Bench-to-Bedside Theranostics in Nuclear Medicine

Author(s): Narges Jokar, Majid Assadi, Anna Yordanova, Hojjat Ahmadzadehfar*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 31 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

The optimum selection of the appropriate radiolabelled probe for the right target and the right patient is the foundation of theranostics in personalised medicine. In nuclear medicine, this process is realised through the appropriate choice of radiopharmaceuticals based on molecular biomarkers regarding molecular imaging. Theranostics is developing a strategy that can be used to implement accepted tools for individual molecular targeting, including diagnostics, and advances in genomic molecular knowledge, which has led to identifying theranostics biomaterials that have the potency to diagnose and treat malignancies. Today, numerous studies have reported on the discovery and execution of these radiotracers in personalised medicine. In this review, we presented our point of view of the most important theranostics agents that can be used to treat several types of malignancies. Molecular targeted radionuclide treatment methods based on theranostics are excellent paradigms of the relationship between molecular imaging and therapy that has been used to provide individualised or personalised patient care. Toward that end, a precise planned prospective examination of theranostics must be done to compare this approach to more standard therapies.

Keywords: Theranostics, precision medicine, MIBG, FAPI, PRRT, PSMA, radioiodine.

[1]
Sadée W, Dai Z. Pharmacogenetics/genomics and personalized medicine. Human molecular genetics 2005; 14(suppl. 2): R207-14.
[2]
Funkhouser J. Reinventing pharma: the theranostic revolution. Curr Drug Discov 2002; 2: 17-9.
[3]
Verburg FA, Heinzel A, Hänscheid H, Mottaghy FM, Luster M, Giovanella L. Nothing new under the nuclear sun: towards 80 years of theranostics in nuclear medicine. Eur J Nucl Med Mol Imaging 2014; 41(2): 199-201.
[http://dx.doi.org/10.1007/s00259-013-2609-2] [PMID: 24196921]
[4]
Goldblatt EM, Lee W-H. From bench to bedside: the growing use of translational research in cancer medicine. Am J Transl Res 2010; 2(1): 1-18.
[PMID: 20182579]
[5]
Yang D J, Pham L, Liao M-H, Kong F-L, Uemura H, Shih Y-Y I. Advances in molecular pathway-directed cancer systems imaging and therapy. BioMed research international 2014; 2014
[http://dx.doi.org/10.1155/2014/639475]
[6]
Yordanova A, Eppard E, Kürpig S, et al. Theranostics in nuclear medicine practice. OncoTargets Ther 2017; 10: 4821-8.
[http://dx.doi.org/10.2147/OTT.S140671] [PMID: 29042793]
[7]
Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003; 17(5): 545-80.
[http://dx.doi.org/10.1101/gad.1047403] [PMID: 12629038]
[8]
Hertz S, Roberts A. Application of radioactive iodine in therapy of Graves’ disease. J Clin Invest 1942; 21.
[9]
Hertz B. Dr. Saul Hertz (1905-1950) Discovers the Medical Uses of Radioactive Iodine: The First Targeted Cancer Therapy. In: Ahmadzadehfar H, Ed. Thyroid Cancer - Advances in Diagnosis and Therapy. IntechOpen 2016.
[http://dx.doi.org/10.5772/64609]
[10]
Luster M, Clarke SE, Dietlein M, et al. European Association of Nuclear Medicine (EANM). Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35(10): 1941-59.
[http://dx.doi.org/10.1007/s00259-008-0883-1] [PMID: 18670773]
[11]
Boudreaux JP, Klimstra DS, Hassan MM, et al. North American Neuroendocrine Tumor Society (NANETS). The NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the Jejunum, Ileum, Appendix, and Cecum. Pancreas 2010; 39(6): 753-66.
[http://dx.doi.org/10.1097/MPA.0b013e3181ebb2a5] [PMID: 20664473]
[12]
Yordanova A, Ahmadzadehfar H, Gonzalez-Carmona M, et al. A Step-by-Step Clinical Approach for the Management of Neuroendocrine Tumours. Horm Metab Res 2017; 49(2): 77-85.
[http://dx.doi.org/10.1055/s-0042-121894] [PMID: 28099977]
[13]
Yordanova A, Wicharz MM, Mayer K, et al. The Role of Adding Somatostatin Analogues to Peptide Receptor Radionuclide Therapy as a Combination and Maintenance Therapy. Clin Cancer Res 2018; 24(19): 4672-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0947] [PMID: 29950352]
[14]
Hofmann M, Maecke H, Börner R, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001; 28(12): 1751-7.
