol., 2008, 5(11), 610-620.
[http://dx.doi.org/10.1038/ncpuro1237] [PMID: 18985049]
[59]
Leroux, F. Inhibition of p450 17 as a new strategy for the treatment of prostate cancer. Curr. Med. Chem., 2005, 12(14), 1623-1629.
[http://dx.doi.org/10.2174/0929867054367185] [PMID: 16022662]
[60]
Handratta, V.D.; Vasaitis, T.S.; Njar, V.C.; Gediya, L.K.; Kataria, R.; Chopra, P.; Newman, D., Jr; Farquhar, R.; Guo, Z.; Qiu, Y.; Brodie, A.M. Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J. Med. Chem., 2005, 48(8), 2972-2984.
[http://dx.doi.org/10.1021/jm040202w] [PMID: 15828836]
[61]
Kaku, T.; Hitaka, T.; Ojida, A.; Matsunaga, N.; Adachi, M.; Tanaka, T.; Hara, T.; Yamaoka, M.; Kusaka, M.; Okuda, T.; Asahi, S.; Furuya, S.; Tasaka, A. Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorg. Med. Chem., 2011, 19(21), 6383-6399.
[http://dx.doi.org/10.1016/j.bmc.2011.08.066] [PMID: 21978946]
[62]
Rafferty, S.W.; Eisner, J.R.; Moore, W.R.; Schotzinger, R.J.; Hoekstra, W.J. Highly-selective 4-(1,2,3-triazole)-based P450c17a 17,20-lyase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(11), 2444-2447.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.024] [PMID: 24775307]
[63]
Hara, T.; Kouno, J.; Kaku, T.; Takeuchi, T.; Kusaka, M.; Tasaka, A.; Yamaoka, M. Effect of a novel 17,20-lyase inhibitor, orteronel (TAK-700), on androgen synthesis in male rats. J. Steroid Biochem. Mol. Biol., 2013, 134, 80-91.
[http://dx.doi.org/10.1016/j.jsbmb.2012.10.020] [PMID: 23146910]
[64]
Jacoby, D.B.; Williams, M. Differential effects of galeterone, abiraterone, orteronel, and ketoconazole on CYP17 and steroidogenesis. J. Clin. Oncol., 2013, 31, 184-184.
[http://dx.doi.org/10.1200/jco.2013.31.6_suppl.184]
[65]
Toren, P.J.; Kim, S.; Pham, S.; Mangalji, A.; Adomat, H.; Guns, E.S.; Zoubeidi, A.; Moore, W.; Gleave, M.E. Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer. Mol. Cancer Ther., 2015, 14(1), 59-69.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0521] [PMID: 25351916]
[66]
Loriot, Y.; Zoubeidi, A.; Gleave, M.E. Targeted therapies in metastatic castration-resistant prostate cancer: beyond the androgen receptor. Urol. Clin. North Am., 2012, 39(4), 517-531.
[http://dx.doi.org/10.1016/j.ucl.2012.07.008] [PMID: 23084528]
[67]
Yin, L.; Hu, Q. CYP17 inhibitors--abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nat. Rev. Urol., 2014, 11(1), 32-42.
[http://dx.doi.org/10.1038/nrurol.2013.274] [PMID: 24276076]
[68]
Beer, T.M.; Myrthue, A. Calcitriol in the treatment of prostate cancer. Anticancer Res., 2006, 26(4A), 2647-2651.
[PMID: 16886675]
[69]
Moreno, J.; Krishnan, A.V.; Feldman, D. Molecular mechanisms mediating the anti-proliferative effects of Vitamin D in prostate cancer. J. Steroid Biochem. Mol. Biol., 2005, 97(1-2), 31-36.
[http://dx.doi.org/10.1016/j.jsbmb.2005.06.012] [PMID: 16024246]
[70]
Studzinski, G.P.; McLane, J.A.; Uskoković, M.R. Signaling pathways for vitamin D-induced differentiation: implications for therapy of proliferative and neoplastic diseases. Crit. Rev. Eukaryot. Gene Expr., 1993, 3(4), 279-312.
