Macromolecular Targets of Antiparasitic Germacranolide Sesquiterpenoids: An In Silico Investigation

Author(s): Phillip M. Arnston, William N. Setzer*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 6 , 2020

Become EABM
Become Reviewer

Abstract:

Background: The parasitic protozoal infections leishmaniasis, human African trypanosomiasis, and Chagas disease are neglected tropical diseases that pose serious health risks for much of the world’s population. Current treatment options suffer from limitations, but plantderived natural products may provide economically advantageous therapeutic alternatives. Several germacranolide sesquiterpenoids have shown promising antiparasitic activities, but the mechanisms of activity have not been clearly established.

Objective: The objective is to use in silico screening of known antiparasitic germacranolides against recognized protozoal protein targets in order to provide insight into the molecular mechanisms of activity of these natural products.

Methods: Conformational analyses of the germacranolides were carried out using density functional theory, followed by molecular docking. A total of 88 Leishmania protein structures, 86 T. brucei protein structures, and 50 T. cruzi protein structures were screened against 27 antiparasitic germacranolides.

Results: The in-silico screening has revealed which of the protein targets of Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are preferred by the sesquiterpenoid ligands.

Keywords: Leishmaniasis, trypanosomiasis, african sleeping sickness, chagas disease, Leishmania, Trypanosoma, conformational analysis, molecular docking.

[1]
World Health Organization. Neglected tropical diseases, Available at https://www.who.int/neglected_diseases/diseases/en/
[2]
Copeland, N.K.; Aronson, N.E. Leishmaniasis: treatment updates and clinical practice guidelines review. Curr. Opin. Infect. Dis., 2015, 28(5), 426-437.
[http://dx.doi.org/10.1097/QCO.0000000000000194] [PMID: 26312442]
[3]
Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: a review. F1000 Res., 2017, 6, 750.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[4]
Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet, 2010, 375(9709), 148-159.
[http://dx.doi.org/10.1016/S0140-6736(09)60829-1] [PMID: 19833383]
[5]
Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human African trypanosomiasis. Lancet, 2017, 390(10110), 2397-2409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[6]
Sales, Junior P.A.; Molina, I.; Fonseca Murta, S.M.; Sánchez-Montalvá, A.; Salvador, F.; Corrêa-Oliveira, R.; Carneiro, C.M. Experimental and clinical treatment of Chagas disease: A review. Am. J. Trop. Med. Hyg., 2017, 97(5), 1289-1303.
[http://dx.doi.org/10.4269/ajtmh.16-0761] [PMID: 29016289]
[7]
Pinheiro, E.; Brum-Soares, L.; Reis, R.; Cubides, J-C. Chagas disease: review of needs, neglect, and obstacles to treatment access in Latin America. Rev. Soc. Bras. Med. Trop., 2017, 50(3), 296-300.
[http://dx.doi.org/10.1590/0037-8682-0433-2016] [PMID: 28700045]
[8]
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.A.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; Lago, J.H.; Leon, L.L.; Lopes, N.P. das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part I. Curr. Med. Chem., 2012, 19(14), 2128-2175.
[http://dx.doi.org/10.2174/092986712800229023] [PMID: 22414103]
[9]
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.A.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.G.; Lago, J.H.G.; Leon, L.L.; Lopes, N.P. das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. Curr. Med. Chem., 2012, 19(14), 2176-2228.
[http://dx.doi.org/10.2174/092986712800229087] [PMID: 22414104]
[10]
Soeiro, M.N.C.; de Castro, S.L. Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets, 2009, 13(1), 105-121.
[http://dx.doi.org/10.1517/14728220802623881] [PMID: 19063710]
[11]
Chawla, B.; Madhubala, R. Drug targets in Leishmania. J. Parasit. Dis., 2010, 34(1), 1-13.
[http://dx.doi.org/10.1007/s12639-010-0006-3] [PMID: 21526026]
[12]
Santos, A.L.S.; Branquinha, M.H.; D’Avila-Levy, C.M.; Kneipp, L.F.; Sodré, C.L. Proteins and Proteomics of Leishmania and Trypanosoma; Springer: Dordrecht, Netherlands, 2014.
[http://dx.doi.org/10.1007/978-94-007-7305-9]
[13]
Scotti, L.; Ishiki, H.; Mendonça Júnior, F.J.; Da Silva, M.S.; Scotti, M.T. In-silico analyses of natural products on Leishmania enzyme targets. Mini Rev. Med. Chem., 2015, 15(3), 253-269.