[http://dx.doi.org/10.1007/s002590100639] [PMID: 11734911]
[15]
Haug AR, Auernhammer CJ, Wängler B, et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med 2010; 51(9): 1349-56.
[http://dx.doi.org/10.2967/jnumed.110.075002] [PMID: 20720050]
[16]
Haug AR, Cindea-Drimus R, Auernhammer CJ, et al. Neuroendocrine tumor recurrence: diagnosis with 68Ga-DOTATATE PET/CT. Radiology 2014; 270(2): 517-25.
[http://dx.doi.org/10.1148/radiol.13122501] [PMID: 24056402]
[17]
Haug AR, Cindea-Drimus R, Auernhammer CJ, et al. The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J Nucl Med 2012; 53(11): 1686-92.
[http://dx.doi.org/10.2967/jnumed.111.101675] [PMID: 22984220]
[18]
Marinova M, Mücke M, Mahlberg L, et al. Improving quality of life in patients with pancreatic neuroendocrine tumor following peptide receptor radionuclide therapy assessed by EORTC QLQ-C30. Eur J Nucl Med Mol Imaging 2018; 45(1): 38-46.
[http://dx.doi.org/10.1007/s00259-017-3816-z] [PMID: 28864881]
[19]
Sabet A, Haslerud T, Pape UF, et al. Outcome and toxicity of salvage therapy with 177Lu-octreotate in patients with metastatic gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2014; 41(2): 205-10.
[http://dx.doi.org/10.1007/s00259-013-2547-z] [PMID: 24030668]
[20]
Yordanova A, Mayer K, Brossart P, et al. Safety of multiple repeated cycles of 177Lu-octreotate in patients with recurrent neuroendocrine tumour. Eur J Nucl Med Mol Imaging 2017; 44(7): 1207-14.
[http://dx.doi.org/10.1007/s00259-017-3652-1] [PMID: 28246882]
[21]
Marinova M, Mücke M, Fischer F, et al. Quality of life in patients with midgut NET following peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2019; 46(11): 2252-9.
[http://dx.doi.org/10.1007/s00259-019-04431-3] [PMID: 31338547]
[22]
Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging 2015; 42(1): 5-19.
[http://dx.doi.org/10.1007/s00259-014-2893-5] [PMID: 25273832]
[23]
Strosberg J, El-Haddad G, Wolin E, et al. NETTER-1 Trial Investigators. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 2017; 376(2): 125-35.
[http://dx.doi.org/10.1056/NEJMoa1607427] [PMID: 28076709]
[24]
Ahmadzadehfar H, Rahbar K, Essler M, Biersack H. PSMA-Based Theranostics: A Step-by-Step Practical Approach to Diagnosis and Therapy for mCRPC Patients. Semin Nucl Med 2019.
[PMID: 31843065]
[25]
Vahidfar N, Fallahpoor M, Farzanehfar S, Divband G, Ahmadzadehfar H. Historical review of pharmacological development and dosimetry of PSMA-based theranostics for prostate cancer. J Radioanal Nucl Chem 2019.
[http://dx.doi.org/10.1007/s10967-019-06800-6]
[26]
Lütje S, Slavik R, Fendler W, Herrmann K, Eiber M. PSMA ligands in prostate cancer - Probe optimization and theranostic applications. Methods 2017; 130: 42-50.
[http://dx.doi.org/10.1016/j.ymeth.2017.06.026] [PMID: 28666778]
[27]
Vallabhajosula S, Goldsmith SJ, Kostakoglu L, Milowsky MI, Nanus DM, Bander NH. Radioimmunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin Cancer Res 2005; 11(19 Pt 2): 7195s-200s.
[http://dx.doi.org/10.1158/1078-0432.CCR-1004-0023] [PMID: 16203821]
[28]
Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res 1987; 7(5B): 927-35.
[PMID: 2449118]
[29]
Bander NH, Trabulsi EJ, Kostakoglu L, et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 2003; 170(5): 1717-21.
[http://dx.doi.org/10.1097/01.ju.0000091655.77601.0c] [PMID: 14532761]
[30]
Vallabhajosula S, Kuji I, Hamacher KA, et al. Pharmacokinetics and biodistribution of 111In- and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591 radiation dosimetry based on 111In or 177Lu? J Nucl Med 2005; 46(4): 634-41.