[PMID: 8286848]
[71]
Ohyama, Y.; Okuda, K. Isolation and characterization of a cytochrome P-450 from rat kidney mitochondria that catalyzes the 24-hydroxylation of 25-hydroxyvitamin D3. J. Biol. Chem., 1991, 266(14), 8690-8695.
[PMID: 2026586]
[72]
Albertson, D.G.; Ylstra, B.; Segraves, R.; Collins, C.; Dairkee, S.H.; Kowbel, D.; Kuo, W.L.; Gray, J.W.; Pinkel, D. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat. Genet., 2000, 25(2), 144-146.
[http://dx.doi.org/10.1038/75985] [PMID: 10835626]
[73]
Bareis, P.; Bises, G.; Bischof, M.G.; Cross, H.S.; Peterlik, M. 25-hydroxy-vitamin d metabolism in human colon cancer cells during tumor progression. Biochem. Biophys. Res. Commun., 2001, 285(4), 1012-1017.
[http://dx.doi.org/10.1006/bbrc.2001.5289] [PMID: 11467853]
[74]
Parise, R.A.; Egorin, M.J.; Kanterewicz, B.; Taimi, M.; Petkovich, M.; Lew, A.M.; Chuang, S.S.; Nichols, M.; El-Hefnawy, T.; Hershberger, P.A. CYP24, the enzyme that catabolizes the antiproliferative agent vitamin D, is increased in lung cancer. Int. J. Cancer, 2006, 119(8), 1819-1828.
[http://dx.doi.org/10.1002/ijc.22058] [PMID: 16708384]
[75]
Sarkar, F.H.; Adsule, S.; Padhye, S.; Kulkarni, S.; Li, Y. The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev. Med. Chem., 2006, 6(4), 401-407.
[http://dx.doi.org/10.2174/138955706776361439] [PMID: 16613577]
[76]
Farhan, H.; Wähälä, K.; Cross, H.S. Genistein inhibits vitamin D hydroxylases CYP24 and CYP27B1 expression in prostate cells. J. Steroid Biochem. Mol. Biol., 2003, 84(4), 423-429.
[http://dx.doi.org/10.1016/S0960-0760(03)00063-3] [PMID: 12732287]
[77]
Pavese, J.M.; Krishna, S.N.; Bergan, R.C. Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Am. J. Clin. Nutr., 2014, 100(Suppl. 1), 431S-436S.
[http://dx.doi.org/10.3945/ajcn.113.071290] [PMID: 24871471]
[78]
Sundaram, S.; Beckman, M.J.; Bajwa, A.; Wei, J.; Smith, K.M.; Posner, G.H.; Gewirtz, D.A. QW-1624F2-2, a synthetic analogue of 1,25-dihydroxyvitamin D3, enhances the response to other deltanoids and suppresses the invasiveness of human metastatic breast tumor cells. Mol. Cancer Ther., 2006, 5(11), 2806-2814.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0092] [PMID: 17121927]
[79]
Schuster, I.; Egger, H.; Herzig, G.; Reddy, G.S.; Schmid, J.A.; Schüssler, M.; Vorisek, G. Selective inhibitors of vitamin D metabolism--new concepts and perspectives. Anticancer Res., 2006, 26(4A), 2653-2668.
[PMID: 16886676]
[80]
Posner, G.H.; Crawford, K.R.; Yang, H.W.; Kahraman, M.; Jeon, H.B.; Li, H.; Lee, J.K.; Suh, B.C.; Hatcher, M.A.; Labonte, T.; Usera, A.; Dolan, P.M.; Kensler, T.W.; Peleg, S.; Jones, G.; Zhang, A.; Korczak, B.; Saha, U.; Chuang, S.S. Potent, low-calcemic, selective inhibitors of CYP24 hydroxylase: 24-sulfone analogs of the hormone 1α,25-dihydroxyvitamin D3. J. Steroid Biochem. Mol. Biol., 2004, 89-90(1-5), 5-12.