[http://dx.doi.org/10.2174/138955751503150312141854] [PMID: 25769973]
[14]
Sanchez-Sanchez, M.; Rivera, G.A.; Garcia, E.; Bocanegra-Garcia, V. Therapeutic targets for the development of anti-Trypanosoma cruzi drugs: A brief review. Mini Rev. Org. Chem., 2016, 13, 227-243.
[http://dx.doi.org/10.2174/1570193X13666160510113821]
[15]
Ogungbe, I.V.; Setzer, W.N. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-Part III: In-silico molecular docking investigations. Molecules, 2016, 21(10), 1389.
[http://dx.doi.org/10.3390/molecules21101389] [PMID: 27775577]
[16]
Chibli, L.A.; Schmidt, T.J.; Nonato, M.C.; Calil, F.A.; Da Costa, F.B. Natural products as inhibitors of Leishmania major dihydroorotate dehydrogenase. Eur. J. Med. Chem., 2018, 157, 852-866.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.033] [PMID: 30145372]
[17]
Schmidt, T.J.; Da Costa, F.B.; Lopes, N.P.; Kaiser, M.; Brun, R. In silico prediction and experimental evaluation of furanoheliangolide sesquiterpene lactones as potent agents against Trypanosoma brucei rhodesiense. Antimicrob. Agents Chemother., 2014, 58(1), 325-332.
[http://dx.doi.org/10.1128/AAC.01263-13] [PMID: 24165182]
[18]
Wulsten, I.F.; Costa-Silva, T.A.; Mesquita, J.T.; Lima, M.L.; Galuppo, M.K.; Taniwaki, N.N.; Borborema, S.E.T.; Da Costa, F.B.; Schmidt, T.J.; Tempone, A.G. Investigation of the anti-Leishmania (Leishmania) infantum activity of some natural sesquiterpene lactones. Molecules, 2017, 22(5), 685.
[http://dx.doi.org/10.3390/molecules22050685] [PMID: 28441357]
[19]
Caldas, L.A.; Yoshinaga, M.L.; Ferreira, M.J.P.; Lago, J.H.G.; de Souza, A.B.; Laurenti, M.D.; Passero, L.F.D.; Sartorelli, P. Antileishmanial activity and ultrastructural changes of sesquiterpene lactones isolated from Calea pinnatifida (Asteraceae). Bioorg. Chem., 2019, 83, 348-353.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.059] [PMID: 30399466]
[20]
Sosa, A.M.; Amaya, S.; Salamanca Capusiri, E.; Gilabert, M.; Bardón, A.; Giménez, A.; Vera, N.R.; Borkosky, S.A. Active sesquiterpene lactones against Leishmania amazonensis and Leishmania braziliensis. Nat. Prod. Res., 2016, 30(22), 2611-2615.
[http://dx.doi.org/10.1080/14786419.2015.1126260] [PMID: 26755152]
[21]
Julianti, T.; Hata, Y.; Zimmermann, S.; Kaiser, M.; Hamburger, M.; Adams, M. Antitrypanosomal sesquiterpene lactones from Saussurea costus. Fitoterapia, 2011, 82(7), 955-959.
[http://dx.doi.org/10.1016/j.fitote.2011.05.010] [PMID: 21624443]
[22]
Laurella, L.C.; Cerny, N.; Bivona, A.E.; Sánchez Alberti, A.; Giberti, G.; Malchiodi, E.L.; Martino, V.S.; Catalan, C.A.; Alonso, M.R.; Cazorla, S.I.; Sülsen, V.P. Assessment of sesquiterpene lactones isolated from Mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp. PLoS Negl. Trop. Dis., 2017, 11(9)e0005929
[http://dx.doi.org/10.1371/journal.pntd.0005929] [PMID: 28945741]
[23]
Ulloa, J.L.; Spina, R.; Casasco, A.; Petray, P.B.; Martino, V.; Sosa, M.A.; Frank, F.M.; Muschietti, L.V. Germacranolide-type sesquiterpene lactones from Smallanthus sonchifolius with promising activity against Leishmania mexicana and Trypanosoma cruzi. Parasit. Vectors, 2017, 10(1), 567.