[PMID: 15809486]
[31]
Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 2010; 51(8): 1293-300.
[http://dx.doi.org/10.2967/jnumed.110.076174] [PMID: 20660376]
[32]
McDevitt MR, Barendswaard E, Ma D, et al. An α-particle emitting antibody ([213Bi]J591) for Radioimmunotherapy of prostate cancer. Cancer Res 2000; 60(21): 6095-100.
[PMID: 11085533]
[33]
Nanus DM, Milowsky MI, Kostakoglu L, et al. Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. J Urol 2003; 170(6 Pt 2): S84-8.
[http://dx.doi.org/10.1097/01.ju.0000095151.97404.7c] [PMID: 14610416]
[34]
Heinzel A, Boghos D, Mottaghy FM, et al. 68Ga-PSMA PET/CT for monitoring response to 177Lu-PSMA-617 radioligand therapy in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2019; 46(5): 1054-62.
[http://dx.doi.org/10.1007/s00259-019-4258-6] [PMID: 30697649]
[35]
Afshar-Oromieh A, Avtzi E, Giesel FL, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015; 42(2): 197-209.
[http://dx.doi.org/10.1007/s00259-014-2949-6] [PMID: 25411132]
[36]
Afshar-Oromieh A, Holland-Letz T, Giesel FL, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging 2017; 44(8): 1258-68.
[http://dx.doi.org/10.1007/s00259-017-3711-7] [PMID: 28497198]
[37]
Eiber M, Maurer T, Souvatzoglou M, et al. Evaluation of Hybrid Evaluation of Hybrid (6)(8)Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2015; 56(5): 668-74.
[38]
Ahmadzadehfar H, Essler M. Predictive Factors of Response and Overall Survival in Patients with Castration-Resistant Metastatic Prostate Cancer Undergoing 177Lu-PSMA Therapy. J Nucl Med 2018; 59(7): 1033-4.
[http://dx.doi.org/10.2967/jnumed.118.209270] [PMID: 29653975]
[39]
Uprimny C, Kroiss AS, Decristoforo C, et al. 68Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging 2017; 44(6): 941-9.
[http://dx.doi.org/10.1007/s00259-017-3631-6] [PMID: 28138747]
[40]
Rauscher I, Maurer T, Beer AJ, et al. Value of 68Ga-PSMA HBED-CC PET for the assessment of lymph node metastases in prostate cancer patients with biochemical recurrence: comparison with histopathology after salvage lymphadenectomy. J Nucl Med 2016; 57(11): 1713-9.
[http://dx.doi.org/10.2967/jnumed.116.173492] [PMID: 27261524]
[41]
Budäus L, Leyh-Bannurah S-R, Salomon G, et al. Initial experience of 68Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol 2016; 69(3): 393-6.
[http://dx.doi.org/10.1016/j.eururo.2015.06.010] [PMID: 26116958]
[42]
Herlemann A, Wenter V, Kretschmer A, et al. 68Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur Urol 2016; 70(4): 553-7.
[http://dx.doi.org/10.1016/j.eururo.2015.12.051] [PMID: 26810345]
[43]
Giesel FL, Sterzing F, Schlemmer H-P, et al. Intra-individual comparison of (68)Ga-PSMA-11-PET/CT and multi-parametric MR for imaging of primary prostate cancer. Eur J Nucl Med Mol Imaging 2016; 43(8): 1400-6.
[http://dx.doi.org/10.1007/s00259-016-3346-0] [PMID: 26971788]
[44]
Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J Nucl Med 2017; 58(1): 85-90.
[http://dx.doi.org/10.2967/jnumed.116.183194] [PMID: 27765862]
[45]
Aghdam RA, Amoui M, Ghodsirad M, et al. Efficacy and safety of 177Lutetium-prostate-specific membrane antigen therapy in metastatic castration-resistant prostate cancer patients: First experience in West Asia - A prospective study. World J Nucl Med 2019; 18(3): 258-65.
[http://dx.doi.org/10.4103/wjnm.WJNM_66_18] [PMID: 31516369]
[46]
Ahmadzadehfar H, Rahbar K, Kürpig S, et al. Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res 2015; 5(1): 114.