[http://dx.doi.org/10.1016/j.jsbmb.2004.03.044] [PMID: 15225738]
[81]
Miller, W.H., Jr The emerging role of retinoids and retinoic acid metabolism blocking agents in the treatment of cancer. Cancer, 1998, 83(8), 1471-1482.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19981015)83:8<1471:: AID-CNCR1>3.0.CO;2-6] [PMID: 9781940]
[82]
Tannour-Louet, M.; Lewis, S.K.; Louet, J.F.; Stewart, J.; Addai, J.B.; Sahin, A.; Vangapandu, H.V.; Lewis, A.L.; Dittmar, K.; Pautler, R.G.; Zhang, L.; Smith, R.G.; Lamb, D.J. Increased expression of CYP24A1 correlates with advanced stages of prostate cancer and can cause resistance to vitamin D3-based therapies. FASEB J., 2014, 28(1), 364-372.
[http://dx.doi.org/10.1096/fj.13-236109] [PMID: 24081904]
[83]
Smith, M.A.; Parkinson, D.R.; Cheson, B.D.; Friedman, M.A. Retinoids in cancer therapy. J. Clin. Oncol., 1992, 10(5), 839-864.
[http://dx.doi.org/10.1200/JCO.1992.10.5.839] [PMID: 1569455]
[84]
Lotan, R. Retinoids in cancer chemoprevention. FASEB J., 1996, 10(9), 1031-1039.
[http://dx.doi.org/10.1096/fasebj.10.9.8801164] [PMID: 8801164]
[85]
De Luca, L.M.; Darwiche, N.; Jones, C.S.; Scita, G. Retinoids in differentiation and neoplasia. Sci Am Sci Med., 1995, 2, 28-37.
[86]
Miller, W.H., Jr The emerging role of retinoids and retinoic acid metabolism blocking agents in the treatment of cancer. Cancer: Inter dis Int J of the Am Cancer Soc., 1998, 83, 1471-1482.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19981015)83:8<1471:: AID-CNCR1>3.0.CO;2-6]
[87]
Altucci, L.; Gronemeyer, H. The promise of retinoids to fight against cancer. Nat. Rev. Cancer, 2001, 1(3), 181-193.
[http://dx.doi.org/10.1038/35106036] [PMID: 11902573]
[88]
Fontana, J.A.; Rishi, A.K. Classical and novel retinoids: their targets in cancer therapy. Leukemia, 2002, 16(4), 463-472.
[http://dx.doi.org/10.1038/sj.leu.2402414] [PMID: 11960323]
[89]
Njar, V.C.; Gediya, L.; Purushottamachar, P.; Chopra, P.; Belosay, A.; Patel, J.B. Retinoids in clinical use. Med. Chem., 2006, 2(4), 431-438.
[http://dx.doi.org/10.2174/157340606777724022] [PMID: 16848757]
[90]
Freemantle, S.J.; Spinella, M.J.; Dmitrovsky, E. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene, 2003, 22(47), 7305-7315.
[http://dx.doi.org/10.1038/sj.onc.1206936] [PMID: 14576840]
[91]
Lasnitzki, I.; Goodman, D.S. Inhibition of the effects of methylcholanthrene on mouse prostate in organ culture by vitamin A and its analogs. Cancer Res., 1974, 34(7), 1564-1571.
[PMID: 4833910]
[92]
Hayes, R.B.; Bogdanovicz, J.F.; Schroeder, F.H.; De Bruijn, A.; Raatgever, J.W.; Van der Maas, P.J.; Oishi, K.; Yoshida, O. Serum retinol and prostate cancer. Cancer, 1988, 62(9), 2021-2026.
[http://dx.doi.org/10.1002/1097-0142(19881101)62:9<2021:AID-CNCR2820620925>3.0.CO;2-R] [PMID: 3167814]
[93]
Carter, B.S.; Carter, H.B.; Isaacs, J.T. Epidemiologic evidence regarding predisposing factors to prostate cancer. Prostate, 1990, 16(3), 187-197.
[http://dx.doi.org/10.1002/pros.2990160302] [PMID: 1691839]
[94]
Reichman, M.E.; Hayes, R.B.; Ziegler, R.G.; Schatzkin, A.; Taylor, P.R.; Kahle, L.L.; Fraumeni, J.F., Jr Serum vitamin A and subsequent development of prostate cancer in the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Cancer Res., 1990, 50(8), 2311-2315.