[http://dx.doi.org/10.1186/s13071-017-2509-6] [PMID: 29132413]
[24]
Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Brun, R.; Schmidt, T.J. Antiprotozoal sesquiterpene lactones and other constituents from Tarchonanthus camphoratus and Schkuhria pinnata. J. Nat. Prod., 2018, 81(1), 124-130.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00747] [PMID: 29244495]
[25]
Wavefunction, I. Spartan ’18, Wavefunction, Inc., 2019.Available at https://www.wavefun.com/
[26]
Halgren, T.A. Merck Molecular Force Field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 17, 490-519.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490:A ID-JCC1>3.0.CO;2-P]
[27]
Setzer, W.N. Conformational analysis of macrocyclic frankincense (Boswellia) diterpenoids. J. Mol. Model., 2018, 24(3), 74.
[http://dx.doi.org/10.1007/s00894-018-3625-8] [PMID: 29492734]
[28]
Ogungbe, I.V.; Setzer, W.N. In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules, 2013, 18(7), 7761-7847.
[http://dx.doi.org/10.3390/molecules18077761] [PMID: 23823876]
[29]
Ogungbe, I.V.; Ng, J.D.; Setzer, W.N. Interactions of antiparasitic alkaloids with Leishmania protein targets: a molecular docking analysis. Future Med. Chem., 2013, 5(15), 1777-1799.
[http://dx.doi.org/10.4155/fmc.13.114] [PMID: 24144413]
[30]
Ogungbe, I.V.; Erwin, W.R.; Setzer, W.N. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. J. Mol. Graph. Model., 2014, 48, 105-117.
[http://dx.doi.org/10.1016/j.jmgm.2013.12.010] [PMID: 24463105]
[31]
Ogungbe, I.V.; Setzer, W.N. Comparative molecular docking of antitrypanosomal natural products into multiple Trypanosoma brucei drug targets. Molecules, 2009, 14(4), 1513-1536.
[http://dx.doi.org/10.3390/molecules14041513] [PMID: 19384282]
[32]
Setzer, W.N.; Ogungbe, I.V. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl. Trop. Dis., 2012, 6(7)e1727
[http://dx.doi.org/10.1371/journal.pntd.0001727] [PMID: 22848767]
[33]
McCulley, S.F.; Setzer, W.N. An in-silico investigation of anti-Chagas phytochemicals. Curr. Clin. Pharmacol., 2014, 9(3), 205-257.
[http://dx.doi.org/10.2174/157488470903140806114147] [PMID: 23173969]
[34]
Setzer, W.N.; Byler, K.G. In: In-silico approaches to natural products drug discovery: A review of the recent literature.Natural Products and Drug Discovery: From Pharmacochemistry to Pharmacological Approaches;; Diniz, M.F.F.M.; Scotti, M.T.; Scotti, L.; Alves, M.F.E., Eds.; Editora UFPB: João Pessoa, Brazil , 2018.
[35]
Snow Setzer, M.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. Antibiotics (Basel), 2016, 5(3), 30.
[http://dx.doi.org/10.3390/antibiotics5030030] [PMID: 27626453]
[36]
Setzer, M.S.; Byler, K.G.; Ogungbe, I.V.; Setzer, W.N. Natural products as new treatment options for trichomoniasis: A molecular docking investigation. Sci. Pharm., 2017, 85(1), 85.
[http://dx.doi.org/10.3390/scipharm85010005] [PMID: 28134827]
[37]
Pan, Y.; Huang, N.; Cho, S.; MacKerell, A.D., Jr Consideration of molecular weight during compound selection in virtual target-based database screening. J. Chem. Inf. Comput. Sci., 2003, 43(1), 267-272.
[http://dx.doi.org/10.1021/ci020055f] [PMID: 12546562]
[38]
Yang, J.M.; Shen, T.W. A pharmacophore-based evolutionary approach for screening selective estrogen receptor modulators. Proteins, 2005, 59(2), 205-220.
[http://dx.doi.org/10.1002/prot.20387] [PMID: 15726586]
[39]
Huang, N.; Nagarsekar, A.; Xia, G.; Hayashi, J.; MacKerell, A.D., Jr Identification of non-phosphate-containing small molecular weight inhibitors of the tyrosine kinase p56 Lck SH2 domain via in silico screening against the pY + 3 binding site. J. Med. Chem., 2004, 47(14), 3502-3511.