[http://dx.doi.org/10.1186/s13550-015-0114-2] [PMID: 26099227]
[47]
Barber T W, Singh A, Kulkarni H R, Niepsch K, Billah B, Baum R P. P. Clinical outcomes of 177Lu-PSMA radioligand therapy in taxane chemotherapy pretreated and taxane chemotherapy naïve patients with metastatic castration resistant prostate cancer. J Nucl Med 2019. jnumed. 118.216820
[48]
Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 2018; 19(6): 825-33.
[http://dx.doi.org/10.1016/S1470-2045(18)30198-0] [PMID: 29752180]
[49]
Ahmadzadehfar H, Zimbelmann S, Yordanova A, et al. Radioligand therapy of metastatic prostate cancer using 177Lu-PSMA-617 after radiation exposure to 223Ra-dichloride. Oncotarget 2017; 8(33): 55567-74.
[http://dx.doi.org/10.18632/oncotarget.15698] [PMID: 28903443]
[50]
Yordanova A, Becker A, Eppard E, et al. The impact of repeated cycles of radioligand therapy using [177Lu]Lu-PSMA-617 on renal function in patients with hormone refractory metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2017; 44(9): 1473-9.
[http://dx.doi.org/10.1007/s00259-017-3681-9] [PMID: 28337529]
[51]
Yordanova A, Linden P, Hauser S, et al. Outcome and safety of rechallenge [177Lu]Lu-PSMA-617 in patients with metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2019; 46(5): 1073-80.
[http://dx.doi.org/10.1007/s00259-018-4222-x] [PMID: 30474706]
[52]
Ahmadzadehfar H, Aryana K, Pirayesh E, et al. The Iranian Society of Nuclear Medicine practical guideline on radioligand therapy in metastatic castration-resistant prostate cancer using 177Lu-PSMA. Iran J Nucl Med 2018; 26(1): 2-8.
[53]
Rahbar K, Boegemann M, Yordanova A, et al. PSMA targeted radioligandtherapy in metastatic castration resistant prostate cancer after chemotherapy, abiraterone and/or enzalutamide. A retrospective analysis of overall survival. Eur J Nucl Med Mol Imaging 2018; 45(1): 12-9.
[http://dx.doi.org/10.1007/s00259-017-3848-4] [PMID: 29026946]
[54]
Rahbar K, Bögeman M, Yordanova A, et al. Delayed response after repeated 177Lu-PSMA-617 radioligand therapy in patients with metastatic castration resistant prostate cancer. Eur J Nucl Med Mol Imaging 2018; 45(2): 243-6.
[http://dx.doi.org/10.1007/s00259-017-3877-z] [PMID: 29134280]
[55]
Yordanova A, Linden P, Hauser S, et al. The value of tumor markers in men with metastatic prostate cancer undergoing [(177) Lu]Lu-PSMA therapy. Prostate 2019.
[PMID: 31579967]
[56]
Maris JM. Recent advances in neuroblastoma. N Engl J Med 2010; 362(23): 2202-11.
[http://dx.doi.org/10.1056/NEJMra0804577] [PMID: 20558371]
[57]
Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 2008; 55(1): 97-120. x.
[http://dx.doi.org/10.1016/j.pcl.2007.10.014] [PMID: 18242317]
[58]
Parisi MT, Greene MK, Dykes TM, Moraldo TV, Sandler ED, Hattner RS. Efficacy of metaiodobenzylguanidine as a scintigraphic agent for the detection of neuroblastoma. Invest Radiol 1992; 27(10): 768-73.
[http://dx.doi.org/10.1097/00004424-199210000-00003] [PMID: 1399431]
[59]
de Kraker J, Hoefnagel KA, Verschuur AC, van Eck B, van Santen HM, Caron HN. Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer 2008; 44(4): 551-6.
[http://dx.doi.org/10.1016/j.ejca.2008.01.010] [PMID: 18267358]
[60]
Alexander N, Vali R, Ahmadzadehfar H, Shammas A, Baruchel S. Review: The Role of Radiolabeled DOTA-Conjugated Peptides for Imaging and Treatment of Childhood Neuroblastoma. Curr Radiopharm 2018; 11(1): 14-21.
[http://dx.doi.org/10.2174/1874471011666171215093112] [PMID: 29243585]
[61]
Messina JA, Cheng SC, Franc BL, et al. Evaluation of semi-quantitative scoring system for metaiodobenzylguanidine (mIBG) scans in patients with relapsed neuroblastoma. Pediatr Blood Cancer 2006; 47(7): 865-74.