[PMID: 2317818]
[95]
Hanchette, C.L.; Schwartz, G.G. Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer, 1992, 70(12), 2861-2869.
[http://dx.doi.org/10.1002/1097-0142(19921215)70:12<2861::AID-CNCR2820701224>3.0.CO;2-G] [PMID: 1451068]
[96]
Peehl, D.M.; Wong, S.T.; Stamey, T.A. Vitamin A regulates proliferation and differentiation of human prostatic epithelial cells. Prostate, 1993, 23(1), 69-78.
[http://dx.doi.org/10.1002/pros.2990230107] [PMID: 7687781]
[97]
Muindi, J.; Frankel, S.R.; Miller, W.H., Jr; Jakubowski, A.; Scheinberg, D.A.; Young, C.W.; Dmitrovsky, E.; Warrell, R.P., Jr Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood, 1992, 79(2), 299-303.
[http://dx.doi.org/10.1182/blood.V79.2.299.299] [PMID: 1309668]
[98]
Muindi, J.R.; Frankel, S.R.; Huselton, C.; DeGrazia, F.; Garland, W.A.; Young, C.W.; Warrell, R.P., Jr Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Cancer Res., 1992, 52(8), 2138-2142.
[PMID: 1559217]
[99]
Leo, M.A.; Lasker, J.M.; Raucy, J.L.; Kim, C.I.; Black, M.; Lieber, C.S. Metabolism of retinol and retinoic acid by human liver cytochrome P450IIC8. Arch. Biochem. Biophys., 1989, 269(1), 305-312.
[http://dx.doi.org/10.1016/0003-9861(89)90112-4] [PMID: 2916844]
[100]
Pasquali, D.; Thaller, C.; Eichele, G. Abnormal level of retinoic acid in prostate cancer tissues. J. Clin. Endocrinol. Metab., 1996, 81(6), 2186-2191.
[PMID: 8964849]
[101]
Nagy, L.; Thomázy, V.A.; Chandraratna, R.A.; Heyman, R.A.; Davies, P.J. Retinoid-regulated expression of BCL-2 and tissue transglutaminase during the differentiation and apoptosis of human myeloid leukemia (HL-60) cells. Leuk. Res., 1996, 20(6), 499-505.
[http://dx.doi.org/10.1016/0145-2126(95)00118-2] [PMID: 8709622]
[102]
McDonnell, T.J.; Troncoso, P.; Brisbay, S.M.; Logothetis, C.; Chung, L.W.; Hsieh, J.T.; Tu, S.M.; Campbell, M.L. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res., 1992, 52(24), 6940-6944.
[PMID: 1458483]
[103]
McDonnell, T.J.; Navone, N.M.; Troncoso, P.; Pisters, L.L.; Conti, C.; von Eschenbach, A.C.; Brisbay, S.; Logothetis, C.J. Expression of bcl-2 oncoprotein and p53 protein accumulation in bone marrow metastases of androgen independent prostate cancer. J. Urol., 1997, 157(2), 569-574.
[http://dx.doi.org/10.1016/S0022-5347(01)65204-2] [PMID: 8996359]
[104]
Raffo, A.J.; Perlman, H.; Chen, M.W.; Day, M.L.; Streitman, J.S.; Buttyan, R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res., 1995, 55(19), 4438-4445.
[PMID: 7671257]
[105]
Wouters, W. Retinoid metabolism and its inhibition by liarozole fumarate. Ann. Oncol., 1994, 5, S45-S47.
[106]
Njar, V.C.; Nnane, I.P.; Brodie, A.M. Potent inhibition of retinoic acid metabolism enzyme(s) by novel azolyl retinoids. Bioorg. Med. Chem. Lett., 2000, 10(17), 1905-1908.
[http://dx.doi.org/10.1016/S0960-894X(00)00391-7] [PMID: 10987414]
[107]
Nadin, L.; Murray, M. Participation of CYP2C8 in retinoic acid 4-hydroxylation in human hepatic microsomes. Biochem. Pharmacol., 1999, 58(7), 1201-1208.