[http://dx.doi.org/10.1021/jm030470e] [PMID: 15214778]
[40]
Hancock, C.N.; Macias, A.; Lee, E.K.; Yu, S.Y.; Mackerell, A.D., Jr; Shapiro, P. Identification of novel extracellular signal-regulated kinase docking domain inhibitors. J. Med. Chem., 2005, 48(14), 4586-4595.
[http://dx.doi.org/10.1021/jm0501174] [PMID: 15999996]
[41]
Abad-Zapatero, C.; Metz, J.T. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today, 2005, 10(7), 464-469.
[http://dx.doi.org/10.1016/S1359-6446(05)03386-6] [PMID: 15809192]
[42]
Carta, G.; Knox, A.J.S.; Lloyd, D.G. Unbiasing scoring functions: a new normalization and rescoring strategy. J. Chem. Inf. Model., 2007, 47(4), 1564-1571.
[http://dx.doi.org/10.1021/ci600471m] [PMID: 17552493]
[43]
Sánchez-Castellanos, M.; Bucio, M.A.; Hernández-Barragán, A.; Joseph-Nathan, P.; Cuevas, G.; Quijano, L. Vibrational circular dichroism (VCD), VCD exciton coupling, and X-ray determination of the absolute configuration of an α,β-unsaturated germacranolide. Chirality, 2015, 27(3), 247-252.
[http://dx.doi.org/10.1002/chir.22420] [PMID: 25640191]
[44]
But, P.P-H.; He, Z-D.; Ma, S-C.; Chan, Y-M.; Shaw, P-C.; Ye, W-C.; Jiang, R-W. Antiviral constituents against respiratory viruses from Mikania micrantha. J. Nat. Prod., 2009, 72(5), 925-928.
[http://dx.doi.org/10.1021/np800542t] [PMID: 19267453]
[45]
Wong, H.F.; Brown, G.D. Germacranolides from Artemisia myriantha and their conformation. Phytochemistry, 2002, 59(5), 529-536.
[http://dx.doi.org/10.1016/S0031-9422(01)00479-4] [PMID: 11853748]
[46]
Arai, T.; Toda, Y.; Kato, K.; Miyamoto, K.; Hasegawa, T.; Yamada, K.; Ueda, J.; Hasegawa, K.; Inoue, T.; Shigemori, H. Artabolide, a novel polar auxin transport inhibitor isolated from Artemisia absinthium. Tetrahedron, 2013, 69, 7001-7005.
[http://dx.doi.org/10.1016/j.tet.2013.06.052]
[47]
Zhang, T.; Si, J-G.; Zhang, Q-B.; Ding, G.; Zou, Z-M. New highly oxygenated germacranolides from Carpesium divaricatum and their cytotoxic activity. Sci. Rep., 2016, 6, 27237.
[http://dx.doi.org/10.1038/srep27237] [PMID: 27265755]
[48]
Edil’baeva, T.T.; Kaldybaeva, A.K.; Turdybekov, K.M.; Kulyyasov, A.T.; Adekenov, S.M. Molecular and crystal structure of the sesquiterpene lactone ketopelenolide B. Chem. Nat. Compd., 1999, 35, 430-432.
[http://dx.doi.org/10.1007/BF02282510]
[49]
Izbosarov, M.B.; Abduazimov, B.K.; Yusupova, I.M.; Tashkhodzhaev, B.; Vdovin, A.D.; Abdullaev, N.D. Germacranolide from Tanacetopsis mucronata. Chem. Nat. Compd., 1998, 34, 456-461.
[http://dx.doi.org/10.1007/BF02329594]
[50]
Passreiter, C.M.; Stoeber, S.B.; Ortega, A.; Maldonado, E.; Toscano, R.A. Germacranolide type sesquiterpene lactones from Neurolaena macrocephala. Phytochemistry, 1999, 50, 1153-1157.
[http://dx.doi.org/10.1016/S0031-9422(98)00660-8]
[51]
Ali, M.S.; Ibrahim, S.A.; Ahmed, S.; Lobkovsky, E. A new germacranolide and a new ceramide from Salvia nubicola (Lamiaceae). Zeitschrift fur Naturforsch. -. Sect. B. J. Chem. Sci., 2007, 62, 1333-1338.