[http://dx.doi.org/10.1002/pbc.20777] [PMID: 16444675]
[62]
Lumbroso J, Guermazi F, Hartmann D, et al. Metaiodobenzylguanidine (mIBG) scans in neuroblastoma In: Advances in neuroblastoma research 2 1988.
[63]
Hadj-Djilani NL, Lebtahi N-E, Delaloye AB, Laurini R, Beck D. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med 1995; 22(4): 322-9.
[http://dx.doi.org/10.1007/BF00941848] [PMID: 7607262]
[64]
Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implications of the use of 123I-MIBG. Med Pediatr Oncol 1987; 15(4): 170-7.
[http://dx.doi.org/10.1002/mpo.2950150406] [PMID: 3309602]
[65]
Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer 2014; 50(4): 801-15.
[http://dx.doi.org/10.1016/j.ejca.2013.11.016] [PMID: 24333097]
[66]
Matthay KK, Yanik G, Messina J, et al. Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol 2007; 25(9): 1054-60.
[http://dx.doi.org/10.1200/JCO.2006.09.3484] [PMID: 17369569]
[67]
Lowery AJ, Walsh S, McDermott EW, Prichard RS. Molecular and therapeutic advances in the diagnosis and management of malignant pheochromocytomas and paragangliomas. Oncologist 2013; 18(4): 391-407.
[http://dx.doi.org/10.1634/theoncologist.2012-0410] [PMID: 23576482]
[68]
Oyasu R, Yang X J, Yoshida O. What is the difference between pheochromocytoma and paraganglioma? What are the familial syndromes that have pheochromocytoma as a component? Questions in Daily Urologic Practice: Updates for Urologists and Diagnostic Pathologists 2008; 280-4.
[69]
Piccardo A, Foppiani L, Righi S, Garaventa A, Sorrentino S, Lopci E. 131 I-MIBG Therapy of Malignant Neuroblastoma and Pheochromocytoma. In: Nuclear Medicine Therapy. Springer 2019; pp. 65-83.
[http://dx.doi.org/10.1007/978-3-030-17494-1_5]
[70]
Fishbein L. Pheochromocytoma and paraganglioma: genetics, diagnosis, and treatment Hematology/Oncology Clinics 2016; 30(1): 135-50.
[71]
Neumann HPH, Young WF Jr, Eng C. Pheochromocytoma and Paraganglioma. N Engl J Med 2019; 381(6): 552-65.
[http://dx.doi.org/10.1056/NEJMra1806651] [PMID: 31390501]
[72]
Ahmadzadehfar H, Essler M, Rahbar K, Afshar-Oromieh A. Radionuclide Therapy for Bone Metastases: Utility of Scintigraphy and PET Imaging for Treatment Planning. PET Clin 2018; 13(4): 491-503.
[http://dx.doi.org/10.1016/j.cpet.2018.05.005] [PMID: 30219184]
[73]
Baczyk M, Czepczyński R, Milecki P, Pisarek M, Oleksa R, Sowiński J. 89Sr versus 153Sm-EDTMP: comparison of treatment efficacy of painful bone metastases in prostate and breast carcinoma. Nucl Med Commun 2007; 28(4): 245-50.
[http://dx.doi.org/10.1097/MNM.0b013e32805b72a0] [PMID: 17325585]
[74]
Yuan J, Liu C, Liu X, et al. Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: a phase II study. Clin Nucl Med 2013; 38(2): 88-92.
[http://dx.doi.org/10.1097/RLU.0b013e318279bf4d] [PMID: 23334120]
[75]
McEwan A. In Unsealed source therapy of painful bone metastases: an update, Seminars in nuclear medicine. Elsevier 1997; pp. 165-82.
[76]
Jadvar H, Colletti PM. 18F-NaF/223RaCl2 theranostics in metastatic prostate cancer: treatment response assessment and prediction of outcome. Br J Radiol 2018; 91(1091) 20170948
[http://dx.doi.org/10.1259/bjr.20170948] [PMID: 29630398]
[77]
Parker C, Sartor O. Radium-223 in prostate cancer. N Engl J Med 2013; 369(17): 1659-60.
[http://dx.doi.org/10.1056/NEJMc1310231] [PMID: 24152265]
[78]
Finn L, Markovic SN, Joseph RW. Therapy for metastatic melanoma: the past, present, and future. BMC Med 2012; 10(1): 23.