[http://dx.doi.org/10.1016/S0006-2952(99)00192-6] [PMID: 10484078]
[108]
McSorley, L.C.; Daly, A.K. Identification of human cytochrome P450 isoforms that contribute to all-trans-retinoic acid 4-hydroxylation. Biochem. Pharmacol., 2000, 60(4), 517-526.
[http://dx.doi.org/10.1016/S0006-2952(00)00356-7] [PMID: 10874126]
[109]
Njar, V.C. Cytochrome p450 retinoic acid 4-hydroxylase inhibitors: potential agents for cancer therapy. Mini Rev. Med. Chem., 2002, 2(3), 261-269.
[http://dx.doi.org/10.2174/1389557023406223] [PMID: 12370067]
[110]
Osanai, M.; Petkovich, M. Expression of the retinoic acid-metabolizing enzyme CYP26A1 limits programmed cell death. Mol. Pharmacol., 2005, 67(5), 1808-1817.
[http://dx.doi.org/10.1124/mol.104.005769] [PMID: 15703382]
[111]
Stearns, M.E.; Wang, M.; Fudge, K. Liarozole and 13-cis-retinoic acid anti-prostatic tumor activity. Cancer Res., 1993, 53(13), 3073-3077.
[PMID: 8319215]
[112]
Pelton, K.; Freeman, M.R.; Solomon, K.R. Cholesterol and prostate cancer. Curr. Opin. Pharmacol., 2012, 12(6), 751-759.
[http://dx.doi.org/10.1016/j.coph.2012.07.006] [PMID: 22824430]
[113]
Tong, Y.C. The role of cholesterol in prostatic diseases. Urol. Sci., 2011, 22, 97-102.
[http://dx.doi.org/10.1016/j.urols.2011.08.002]
[114]
Stopsack, K.H.; Gerke, T.A.; Sinnott, J.A.; Penney, K.L.; Tyekucheva, S.; Sesso, H.D.; Andersson, S.O.; Andrén, O.; Cerhan, J.R.; Giovannucci, E.L.; Mucci, L.A.; Rider, J.R. Cholesterol metabolism and prostate cancer lethality. Cancer Res., 2016, 76(16), 4785-4790.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0903] [PMID: 27325648]
[115]
Lorbek, G.; Lewinska, M.; Rozman, D. Cytochrome P450s in the synthesis of cholesterol and bile acids--from mouse models to human diseases. FEBS J., 2012, 279(9), 1516-1533.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08432.x] [PMID: 22111624]
[116]
Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Sivakumaran, S.; Yazlovitskaya, E.M.; Hiebert, S.W.; Guengerich, F.P.; Waterman, M.R.; Lepesheva, G.I. Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design. J. Lipid Res., 2016, 57(8), 1552-1563.
[http://dx.doi.org/10.1194/jlr.M069229] [PMID: 27313059]
[117]
Huttunen, K.M.; Mähönen, N.; Raunio, H.; Rautio, J. Cytochrome P450-activated prodrugs: targeted drug delivery. Curr. Med. Chem., 2008, 15(23), 2346-2365.
[http://dx.doi.org/10.2174/092986708785909120] [PMID: 18855665]
[118]
Ju, W.; Yang, S.; Ansede, J.H.; Stephens, C.E.; Bridges, A.S.; Voyksner, R.D.; Ismail, M.A.; Boykin, D.W.; Tidwell, R.R.; Hall, J.E.; Wang, M.Z. CYP1A1 and CYP1B1-mediated biotransformation of the antitrypanosomal methamidoxime prodrug DB844 forms novel metabolites through intramolecular rearrangement. J. Pharm. Sci., 2014, 103(1), 337-349.
[http://dx.doi.org/10.1002/jps.23765] [PMID: 24186380]
[119]
Trapani, V.; Patel, V.; Leong, C.O.; Ciolino, H.P.; Yeh, G.C.; Hose, C.; Trepel, J.B.; Stevens, M.F.; Sausville, E.A.; Loaiza-Pérez, A.I. DNA damage and cell cycle arrest induced by 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) is attenuated in aryl hydrocarbon receptor deficient MCF-7 cells. Br. J. Cancer, 2003, 88(4), 599-605.