[52]
Quick, A.; Rogers, D. Crystal and molecular structure of parthenolide. J. Chem. Soc. Perkin Trans. II, 1976, 2, 465-469. [4,5-epoxygermacra-1(10),11(13)-dien-12,6-olactone
[http://dx.doi.org/10.1039/p29760000465]
[53]
Abdel-Sattar, E.; McPhail, A.T. cis-parthenolid-9-one from Anvillea garcinii. J. Nat. Prod., 2000, 63(11), 1587-1589.
[http://dx.doi.org/10.1021/np000269w] [PMID: 11087618]
[54]
Ren, Y.; Acuña, U.M.; Jiménez, F.; García, R.; Mejía, M.; Chai, H.; Gallucci, J.C.; Farnsworth, N.R.; Soejarto, D.D.; Carcache de Blanco, E.J.; Kinghorn, A.D. Cytotoxic and NF-κB inhibitory sesquiterpene lactones from Piptocoma rufescens. Tetrahedron, 2012, 68(12), 2671-2678.
[http://dx.doi.org/10.1016/j.tet.2012.01.061] [PMID: 22685350]
[55]
Cavalli, A.; Bolognesi, M.L. Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. J. Med. Chem., 2009, 52(23), 7339-7359.
[http://dx.doi.org/10.1021/jm9004835] [PMID: 19606868]
[56]
Pieretti, S.; Haanstra, J.R.; Mazet, M.; Perozzo, R.; Bergamini, C.; Prati, F.; Fato, R.; Lenaz, G.; Capranico, G.; Brun, R.; Bakker, B.M.; Michels, P.A.; Scapozza, L.; Bolognesi, M.L.; Cavalli, A. Naphthoquinone derivatives exert their antitrypanosomal activity via a multi-target mechanism. PLoS Negl. Trop. Dis., 2013, 7(1)e2012
[http://dx.doi.org/10.1371/journal.pntd.0002012] [PMID: 23350008]
[57]
Mauël, J. Intracellular survival of protozoan parasites with special reference to Leishmania spp., Toxoplasma gondii and Trypanosoma cruzi. Adv. Parasitol., 1996, 38, 1-51.
[http://dx.doi.org/10.1016/S0065-308X(08)60032-9] [PMID: 8701794]
[58]
Cordeiro, A.T.; Feliciano, P.R.; Pinheiro, M.P.; Nonato, M.C. Crystal structure of dihydroorotate dehydrogenase from Leishmania major. Biochimie, 2012, 94(8), 1739-1748.
[http://dx.doi.org/10.1016/j.biochi.2012.04.003] [PMID: 22542640]
[59]
Pinheiro, M.P. Emery, Fda.S.; Nonato, M.C. Target sites for the design of anti-trypanosomatid drugs based on the structure of dihydroorotate dehydrogenase. Curr. Pharm. Des., 2013, 19(14), 2615-2627.
[http://dx.doi.org/10.2174/1381612811319140011] [PMID: 23116399]
[60]
Ibba, M.; Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem., 2000, 69, 617-650.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.617] [PMID: 10966471]
[61]
Shibata, S.; Gillespie, J.R.; Kelley, A.M.; Napuli, A.J.; Zhang, Z.; Kovzun, K.V.; Pefley, R.M.; Lam, J.; Zucker, F.H.; Van Voorhis, W.C.; Merritt, E.A.; Hol, W.G.; Verlinde, C.L.; Fan, E.; Buckner, F.S. Selective inhibitors of methionyl-tRNA synthetase have potent activity against Trypanosoma brucei Infection in Mice. Antimicrob. Agents Chemother., 2011, 55(5), 1982-1989.
[http://dx.doi.org/10.1128/AAC.01796-10] [PMID: 21282428]
[62]
Larson, E.T.; Kim, J.E.; Zucker, F.H.; Kelley, A.; Mueller, N.; Napuli, A.J.; Verlinde, C.L.M.J.; Fan, E.; Buckner, F.S.; Van Voorhis, W.C.; Merritt, E.A.; Hol, W.G. Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate. Biochimie, 2011, 93(3), 570-582.
[http://dx.doi.org/10.1016/j.biochi.2010.11.015] [PMID: 21144880]
[63]
Garami, A.; Mehlert, A.; Ilg, T. Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphoman-nomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol. Cell. Biol., 2001, 21(23), 8168-8183.