[http://dx.doi.org/10.1186/1741-7015-10-23] [PMID: 22385436]
[79]
Eisenhut M, Hull WE, Mohammed A, et al. Radioiodinated N-(2-diethylaminoethyl)benzamide derivatives with high melanoma uptake: structure-affinity relationships, metabolic fate, and intracellular localization. J Med Chem 2000; 43(21): 3913-22.
[http://dx.doi.org/10.1021/jm991079p] [PMID: 11052796]
[80]
Moins N, D’Incan M, Bonafous J, et al. 123I-N-(2-diethylaminoethyl)-2-iodobenzamide: a potential imaging agent for cutaneous melanoma staging. Eur J Nucl Med Mol Imaging 2002; 29(11): 1478-84.
[http://dx.doi.org/10.1007/s00259-002-0971-6] [PMID: 12397467]
[81]
Cachin F, Miot-Noirault E, Gillet B, et al. (123)I-BZA2 as a melanin-targeted radiotracer for the identification of melanoma metastases: results and perspectives of a multicenter phase III clinical trial. J Nucl Med 2014; 55(1): 15-22.
[http://dx.doi.org/10.2967/jnumed.113.123554] [PMID: 24263087]
[82]
St-Gelais F, Jomphe C, Trudeau L-É. The role of neurotensin in central nervous system pathophysiology: what is the evidence? J Psychiatry Neurosci 2006; 31(4): 229-45.
[PMID: 16862241]
[83]
Körner M, Waser B, Strobel O, Büchler M, Reubi JC. Neurotensin receptors in pancreatic ductal carcinomas. EJNMMI Res 2015; 5(1): 17.
[http://dx.doi.org/10.1186/s13550-015-0094-2] [PMID: 25859423]
[84]
Kaplan JH, Maryon EB. How mammalian cells acquire copper: an essential but potentially toxic metal. Biophys J 2016; 110(1): 7-13.
[http://dx.doi.org/10.1016/j.bpj.2015.11.025] [PMID: 26745404]
[85]
Anderson CJ, Dehdashti F, Cutler PD, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 2001; 42(2): 213-21.
[PMID: 11216519]
[86]
Pfeifer A, Knigge U, Mortensen J, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med 2012; 53(8): 1207-15.
[http://dx.doi.org/10.2967/jnumed.111.101469] [PMID: 22782315]
[87]
Pfeifer A, Knigge U, Binderup T, et al. 64Cu-DOTATATE PET for neuroendocrine tumors: a prospective head-to-head comparison with 111In-DTPA-octreotide in 112 patients. J Nucl Med 2015; 56(6): 847-54.
[http://dx.doi.org/10.2967/jnumed.115.156539] [PMID: 25952736]
[88]
Grubmüller B, Baum RP, Capasso E, et al. 64Cu-PSMA-617 PET/CT imaging of prostate adenocarcinoma: first in-human studies. Cancer Biother Radiopharm 2016; 31(8): 277-86.
[http://dx.doi.org/10.1089/cbr.2015.1964] [PMID: 27715146]
[89]
Singh A, Kulkarni HR, Baum RP. Imaging of prostate cancer using 64Cu-labeled prostate-specific membrane antigen ligand. PET Clin 2017; 12(2): 193-203.
[http://dx.doi.org/10.1016/j.cpet.2016.12.001] [PMID: 28267453]
[90]
Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem 2019; 4(1): 16.
[http://dx.doi.org/10.1186/s41181-019-0069-0] [PMID: 31659499]
[91]
Loktev A, Lindner T, Mier W, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med 2018; 59(9): 1423-9.
[http://dx.doi.org/10.2967/jnumed.118.210435] [PMID: 29626120]
[92]
Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med 2019; 60(6): 801-5.
[http://dx.doi.org/10.2967/jnumed.119.227967] [PMID: 30954939]
[93]
Giesel FL, Kratochwil C, Lindner T, et al. 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med 2019; 60(3): 386-92.
[http://dx.doi.org/10.2967/jnumed.118.215913] [PMID: 30072500]
[94]
Lindner T, Loktev A, Altmann A, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 2018; 59(9): 1415-22.
[http://dx.doi.org/10.2967/jnumed.118.210443] [PMID: 29626119]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 31
Year: 2020
Published on: 16 September, 2020
Page: [3804 - 3811]
Pages: 8
DOI: 10.2174/1381612826666200218104313
Price: $65

Article Metrics

PDF: 41
HTML: 5