[http://dx.doi.org/10.1038/sj.bjc.6600722] [PMID: 12592376]
[120]
Leong, C.O.; Gaskell, M.; Martin, E.A.; Heydon, R.T.; Farmer, P.B.; Bibby, M.C.; Cooper, P.A.; Double, J.A.; Bradshaw, T.D.; Stevens, M.F. Antitumour 2-(4-aminophenyl)benzothiazoles generate DNA adducts in sensitive tumour cells in vitro and in vivo. Br. J. Cancer, 2003, 88(3), 470-477.
[http://dx.doi.org/10.1038/sj.bjc.6600719] [PMID: 12569393]
[121]
Brockdorff, B.L.; Skouv, J.; Reiter, B.E.; Lykkesfeldt, A.E. Increased expression of cytochrome p450 1A1 and 1B1 genes in anti-estrogen-resistant human breast cancer cell lines. Int. J. Cancer, 2000, 88(6), 902-906.
[http://dx.doi.org/10.1002/1097-0215(20001215)88:6<902:AID-IJC10>3.0.CO;2-C] [PMID: 11093812]
[122]
Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer, 2004, 4(6), 437-447.
[http://dx.doi.org/10.1038/nrc1367] [PMID: 15170446]
[123]
Saggar, J.K.; Tannock, I.F. Activity of the hypoxia-activated pro-drug TH-302 in hypoxic and perivascular regions of solid tumors and its potential to enhance therapeutic effects of chemotherapy. Int. J. Cancer, 2014, 134(11), 2726-2734.
[http://dx.doi.org/10.1002/ijc.28595] [PMID: 24338277]
[124]
Li, H.; Rokavec, M.; Jiang, L.; Horst, D.; Hermeking, H. Antagonistic effects of p53 and HIF1A on microRNA-34a regulation of PPP1R11 and STAT3 and hypoxia-induced epithelial to mesenchymal transition in colorectal cancer cells. Gastroenterology, 2017, 153(2), 505-520.
[http://dx.doi.org/10.1053/j.gastro.2017.04.017] [PMID: 28435028]
[125]
Patterson, L.H. Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy. Drug Metab. Rev., 2002, 34(3), 581-592.
[http://dx.doi.org/10.1081/DMR-120005659] [PMID: 12214668]
[126]
Denny, W.A. The role of hypoxia-activated prodrugs in cancer therapy. Lancet Oncol., 2000, 1(1), 25-29.
[http://dx.doi.org/10.1016/S1470-2045(00)00006-1] [PMID: 11905684]
[127]
Danielson, P.B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab., 2002, 3(6), 561-597.
[http://dx.doi.org/10.2174/1389200023337054] [PMID: 12369887]
[128]
McKeown, S.R.; Hejmadi, M.V.; McIntyre, I.A.; McAleer, J.J.; Patterson, L.H. AQ4N: an alkylaminoanthraquinone N-oxide showing bioreductive potential and positive interaction with radiation in vivo. Br. J. Cancer, 1995, 72(1), 76-81.
[http://dx.doi.org/10.1038/bjc.1995.280] [PMID: 7599069]
[129]
Hejmadi, M.V.; McKeown, S.R.; Friery, O.P.; McIntyre, I.A.; Patterson, L.H.; Hirst, D.G. DNA damage following combination of radiation with the bioreductive drug AQ4N: possible selective toxicity to oxic and hypoxic tumour cells. Br. J. Cancer, 1996, 73(4), 499-505.
[http://dx.doi.org/10.1038/bjc.1996.87] [PMID: 8595165]
[130]
Ali, M.M.; Symons, M.C.; Taiwo, F.A.; Patterson, L.H. Effects of AQ4N and its reduction product on radiation-mediated DNA strand breakage. Chem. Biol. Interact., 1999, 123(1), 1-10.