[http://dx.doi.org/10.1128/MCB.21.23.8168-8183.2001] [PMID: 11689705]
[64]
Nare, B.; Hardy, L.W.; Beverley, S.M. The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J. Biol. Chem., 1997, 272(21), 13883-13891.
[http://dx.doi.org/10.1074/jbc.272.21.13883] [PMID: 9153248]
[65]
Dawson, A.; Gibellini, F.; Sienkiewicz, N.; Tulloch, L.B.; Fyfe, P.K.; McLuskey, K.; Fairlamb, A.H.; Hunter, W.N. Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate. Mol. Microbiol., 2006, 61(6), 1457-1468.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05332.x] [PMID: 16968221]
[66]
Kumar, P.; Kumar, A.; Verma, S.S.; Dwivedi, N.; Singh, N.; Siddiqi, M.I.; Tripathi, R.P.; Dube, A.; Singh, N. Leishmania donovani pteridine reductase 1: biochemical properties and structure-modeling studies. Exp. Parasitol., 2008, 120(1), 73-79.
[http://dx.doi.org/10.1016/j.exppara.2008.05.005] [PMID: 18617167]
[67]
Schormann, N.; Pal, B.; Senkovich, O.; Carson, M.; Howard, A.; Smith, C.; Delucas, L.; Chattopadhyay, D. Crystal structure of Trypanosoma cruzi pteridine reductase 2 in complex with a substrate and an inhibitor. J. Struct. Biol., 2005, 152(1), 64-75.
[http://dx.doi.org/10.1016/j.jsb.2005.07.008] [PMID: 16168672]
[68]
Doyle, M.L. Characterization of binding interactions by isothermal titration calorimetry. Curr. Opin. Biotechnol., 1997, 8(1), 31-35.
[http://dx.doi.org/10.1016/S0958-1669(97)80154-1] [PMID: 9013658]
[69]
Leavitt, S.; Freire, E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol., 2001, 11(5), 560-566.
[http://dx.doi.org/10.1016/S0959-440X(00)00248-7] [PMID: 11785756]
[70]
Saboury, A.A. A review on the ligand binding studies by isothermal titration calorimetry. J. Iran. Chem. Soc., 2006, 3, 1-21.
[http://dx.doi.org/10.1007/BF03245784]
[71]
Cheleski, J.; Wiggers, H.J.; Citadini, A.P.; da Costa Filho, A.J.; Nonato, M.C.; Montanari, C.A. Kinetic mechanism and catalysis of Trypanosoma cruzi dihydroorotate dehydrogenase enzyme evaluated by isothermal titration calorimetry. Anal. Biochem., 2010, 399(1), 13-22.
[http://dx.doi.org/10.1016/j.ab.2009.11.018] [PMID: 19932077]
[72]
Rundlett, K.L.; Armstrong, D.W. Methods for the determination of binding constants by capillary electrophoresis. Electrophoresis, 2001, 22(7), 1419-1427.
[http://dx.doi.org/10.1002/1522-2683(200105)22:7<1419:AID-ELPS1419>3.0.CO;2-V] [PMID: 11379966]
[73]
Tanaka, Y.; Terabe, S. Estimation of binding constants by capillary electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 768(1), 81-92.
[http://dx.doi.org/10.1016/S0378-4347(01)00488-1] [PMID: 11939561]
[74]
Copeland, R.A.; Davis, J.P.; Dowling, R.L.; Lombardo, D.; Murphy, K.B.; Patterson, T.A. Recombinant human dihydroorotate dehydrogenase: expression, purification, and characterization of a catalytically functional truncated enzyme. Arch. Biochem. Biophys., 1995, 323(1), 79-86.
[http://dx.doi.org/10.1006/abbi.1995.0012] [PMID: 7487077]
[75]
Marcinkeviciene, J.; Tinney, L.M.; Wang, K.H.; Rogers, M.J.; Copeland, R.A. Dihydroorotate dehydrogenase B of Enterococcus faecalis. Characterization and insights into chemical mechanism. Biochemistry, 1999, 38(40), 13129-13137.
[http://dx.doi.org/10.1021/bi990674q] [PMID: 10529184]
[76]
Baldwin, J.; Michnoff, C.H.; Malmquist, N.A.; White, J.; Roth, M.G.; Rathod, P.K.; Phillips, M.A. High-throughput screening for potent and selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J. Biol. Chem., 2005, 280(23), 21847-21853.
[http://dx.doi.org/10.1074/jbc.M501100200] [PMID: 15795226]
[77]
Sykes, D.B.; Kfoury, Y.S.; Mercier, F.E.; Wawer, M.J.; Law, J.M.; Haynes, M.K.; Lewis, T.A.; Schajnovitz, A.; Jain, E.; Lee, D.; Meyer, H.; Pierce, K.A.; Tolliday, N.J.; Waller, A.; Ferrara, S.J.; Eheim, A.L.; Stoeckigt, D.; Maxcy, K.L.; Cobert, J.M.; Bachand, J.; Szekely, B.A.; Mukherjee, S.; Sklar, L.A.; Kotz, J.D.; Clish, C.B.; Sadreyev, R.I.; Clemons, P.A.; Janzer, A.; Schreiber, S.L.; Scadden, D.T. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell, 2016, 167(1), 171-186.e15.
[http://dx.doi.org/10.1016/j.cell.2016.08.057] [PMID: 27641501]
[78]
Chapman, E.; Wong, C-H. A pH sensitive colorometric assay for the high-throughput screening of enzyme inhibitors and substrates: a case study using kinases. Bioorg. Med. Chem., 2002, 10(3), 551-555.
[http://dx.doi.org/10.1016/S0968-0896(01)00306-6] [PMID: 11814841]
[79]
Zoraghi, R.; See, R.H.; Axerio-Cilies, P.; Kumar, N.S.; Gong, H.; Moreau, A.; Hsing, M.; Kaur, S.; Swayze, R.D.; Worrall, L.; Amandoron, E.; Lian, T.; Jackson, L.; Jiang, J.; Thorson, L.; Labriere, C.; Foster, L.; Brunham, R.C.; McMaster, W.R.; Finlay, B.B.; Strynadka, N.C.; Cherkasov, A.; Young, R.N.; Reiner, N.E. Identification of pyruvate kinase in methicillin-resistant Staphylococcus aureus as a novel antimicrobial drug target. Antimicrob. Agents Chemother., 2011, 55(5), 2042-2053.
[http://dx.doi.org/10.1128/AAC.01250-10] [PMID: 21357306]
[80]
Charter, N.W.; Kauffman, L.; Singh, R.; Eglen, R.M. A generic, homogenous method for measuring kinase and inhibitor activity via adenosine 5′-diphosphate accumulation. J. Biomol. Screen., 2006, 11(4), 390-399.
[http://dx.doi.org/10.1177/1087057106286829] [PMID: 16751335]
[81]
Vander Heiden, M.G.; Christofk, H.R.; Schuman, E.; Subtelny, A.O.; Sharfi, H.; Harlow, E.E.; Xian, J.; Cantley, L.C. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem. Pharmacol., 2010, 79(8), 1118-1124.
[http://dx.doi.org/10.1016/j.bcp.2009.12.003] [PMID: 20005212]
[82]
Cavazzuti, A.; Paglietti, G.; Hunter, W.N.; Gamarro, F.; Piras, S.; Loriga, M.; Allecca, S.; Corona, P.; McLuskey, K.; Tulloch, L.; Gibellini, F.; Ferrari, S.; Costi, M.P. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1448-1453.
[http://dx.doi.org/10.1073/pnas.0704384105] [PMID: 18245389]
[83]
Shanks, E.J.; Ong, H.B.; Robinson, D.A.; Thompson, S.; Sienkiewicz, N.; Fairlamb, A.H.; Frearson, J.A. Development and validation of a cytochrome c-coupled assay for pteridine reductase 1 and dihydrofolate reductase. Anal. Biochem., 2010, 396(2), 194-203.
[http://dx.doi.org/10.1016/j.ab.2009.09.003] [PMID: 19748480]
[84]
Teixeira, B.V.F.; Teles, A.L.B.; Silva, S.G.D.; Brito, C.C.B.; Freitas, H.F.; Pires, A.B.L.; Froes, T.Q.; Castilho, M.S. Dual and selective inhibitors of pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Leishmania chagasi. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1439-1450.
[http://dx.doi.org/10.1080/14756366.2019.1651311] [PMID: 31409157]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 6
Year: 2020
Published on: 05 October, 2020
Page: [477 - 503]
Pages: 27
DOI: 10.2174/1386207323666200218114759
Price: $65

Article Metrics

PDF: 19
HTML: 2
EPUB: 1
PRC: 1