[http://dx.doi.org/10.1016/S0009-2797(99)00097-6] [PMID: 10597898]
[131]
Azarenko, O.; Smiyun, G.; Mah, J.; Wilson, L.; Jordan, M.A. Antiproliferative mechanism of action of the novel taxane cabazitaxel as compared with the parent compound docetaxel in MCF7 breast cancer cells. Mol. Cancer Ther., 2014, 13(8), 2092-2103.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0265] [PMID: 24980947]
[132]
van Eijk, M.; Boosman, R.J.; Schinkel, A.H.; Huitema, A.D.R.; Beijnen, J.H. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: relevance for resistance to taxanes. Cancer Chemother. Pharmacol., 2019, 84(3), 487-499.
[http://dx.doi.org/10.1007/s00280-019-03905-3] [PMID: 31309254]
[133]
Ozpolat, B.; Mehta, K.; Tari, A.M.; Lopez-Berestein, G. all-trans-Retinoic acid-induced expression and regulation of retinoic acid 4-hydroxylase (CYP26) in human promyelocytic leukemia. Am. J. Hematol., 2002, 70(1), 39-47.
[http://dx.doi.org/10.1002/ajh.10099] [PMID: 11994980]
[134]
Mira-Y-Lopez, R.; Zheng, W.L.; Kuppumbatti, Y.S.; Rexer, B.; Jing, Y.; Ong, D.E. Retinol conversion to retinoic acid is impaired in breast cancer cell lines relative to normal cells. J. Cell. Physiol., 2000, 185(2), 302-309.
[http://dx.doi.org/10.1002/1097-4652(200011)185:2<302:AID-JCP15>3.0.CO;2-#] [PMID: 11025452]
[135]
Pasquali, D.; Rossi, V.; Prezioso, D.; Gentile, V.; Colantuoni, V.; Lotti, T.; Bellastella, A.; Sinisi, A.A. Changes in tissue transglutaminase activity and expression during retinoic acid-induced growth arrest and apoptosis in primary cultures of human epithelial prostate cells. J. Clin. Endocrinol. Metab., 1999, 84(4), 1463-1469.
[PMID: 10199796]
[136]
Chang, I.; Mitsui, Y.; Kim, S.K.; Sun, J.S.; Jeon, H.S.; Kang, J.Y.; Kang, N.J.; Fukuhara, S.; Gill, A.; Shahryari, V.; Tabatabai, Z.L.; Greene, K.L.; Dahiya, R.; Shin, D.M.; Tanaka, Y. Cytochrome P450 1B1 inhibition suppresses tumorigenicity of prostate cancer via caspase-1 activation. Oncotarget, 2017, 8(24), 39087-39100.
[http://dx.doi.org/10.18632/oncotarget.16598] [PMID: 28388569]
[137]
Rodríguez Castaño, P.; Parween, S.; Pandey, A.V. Bioactivity of curcumin on the cytochrome P450 enzymes of the steroidogenic pathway. Int. J. Mol. Sci., 2019, 20(18), 4606.
[http://dx.doi.org/10.3390/ijms20184606] [PMID: 31533365]
[138]
Maecker, B.; Sherr, D.H.; Vonderheide, R.H.; von Bergwelt-Baildon, M.S.; Hirano, N.; Anderson, K.S.; Xia, Z.; Butler, M.O.; Wucherpfennig, K.W.; O’Hara, C.; Cole, G.; Kwak, S.S.; Ramstedt, U.; Tomlinson, A.J.; Chicz, R.M.; Nadler, L.M.; Schultze, J.L. The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood, 2003, 102(9), 3287-3294.
[http://dx.doi.org/10.1182/blood-2003-05-1374] [PMID: 12869499]
[139]
Nallani, S.C.; Goodwin, B.; Maglich, J.M.; Buckley, D.J.; Buckley, A.R.; Desai, P.B. Induction of cytochrome P450 3A by paclitaxel in mice: pivotal role of the nuclear xenobiotic receptor, pregnane X receptor. Drug Metab. Dispos., 2003, 31(5), 681-684.
[http://dx.doi.org/10.1124/dmd.31.5.681] [PMID: 12695359]
[140]
Kajita, J.; Kuwabara, T.; Kobayashi, H.; Kobayashi, S. CYP3A4 is mainly responsibile for the metabolism of a new vinca alkaloid, vinorelbine, in human liver microsomes. Drug Metab. Dispos., 2000, 28(9), 1121-1127.
[PMID: 10950859]
[141]
Arora, V.; Cate, M.L.; Ghosh, C.; Iversen, P.L. Phosphorodiamidate morpholino antisense oligomers inhibit expression of human cytochrome P450 3A4 and alter selected drug metabolism. Drug Metab. Dispos., 2002, 30(7), 757-762.
[http://dx.doi.org/10.1124/dmd.30.7.757] [PMID: 12065433]
[142]
Iyer, L.; Ratain, M.J. Pharmacogenetics and cancer chemotherapy. Eur. J. Cancer, 1998, 34(10), 1493-1499.
[http://dx.doi.org/10.1016/S0959-8049(98)00230-5] [PMID: 9893619]
[143]
Marre, F.; Sanderink, G.J.; de Sousa, G.; Gaillard, C.; Martinet, M.; Rahmani, R. Hepatic biotransformation of docetaxel (Taxotere) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res., 1996, 56(6), 1296-1302.
[PMID: 8640817]
[144]
Sonnichsen, D.S.; Relling, M.V. Clinical pharmacokinetics of paclitaxel. Clin. Pharmacokinet., 1994, 27(4), 256-269.
[http://dx.doi.org/10.2165/00003088-199427040-00002] [PMID: 7834963]
[145]
Wei, M.X.; Tamiya, T.; Chase, M.; Boviatsis, E.J.; Chang, T.K.; Kowall, N.W.; Hochberg, F.H.; Waxman, D.J.; Breakefield, X.O.; Chiocca, E.A. Experimental tumor therapy in mice using the cyclophosphamide-activating cytochrome P450 2B1 gene. Hum. Gene Ther., 1994, 5(8), 969-978.
[http://dx.doi.org/10.1089/hum.1994.5.8-969] [PMID: 7948146]
[146]
Löhr, M.; Hoffmeyer, A.; Kröger, J.; Freund, M.; Hain, J.; Holle, A.; Karle, P.; Knöfel, W.T.; Liebe, S.; Müller, P.; Nizze, H.; Renner, M.; Saller, R.M.; Wagner, T.; Hauenstein, K.; Günzburg, W.H.; Salmons, B. Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet, 2001, 357(9268), 1591-1592.
[http://dx.doi.org/10.1016/S0140-6736(00)04749-8] [PMID: 11377651]
[147]
Manome, Y.; Wen, P.Y.; Chen, L.; Tanaka, T.; Dong, Y.; Yamazoe, M.; Hirshowitz, A.; Kufe, D.W.; Fine, H.A. Gene therapy for malignant gliomas using replication incompetent retroviral and adenoviral vectors encoding the cytochrome P450 2B1 gene together with cyclophosphamide. Gene Ther., 1996, 3(6), 513-520.
[PMID: 8789801]
[148]
Chen, L.; Waxman, D.J.; Chen, D.; Kufe, D.W. Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene. Cancer Res., 1996, 56(6), 1331-1340.
[PMID: 8640822]
[149]
Hunt, S. Technology evaluation: MetXia-P450, Oxford Biomedica. Curr. Opin. Mol. Ther., 2001, 3(6), 595-598.
[PMID: 11804275]
[150]
Kan, O.; Kingsman, S.; Naylor, S. Cytochrome P450-based cancer gene therapy: current status. Expert Opin. Biol. Ther., 2002, 2(8), 857-868.
[http://dx.doi.org/10.1517/14712598.2.8.857] [PMID: 12517265]
[151]
Griffiths, L.; Binley, K.; Iqball, S.; Kan, O.; Maxwell, P.; Ratcliffe, P.; Lewis, C.; Harris, A.; Kingsman, S.; Naylor, S. The macrophage - a novel system to deliver gene therapy to pathological hypoxia. Gene Ther., 2000, 7(3), 255-262.
[http://dx.doi.org/10.1038/sj.gt.3301058] [PMID: 10694803]
[152]
Schwartz, P.S.; Chen, C.S.; Waxman, D.J. Enhanced bystander cytotoxicity of P450 gene-directed enzyme prodrug therapy by expression of the antiapoptotic factor p35. Cancer Res., 2002, 62(23), 6928-6937.
[PMID: 12460909]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy