Pathogenic Mechanisms and Therapeutic Implication in Nickel-Induced Cell Damage

Author(s): Ahmad Salimi*, Zhaleh Jamali, Saman Atashbar, Saleh Khezri, Amir M. Ghorbanpour, Nahid Etefaghi

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 20 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Nickel (Ni) is mostly applied in a number of industrial areas such as printing inks, welding, alloys, electronics and electrical professions. Occupational or environmental exposure to nickel may lead to cancer, allergy reaction, nephrotoxicity, hepatotoxicity, neurotoxicity, as well as cell damage, apoptosis and oxidative stress.

Methods: In here, we focused on published studies about cell death, carcinogenicity, allergy reactions and neurotoxicity, and promising agents for the prevention and treatment of the toxicity by Ni.

Results: Our review showed that in the last few years, more researches have focused on reactive oxygen species formation, oxidative stress, DNA damages, apoptosis, interaction with involving receptors in allergy and mitochondrial damages in neuron induced by Ni.

Conclusion: The collected data in this paper provide useful information about the main toxicities induced by Ni, also, their fundamental mechanisms, and how to discover new ameliorative agents for prevention and treatment by reviewing agents with protective and therapeutic consequences on Ni induced toxicity.

Keywords: Nickel, cell death, carcinogenicity, allergy reactions, neurotoxicity, mechanisms.

[1]
Rana, S.V. Metals and apoptosis: Recent developments. J. Trace Elem. Med. Biol., 2008, 22(4), 262-84-84.
[2]
Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res., 2008, 128(4), 412-425.
[PMID: 19106437]
[3]
Sunderman, F.W., Jr Biological monitoring of nickel in humans. Scand. J. Work Environ. Health, 1993, 19(Suppl. 1), 34-38.
[PMID: 8159970]
[4]
Miller, A.B. Review of extant community-based epidemiologic studies on health effects of hazardous wastes. Toxicol. Ind. Health, 1996, 12(2), 225-233.
[http://dx.doi.org/10.1177/074823379601200210] [PMID: 8794535]
[5]
Nielsen, F.H.; Shuler, T.R.; McLeod, T.G.; Zimmerman, T.J. Nickel influences iron metabolism through physiologic, pharmacologic and toxicologic mechanisms in the rat. J. Nutr., 1984, 114(7), 1280-1288.
[http://dx.doi.org/10.1093/jn/114.7.1280] [PMID: 6737089]
[6]
Gawkrodger, D.J.; McLeod, C.W.; Dobson, K. Nickel skin levels in different occupations and an estimate of the threshold for reacting to a single open application of nickel in nickel-allergic subjects. Br. J. Dermatol., 2012, 166(1), 82-87.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10644.x] [PMID: 21929529]
[7]
Hill, H.; Goldenberg, A.; Sheehan, M.P.; Patel, A.; Jacob, S.E. Nickel-Free Alternatives Raise Awareness. Dermatitis, 2015, 26(6), 245-253.
[http://dx.doi.org/10.1097/DER.0000000000000135] [PMID: 26551602]
[8]
Fransway, A.F.; Zug, K.A.; Belsito, D.V.; Deleo, V.A.; Fowler, J.F., Jr; Maibach, H.I.; Marks, J.G.; Mathias, C.G.; Pratt, M.D.; Rietschel, R.L.; Sasseville, D.; Storrs, F.J.; Taylor, J.S.; Warshaw, E.M.; Dekoven, J.; Zirwas, M. North American Contact Dermatitis Group patch test results for 2007-2008. Dermatitis, 2013, 24(1), 10-21.
[http://dx.doi.org/10.1097/DER.0b013e318277ca50] [PMID: 23340394]
[9]
Costa, M.; Salnikow, K.; Sutherland, J.E.; Broday, L.; Peng, W.; Zhang, Q.; Kluz, T. The role of oxidative stress in nickel and chromate genotoxicity.Oxygen/Nitrogen Radicals: Cell Injury and Disease; Springer, 2002, pp. 265-275.
[http://dx.doi.org/10.1007/978-1-4615-1087-1_30]
[10]
Chen, H.; Giri, N.C.; Zhang, R.; Yamane, K.; Zhang, Y.; Maroney, M.; Costa, M. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J. Biol. Chem., 2010, 285(10), 7374-7383.
[http://dx.doi.org/10.1074/jbc.M109.058503] [PMID: 20042601]
[11]
Funakoshi, T.; Inoue, T.; Shimada, H.; Kojima, S. The mechanisms of nickel uptake by rat primary hepatocyte cultures: role of calcium channels. Toxicology, 1997, 124(1), 21-26.
[http://dx.doi.org/10.1016/S0300-483X(97)00131-5] [PMID: 9392452]
[12]
Chakrabarti, S.K.; Bai, C.; Subramanian, K.S. DNA-protein crosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids. Toxicol. Appl. Pharmacol., 2001, 170(3), 153-165.
[http://dx.doi.org/10.1006/taap.2000.9097] [PMID: 11162780]
[13]
Chen, C-Y.; Lin, T-K.; Chang, Y-C.; Wang, Y-F.; Shyu, H-W.; Lin, K-H.; Chou, M-C. Nickel(II)-induced oxidative stress, apoptosis, G2/M arrest, and genotoxicity in normal rat kidney cells. J. Toxicol. Environ. Health A, 2010, 73(8), 529-539.
[http://dx.doi.org/10.1080/15287390903421250] [PMID: 20391133]
[14]
Grimsrud, T.K.; Berge, S.R.; Martinsen, J.I.; Andersen, A. Lung cancer incidence among Norwegian nickel-refinery workers 1953-2000. J. Environ. Monit., 2003, 5(2), 190-197.
[http://dx.doi.org/10.1039/b211722n] [PMID: 12729252]
[15]
Zhao, J.; Shi, X.; Castranova, V.; Ding, M. Occupational toxicology of nickel and nickel compounds. J. Environ. Pathol. Toxicol. Oncol., 2009, 28(3), 177-208.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v28.i3.10] [PMID: 19888907]
[16]
Cameron, K.S.; Buchner, V.; Tchounwou, P.B. Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review. Rev. Environ. Health, 2011, 26(2), 81-92.
[http://dx.doi.org/10.1515/reveh.2011.012] [PMID: 21905451]
[17]
Stannard, L.; Doak, S.H.; Doherty, A.; Jenkins, G.J. Is nickel chloride really a non‐genotoxic carcinogen? Basic Clin. Pharmacol. Toxicol., 2017, 121(Suppl. 3), 10-15.
[http://dx.doi.org/10.1111/bcpt.12689] [PMID: 27748567]
[18]
Zhao, J.; Bowman, L.; Zhang, X.; Shi, X.; Jiang, B.; Castranova, V.; Ding, M. Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway. J. Nanobiotechnology, 2009, 7(1), 2.
[http://dx.doi.org/10.1186/1477-3155-7-2] [PMID: 19379505]
[19]
He, M.D.; Xu, S.C.; Zhang, X.; Wang, Y.; Xiong, J.C.; Zhang, X.; Lu, Y.H.; Zhang, L.; Yu, Z.P.; Zhou, Z. Disturbance of aerobic metabolism accompanies neurobehavioral changes induced by nickel in mice. Neurotoxicology, 2013, 38, 9-16.
[http://dx.doi.org/10.1016/j.neuro.2013.05.011] [PMID: 23727075]
[20]
Song, X.; Fiati Kenston, S.S.; Kong, L.; Zhao, J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology, 2017, 392, 47-54.
[http://dx.doi.org/10.1016/j.tox.2017.10.006] [PMID: 29032222]
[21]
Jia, C.; Roman, C.; Hegg, C.C. Nickel sulfate induces location-dependent atrophy of mouse olfactory epithelium: protective and proliferative role of purinergic receptor activation. Toxicol. Sci., 2010, 115(2), 547-556.
[http://dx.doi.org/10.1093/toxsci/kfq071] [PMID: 20200219]
[22]
Xu, S.; He, M.; Zhong, M.; Li, L.; Lu, Y.; Zhang, Y.; Zhang, L.; Yu, Z.; Zhou, Z. The neuroprotective effects of taurine against nickel by reducing oxidative stress and maintaining mitochondrial function in cortical neurons. Neurosci. Lett., 2015, 590, 52-57.
[http://dx.doi.org/10.1016/j.neulet.2015.01.065] [PMID: 25637701]
[23]
Xu, S.C.; He, M.D.; Lu, Y.H.; Li, L.; Zhong, M.; Zhang, Y.W.; Wang, Y.; Yu, Z.P.; Zhou, Z. Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin. J. Pineal Res., 2011, 51(4), 426-433.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00906.x] [PMID: 21797922]
[24]
Xu, S.C.; He, M.D.; Zhong, M.; Zhang, Y.W.; Wang, Y.; Yang, L.; Yang, J.; Yu, Z.P.; Zhou, Z. Melatonin protects against Nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function. J. Pineal Res., 2010, 49(1), 86-94.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00770.x] [PMID: 20536687]
[25]
Salimi, A.; Roudkenar, M.H.; Seydi, E.; Sadeghi, L.; Mohseni, A.; Pirahmadi, N.; Pourahmad, J. Chrysin as an anti-cancer agent exerts selective toxicity by directly inhibiting mitochondrial complex II and V in CLL B-lymphocytes. Cancer Invest., 2017, 35(3), 174-186.
[http://dx.doi.org/10.1080/07357907.2016.1276187] [PMID: 28301251]
[26]
Su, L.; Deng, Y.; Zhang, Y.; Li, C.; Zhang, R.; Sun, Y.; Zhang, K.; Li, J.; Yao, S. Protective effects of grape seed procyanidin extract against nickel sulfate-induced apoptosis and oxidative stress in rat testes. Toxicol. Mech. Methods, 2011, 21(6), 487-494.
[http://dx.doi.org/10.3109/15376516.2011.556156] [PMID: 21417627]
[27]
Liu, C-M.; Zheng, G-H.; Ming, Q-L.; Chao, C.; Sun, J-M. Sesamin protects mouse liver against nickel-induced oxidative DNA damage and apoptosis by the PI3K-Akt pathway. J. Agric. Food Chem., 2013, 61(5), 1146-1154.
[http://dx.doi.org/10.1021/jf304562b] [PMID: 23317420]
[28]
Wu, B.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Huang, J. Dietary nickel chloride induces oxidative stress, apoptosis and alters Bax/Bcl-2 and caspase-3 mRNA expression in the cecal tonsil of broilers. Food Chem. Toxicol., 2014, 63, 18-29.
[http://dx.doi.org/10.1016/j.fct.2013.10.033] [PMID: 24184595]
[29]
Huang, J.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Wu, B. The association between splenocyte apoptosis and alterations of Bax, Bcl-2 and caspase-3 mRNA expression, and oxidative stress induced by dietary nickel chloride in broilers. Int. J. Environ. Res. Public Health, 2013, 10(12), 7310-7326.
[http://dx.doi.org/10.3390/ijerph10127310] [PMID: 24351749]
[30]
Tang, K.; Guo, H.; Deng, J.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Wang, X.; Wu, B.; Li, J.; Yin, S. Inhibitive effects of nickel chloride (NiCl2) on thymocytes. Biol. Trace Elem. Res., 2015, 164(2), 242-252.
[http://dx.doi.org/10.1007/s12011-014-0219-x] [PMID: 25547965]
[31]
Guan, F.; Zhang, D.; Wang, X.; Chen, J. Nitric oxide and bcl-2 mediated the apoptosis induced by nickel(II) in human T hybridoma cells. Toxicol. Appl. Pharmacol., 2007, 221(1), 86-94.
[http://dx.doi.org/10.1016/j.taap.2007.01.029] [PMID: 17442357]
[32]
Kang, J.; Zhang, D.; Chen, J.; Lin, C.; Liu, Q. Involvement of histone hypoacetylation in Ni2+-induced bcl- 2 down-regulation and human hepatoma cell apoptosis. J. Biol. Inorg. Chem., 2004, 9(6), 713-723.
[http://dx.doi.org/10.1007/s00775-004-0561-0] [PMID: 15235941]
[33]
Siddiqui, M.A.; Ahamed, M.; Ahmad, J.; Majeed Khan, M.A.; Musarrat, J.; Al-Khedhairy, A.A.; Alrokayan, S.A. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem. Toxicol., 2012, 50(3-4), 641-647.
[http://dx.doi.org/10.1016/j.fct.2012.01.017] [PMID: 22273695]
[34]
Ahamed, M.; Ali, D.; Alhadlaq, H.A.; Akhtar, M.J. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere, 2013, 93(10), 2514-2522.
[http://dx.doi.org/10.1016/j.chemosphere.2013.09.047] [PMID: 24139157]
[35]
Nowak, M.; Kopp, F.; Roelofs-Haarhuis, K.; Wu, X.; Gleichmann, E. Oral nickel tolerance: Fas ligand-expressing invariant NK T cells promote tolerance induction by eliciting apoptotic death of antigen-carrying, effete B cells. J. Immunol., 2006, 176(8), 4581-4589.
[http://dx.doi.org/10.4049/jimmunol.176.8.4581] [PMID: 16585548]
[36]
Chen, C-Y.; Wang, Y-F.; Huang, W-R.; Huang, Y-T. Nickel induces oxidative stress and genotoxicity in human lymphocytes. Toxicol. Appl. Pharmacol., 2003, 189(3), 153-159.
[http://dx.doi.org/10.1016/S0041-008X(03)00086-3] [PMID: 12791300]
[37]
Freitas, M.; Barcellos-de-Souza, P.; Barja-Fidalgo, C.; Fernandes, E. Nickel induces apoptosis in human neutrophils. Biometals, 2013, 26(1), 13-21.
[http://dx.doi.org/10.1007/s10534-012-9590-2] [PMID: 23097079]
[38]
Guo, H.; Chen, L.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Wang, X.; Wu, B. Research advances on pathways of nickel-induced apoptosis. Int. J. Mol. Sci., 2015, 17(1), 10.
[http://dx.doi.org/10.3390/ijms17010010] [PMID: 26703593]
[39]
Shiao, Y-H.; Lee, S-H.; Kasprzak, K.S. Cell cycle arrest, apoptosis and p53 expression in nickel(II) acetate-treated Chinese hamster ovary cells. Carcinogenesis, 1998, 19(7), 1203-1207.
[http://dx.doi.org/10.1093/carcin/19.7.1203] [PMID: 9683178]
[40]
Andreyev, A.Y.; Kushnareva, Y.E.; Starkov, A.A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc.), 2005, 70(2), 200-214.
[http://dx.doi.org/10.1007/s10541-005-0102-7] [PMID: 15807660]
[41]
Dallas, L.J.; Bean, T.P.; Turner, A.; Lyons, B.P.; Jha, A.N. Oxidative DNA damage may not mediate Ni-induced genotoxicity in marine mussels: assessment of genotoxic biomarkers and transcriptional responses of key stress genes. Mutat. Res., 2013, 754(1-2), 22-31.
[http://dx.doi.org/10.1016/j.mrgentox.2013.03.009] [PMID: 23591161]
[42]
Avery, S.V. Molecular targets of oxidative stress. Biochem. J., 2011, 434(2), 201-210.
[http://dx.doi.org/10.1042/BJ20101695] [PMID: 21309749]
[43]
Simon, H-U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 2000, 5(5), 415-418.
[http://dx.doi.org/10.1023/A:1009616228304] [PMID: 11256882]
[44]
Ma, C.; Song, M.; Zhang, Y.; Yan, M.; Zhang, M.; Bi, H. Nickel nanowires induce cell cycle arrest and apoptosis by generation of reactive oxygen species in HeLa cells. Toxicol. Rep., 2014, 1, 114-121.
[http://dx.doi.org/10.1016/j.toxrep.2014.04.008] [PMID: 28962232]
[45]
Pan, J.; Chang, Q.; Wang, X.; Son, Y.; Zhang, Z.; Chen, G.; Luo, J.; Bi, Y.; Chen, F.; Shi, X. Reactive oxygen species-activated Akt/ASK1/p38 signaling pathway in nickel compound-induced apoptosis in BEAS 2B cells. Chem. Res. Toxicol., 2010, 23(3), 568-577.
[http://dx.doi.org/10.1021/tx9003193] [PMID: 20112989]
[46]
Ahamed, M. Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol. In Vitro, 2011, 25(4), 930-936.
[http://dx.doi.org/10.1016/j.tiv.2011.02.015] [PMID: 21376802]
[47]
Kubrak, O.I.; Husak, V.V.; Rovenko, B.M.; Poigner, H.; Mazepa, M.A.; Kriews, M.; Abele, D.; Lushchak, V.I. Tissue specificity in nickel uptake and induction of oxidative stress in kidney and spleen of goldfish Carassius auratus, exposed to waterborne nickel. Aquat. Toxicol., 2012, 118-119, 88-96.
[http://dx.doi.org/10.1016/j.aquatox.2012.03.016] [PMID: 22534063]
[48]
Wu, B.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Huang, J. Dietary nickel chloride induces oxidative intestinal damage in broilers. Int. J. Environ. Res. Public Health, 2013, 10(6), 2109-2119.
[http://dx.doi.org/10.3390/ijerph10062109] [PMID: 23702803]
[49]
Wang, M.; Wang, G. Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel. Ecotoxicology, 2010, 19(2), 273-284.
[http://dx.doi.org/10.1007/s10646-009-0410-6] [PMID: 19821026]
[50]
Attig, H.; Kamel, N.; Sforzini, S.; Dagnino, A.; Jamel, J.; Boussetta, H.; Viarengo, A.; Banni, M. Effects of thermal stress and nickel exposure on biomarkers responses in Mytilus galloprovincialis (Lam). Mar. Environ. Res., 2014, 94, 65-71.
[http://dx.doi.org/10.1016/j.marenvres.2013.12.006] [PMID: 24424117]
[51]
Alarifi, S.; Ali, D.; Alakhtani, S.; Al Suhaibani, E.S.; Al-Qahtani, A.A. Reactive oxygen species-mediated DNA damage and apoptosis in human skin epidermal cells after exposure to nickel nanoparticles. Biol. Trace Elem. Res., 2014, 157(1), 84-93.
[http://dx.doi.org/10.1007/s12011-013-9871-9] [PMID: 24307203]
[52]
Tyagi, R.; Rana, P.; Gupta, M.; Khan, A.R.; Bhatnagar, D.; Bhalla, P.J.; Chaturvedi, S.; Tripathi, R.P.; Khushu, S. Differential biochemical response of rat kidney towards low and high doses of NiCl2 as revealed by NMR spectroscopy. J. Appl. Toxicol., 2013, 33(2), 134-141.
[http://dx.doi.org/10.1002/jat.1730] [PMID: 21928331]
[53]
Lewis, J.B.; Messer, R.L.; McCloud, V.V.; Lockwood, P.E.; Hsu, S.D.; Wataha, J.C. Ni(II) activates the Nrf2 signaling pathway in human monocytic cells. Biomaterials, 2006, 27(31), 5348-5356.
[http://dx.doi.org/10.1016/j.biomaterials.2006.06.007] [PMID: 16806455]
[54]
Krȩżel, A.; Szczepanik, W.; Sokołowska, M.; Jeżowska-Bojczuk, M.; Bal, W. Correlations between complexation modes and redox activities of Ni(II)-GSH complexes. Chem. Res. Toxicol., 2003, 16(7), 855-864.
[http://dx.doi.org/10.1021/tx034012k] [PMID: 12870888]
[55]
Zarei, M.H.; Hosseini Shirazi, S.F.; Aghvami, M.; Salimi, A.; Pourahmad, J. Analysis of cytotoxic effects of nickel on human blood lymphocytes. Toxicol. Mech. Methods, 2018, 28(2), 79-86.
[http://dx.doi.org/10.1080/15376516.2017.1364314] [PMID: 28774209]
[56]
Bonin, S.; Larese, F.F.; Trevisan, G.; Avian, A.; Rui, F.; Stanta, G.; Bovenzi, M. Gene expression changes in peripheral blood mononuclear cells in occupational exposure to nickel. Exp. Dermatol., 2011, 20(2), 147-148.
[http://dx.doi.org/10.1111/j.1600-0625.2010.01162.x] [PMID: 21054559]
[57]
Pourahmad, J.; Salimi, A. Isolated human peripheral blood mononuclear cell (PBMC), a cost effective tool for predicting immunosuppressive effects of drugs and xenobiotics. Iran. J. Pharm. Res., 2015, 14(4), 979.
[PMID: 26664364]
[58]
Bernardi, P.; Petronilli, V.; Di Lisa, F.; Forte, M. A mitochondrial perspective on cell death. Trends Biochem. Sci., 2001, 26(2), 112-117.
[http://dx.doi.org/10.1016/S0968-0004(00)01745-X] [PMID: 11166569]
[59]
Wang, Y-F.; Shyu, H-W.; Chang, Y-C.; Tseng, W-C.; Huang, Y-L.; Lin, K-H.; Chou, M-C.; Liu, H-L.; Chen, C-Y. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway. Toxicol. Appl. Pharmacol., 2012, 259(2), 177-186.
[http://dx.doi.org/10.1016/j.taap.2011.12.022] [PMID: 22245127]
[60]
Ahamed, M.; Akhtar, M.J.; Alhadlaq, H.A.; Khan, M.A.; Alrokayan, S.A. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Chemosphere, 2015, 135, 278-288.
[http://dx.doi.org/10.1016/j.chemosphere.2015.03.079] [PMID: 25966046]
[61]
Patel, E.; Lynch, C.; Ruff, V.; Reynolds, M. Co-exposure to nickel and cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells. Toxicol. Appl. Pharmacol., 2012, 258(3), 367-375.
[http://dx.doi.org/10.1016/j.taap.2011.11.019] [PMID: 22172632]
[62]
Zheng, G-H.; Liu, C-M.; Sun, J-M.; Feng, Z-J.; Cheng, C. Nickel-induced oxidative stress and apoptosis in Carassius auratus liver by JNK pathway. Aquat. Toxicol., 2014, 147, 105-111.
[http://dx.doi.org/10.1016/j.aquatox.2013.12.015] [PMID: 24394944]
[63]
Duan, W-X.; He, M-D.; Mao, L.; Qian, F-H.; Li, Y-M.; Pi, H-F.; Liu, C.; Chen, C-H.; Lu, Y-H.; Cao, Z-W.; Zhang, L.; Yu, Z.P.; Zhou, Z. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells. Toxicol. Appl. Pharmacol., 2015, 286(2), 80-91.
[http://dx.doi.org/10.1016/j.taap.2015.03.024] [PMID: 25840356]
[64]
Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, 283(2-3), 65-87.
[http://dx.doi.org/10.1016/j.tox.2011.03.001] [PMID: 21414382]
[65]
Buschini, A.; Pinelli, S.; Pellacani, C.; Giordani, F.; Ferrari, M.B.; Bisceglie, F.; Giannetto, M.; Pelosi, G.; Tarasconi, P. Synthesis, characterization and deepening in the comprehension of the biological action mechanisms of a new nickel complex with antiproliferative activity. J. Inorg. Biochem., 2009, 103(5), 666-677.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.12.016] [PMID: 19193444]
[66]
Hiramatsu, N.; Kasai, A.; Du, S.; Takeda, M.; Hayakawa, K.; Okamura, M.; Yao, J.; Kitamura, M. Rapid, transient induction of ER stress in the liver and kidney after acute exposure to heavy metal: evidence from transgenic sensor mice. FEBS Lett., 2007, 581(10), 2055-2059.
[http://dx.doi.org/10.1016/j.febslet.2007.04.040] [PMID: 17475259]
[67]
Guo, H.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Wang, X.; Wu, B.; Chen, K.; Deng, J. Nickel chloride (NiCl2) induces endoplasmic reticulum (ER) stress by activating UPR pathways in the kidney of broiler chickens. Oncotarget, 2016, 7(14), 17508-17519.
[http://dx.doi.org/10.18632/oncotarget.7919] [PMID: 26956054]
[68]
Chang, X.; Liu, F.; Tian, M.; Zhao, H.; Han, A.; Sun, Y. Nickel oxide nanoparticles induce hepatocyte apoptosis via activating endoplasmic reticulum stress pathways in rats. Environ. Toxicol., 2017, 32(12), 2492-2499.
[http://dx.doi.org/10.1002/tox.22492] [PMID: 28945320]
[69]
Mahler, V.; Geier, J.; Schnuch, A. Current trends in patch testing - new data from the German Contact Dermatitis Research Group (DKG) and the Information Network of Departments of Dermatology (IVDK). J. Dtsch. Dermatol. Ges., 2014, 12(7), 583-592.
[http://dx.doi.org/10.1111/ddg.12371] [PMID: 24981472]
[70]
Garner, L.A. Contact dermatitis to metals. Dermatol. Ther., 2004, 17(4), 321-327.
[http://dx.doi.org/10.1111/j.1396-0296.2004.04034.x] [PMID: 15327477]
[71]
Peiser, M.; Tralau, T.; Heidler, J.; Api, A.M.; Arts, J.H.; Basketter, D.A.; English, J.; Diepgen, T.L.; Fuhlbrigge, R.C.; Gaspari, A.A.; Johansen, J.D.; Karlberg, A.T.; Kimber, I.; Lepoittevin, J.P.; Liebsch, M.; Maibach, H.I.; Martin, S.F.; Merk, H.F.; Platzek, T.; Rustemeyer, T.; Schnuch, A.; Vandebriel, R.J.; White, I.R.; Luch, A. Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell. Mol. Life Sci., 2012, 69(5), 763-781.
[http://dx.doi.org/10.1007/s00018-011-0846-8] [PMID: 21997384]
[72]
Thierse, H-J.; Gamerdinger, K.; Junkes, C.; Guerreiro, N.; Weltzien, H.U. T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology, 2005, 209(2), 101-107.
[http://dx.doi.org/10.1016/j.tox.2004.12.015] [PMID: 15767020]
[73]
Mortz, C.G.; Lauritsen, J.M.; Bindslev-Jensen, C.; Andersen, K.E. The Odense Adolescence Cohort Study on Atopic Diseases and Dermatitis. Prevalence of atopic dermatitis, asthma, allergic rhinitis, and hand and contact dermatitis in adolescents. Br. J. Dermatol., 2001, 144(3), 523-532.
[http://dx.doi.org/10.1046/j.1365-2133.2001.04078.x] [PMID: 11260009]
[74]
Larsen, J.M.; Bonefeld, C.M.; Poulsen, S.S.; Geisler, C.; Skov, L. IL-23 and TH17-mediated inflammation in human allergic contact dermatitis. J. Allergy Clin. Immunol., 2009, 123(2), 486-492.
[75]
Sebastiani, S.; Albanesi, C.; Nasorri, F.; Girolomoni, G.; Cavani, A. Nickel-specific CD4(+) and CD8(+) T cells display distinct migratory responses to chemokines produced during allergic contact dermatitis. J. Invest. Dermatol., 2002, 118(6), 1052-1058.
[http://dx.doi.org/10.1046/j.1523-1747.2002.01771.x] [PMID: 12060402]
[76]
Curtis, A.; Morton, J.; Balafa, C.; MacNeil, S.; Gawkrodger, D.J.; Warren, N.D.; Evans, G.S. The effects of nickel and chromium on human keratinocytes: Differences in viability, cell associated metal and IL-1α release. Toxicol. In Vitro, 2007, 21(5), 809-819.
[http://dx.doi.org/10.1016/j.tiv.2007.01.026] [PMID: 17368827]
[77]
Steinman, R.M.; Pack, M.; Inaba, K. Dendritic cells in the T-cell areas of lymphoid organs. Immunol. Rev., 1997, 156(1), 25-37.
[http://dx.doi.org/10.1111/j.1600-065X.1997.tb00956.x] [PMID: 9176697]
[78]
Riedl, E.; Stöckl, J.; Majdic, O.; Scheinecker, C.; Rappersberger, K.; Knapp, W.; Strobl, H. Functional involvement of E-cadherin in TGF-β 1-induced cell cluster formation of in vitro developing human Langerhans-type dendritic cells. J. Immunol., 2000, 165(3), 1381-1386.
[http://dx.doi.org/10.4049/jimmunol.165.3.1381] [PMID: 10903741]
[79]
Geissmann, F.; Dieu-Nosjean, M.C.; Dezutter, C.; Valladeau, J.; Kayal, S.; Leborgne, M.; Brousse, N.; Saeland, S.; Davoust, J. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J. Exp. Med., 2002, 196(4), 417-430.
[http://dx.doi.org/10.1084/jem.20020018] [PMID: 12186835]
[80]
Villadangos, J.A.; Cardoso, M.; Steptoe, R.J.; van Berkel, D.; Pooley, J.; Carbone, F.R.; Shortman, K. MHC class II expression is regulated in dendritic cells independently of invariant chain degradation. Immunity, 2001, 14(6), 739-749.
[http://dx.doi.org/10.1016/S1074-7613(01)00148-0] [PMID: 11420044]
[81]
Verhasselt, V.; Buelens, C.; Willems, F.; De Groote, D.; Haeffner-Cavaillon, N.; Goldman, M. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J. Immunol., 1997, 158(6), 2919-2925.
[PMID: 9058830]
[82]
Saito, M.; Arakaki, R.; Yamada, A.; Tsunematsu, T.; Kudo, Y.; Ishimaru, N. Molecular mechanisms of nickel allergy. Int. J. Mol. Sci., 2016, 17(2), 202.
[http://dx.doi.org/10.3390/ijms17020202] [PMID: 26848658]
[83]
Jörgl, A.; Platzer, B.; Taschner, S.; Heinz, L.X.; Höcher, B.; Reisner, P.M.; Göbel, F.; Strobl, H. Human Langerhans-cell activation triggered in vitro by conditionally expressed MKK6 is counterregulated by the downstream effector RelB. Blood, 2007, 109(1), 185-193.
[http://dx.doi.org/10.1182/blood-2006-05-022954] [PMID: 16960152]
[84]
Arrighi, J-F.; Rebsamen, M.; Rousset, F.; Kindler, V.; Hauser, C. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-α, and contact sensitizers. J. Immunol., 2001, 166(6), 3837-3845.
[http://dx.doi.org/10.4049/jimmunol.166.6.3837] [PMID: 11238627]
[85]
Schmidt, M.; Raghavan, B.; Müller, V.; Vogl, T.; Fejer, G.; Tchaptchet, S.; Keck, S.; Kalis, C.; Nielsen, P.J.; Galanos, C.; Roth, J.; Skerra, A.; Martin, S.F.; Freudenberg, M.A.; Goebeler, M. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol., 2010, 11(9), 814-819.
[http://dx.doi.org/10.1038/ni.1919] [PMID: 20711192]
[86]
Rachmawati, D.; Bontkes, H.J.; Verstege, M.I.; Muris, J.; von Blomberg, B.M.E.; Scheper, R.J.; van Hoogstraten, I.M. Transition metal sensing by Toll-like receptor-4: Next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermat., 2013, 68(6), 331-338.
[http://dx.doi.org/10.1111/cod.12042] [PMID: 23692033]
[87]
Sato, N.; Kinbara, M.; Kuroishi, T.; Kimura, K.; Iwakura, Y.; Ohtsu, H.; Sugawara, S.; Endo, Y. Lipopolysaccharide promotes and augments metal allergies in mice, dependent on innate immunity and histidine decarboxylase. Clin. Exp. Allergy, 2007, 37(5), 743-751.
[http://dx.doi.org/10.1111/j.1365-2222.2007.02705.x] [PMID: 17456222]
[88]
Ashrin, M.N.; Arakaki, R.; Yamada, A.; Kondo, T.; Kurosawa, M.; Kudo, Y.; Watanabe, M.; Ichikawa, T.; Hayashi, Y.; Ishimaru, N. A critical role for thymic stromal lymphopoietin in nickel-induced allergy in mice. J. Immunol., 2014, 192(9), 4025-4031.
[http://dx.doi.org/10.4049/jimmunol.1300276] [PMID: 24670797]
[89]
Ying, S.; O’Connor, B.; Ratoff, J.; Meng, Q.; Mallett, K.; Cousins, D.; Robinson, D.; Zhang, G.; Zhao, J.; Lee, T.H.; Corrigan, C. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J. Immunol., 2005, 174(12), 8183-8190.
[http://dx.doi.org/10.4049/jimmunol.174.12.8183] [PMID: 15944327]
[90]
Yoo, J.; Omori, M.; Gyarmati, D.; Zhou, B.; Aye, T.; Brewer, A.; Comeau, M.R.; Campbell, D.J.; Ziegler, S.F. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med., 2005, 202(4), 541-549.
[http://dx.doi.org/10.1084/jem.20041503] [PMID: 16103410]
[91]
Cavani, A. Breaking tolerance to nickel. Toxicology, 2005, 209(2), 119-121.
[http://dx.doi.org/10.1016/j.tox.2004.12.021] [PMID: 15767023]
[92]
Cavani, A.; Nasorri, F.; Ottaviani, C.; Sebastiani, S.; De Pità, O.; Girolomoni, G. Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J. Immunol., 2003, 171(11), 5760-5768.
[http://dx.doi.org/10.4049/jimmunol.171.11.5760] [PMID: 14634084]
[93]
Clemens, F.; Landolph, J.R. Genotoxicity of samples of nickel refinery dust. Toxicol. Sci., 2003, 73(1), 114-123.
[http://dx.doi.org/10.1093/toxsci/kfg070] [PMID: 12657748]
[94]
Shen, H.M.; Zhang, Q.F. Risk assessment of nickel carcinogenicity and occupational lung cancer. Environ. Health Perspect., 1994, 102(Suppl. 1), 275-282.
[http://dx.doi.org/10.1289/ehp.94102s1275] [PMID: 8187719]
[95]
Hartwig, A.; Schwerdtle, T. Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicol. Lett., 2002, 127(1-3), 47-54.
[http://dx.doi.org/10.1016/S0378-4274(01)00482-9] [PMID: 12052640]
[96]
Beyersmann, D.; Hartwig, A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol., 2008, 82(8), 493-512.
[http://dx.doi.org/10.1007/s00204-008-0313-y] [PMID: 18496671]
[97]
Kasprzak, K.S.; Ward, J.M.; Poirier, L.A.; Reichardt, D.A.; Denn, A.C., III; Reynolds, C.W. Nickel--magnesium interactions in carcinogenesis: Dose effects and involvement of natural killer cells. Carcinogenesis, 1987, 8(7), 1005-1011.
[http://dx.doi.org/10.1093/carcin/8.7.1005] [PMID: 3594718]
[98]
Zeromski, J.; Jezewska, E.; Sikora, J.; Kasprzak, K.S. The effect of nickel compounds on immunophenotype and natural killer cell function of normal human lymphocytes. Toxicology, 1995, 97(1-3), 39-48.
[PMID: 7716791]
[99]
Okuno, H.; Satoh, M.; Takeuchi, E.; Eshima, K.; Terashima, M.; Komotori, J.; Habu, S.; Tamauchi, H.; Iwabuchi, K. Inhibitory function of NKT cells during early induction phase of nickel allergy. Immunobiology, 2016, 221(7), 833-838.
[http://dx.doi.org/10.1016/j.imbio.2016.01.012] [PMID: 26868431]
[100]
Reznikoff, C.A.; Brankow, D.W.; Heidelberger, C. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res., 1973, 33(12), 3231-3238.
[PMID: 4357355]
[101]
Draper, M.H.; Duffus, J.H.; John, P.; Metcalfe, L.; Morgan, L.; Park, M.V.; Weitzner, M.I. Analysis of nickel refinery dusts. Sci. Total Environ., 1994, 148(2-3), 263-273.
[http://dx.doi.org/10.1016/0048-9697(94)90402-2] [PMID: 8029701]
[102]
Kasprzak, K.S.; Salnikow, K. Nickel toxicity and carcinogenesis. Nickel and Its Surprising Impact in Nature, 2007, 2, 619-660.
[http://dx.doi.org/10.1002/9780470028131.ch17]
[103]
Costa, M.; Davidson, T.L.; Chen, H.; Ke, Q.; Zhang, P.; Yan, Y.; Huang, C.; Kluz, T. Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat. Res., 2005, 592(1-2), 79-88.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.06.008] [PMID: 16009382]
[104]
Henkler, F.; Brinkmann, J.; Luch, A. The role of oxidative stress in carcinogenesis induced by metals and xenobiotics. Cancers (Basel), 2010, 2(2), 376-396.
[http://dx.doi.org/10.3390/cancers2020376] [PMID: 24281075]
[105]
Jia, J.; Chen, J. Chronic nickel-induced DNA damage and cell death: The protection role of ascorbic acid. Environ. Toxicol., 2008, 23(3), 401-406.
[http://dx.doi.org/10.1002/tox.20346] [PMID: 18214889]
[106]
Kelly, M.C.; Whitaker, G.; White, B.; Smyth, M.R. Nickel(II)-catalysed oxidative guanine and DNA damage beyond 8-oxoguanine. Free Radic. Biol. Med., 2007, 42(11), 1680-1689.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.025] [PMID: 17462536]
[107]
Sunderman, F.W., Jr Mechanisms of nickel carcinogenesis. Scand. J. Work Environ. Health, 1989, 15(1), 1-12.
[http://dx.doi.org/10.5271/sjweh.1888] [PMID: 2646706]
[108]
Caicedo, M.; Jacobs, J.J.; Reddy, A.; Hallab, N.J. Analysis of metal ion-induced DNA damage, apoptosis, and necrosis in human (Jurkat) T-cells demonstrates Ni2+ and V3+ are more toxic than other metals: Al3+, Be2+, Co2+, Cr3+, Cu2+, Fe3+, Mo5+, Nb5+, Zr2+. J. Biomed. Mater. Res. A, 2008, 86(4), 905-913.
[http://dx.doi.org/10.1002/jbm.a.31789] [PMID: 18050301]
[109]
Muñoz-López, M.; García-Pérez, J.L. DNA transposons: Nature and applications in genomics. Curr. Genomics, 2010, 11(2), 115-128.
[http://dx.doi.org/10.2174/138920210790886871] [PMID: 20885819]
[110]
Farkash, E.A.; Prak, E.T.L. DNA damage and L1 retrotransposition. J. Biomed. Biotechnol., 2006, 37285.
[http://dx.doi.org/10.1155/JBB/2006/37285]
[111]
El-Sawy, M.; Kale, S.P.; Dugan, C.; Nguyen, T.Q.; Belancio, V.; Bruch, H.; Roy-Engel, A.M.; Deininger, P.L. Nickel stimulates L1 retrotransposition by a post-transcriptional mechanism. J. Mol. Biol., 2005, 354(2), 246-257.
[http://dx.doi.org/10.1016/j.jmb.2005.09.050] [PMID: 16249005]
[112]
Baccarelli, A.; Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr., 2009, 21(2), 243-251.
[http://dx.doi.org/10.1097/MOP.0b013e32832925cc] [PMID: 19663042]
[113]
Bollati, V.; Baccarelli, A. Environmental epigenetics. Heredity, 2010, 105(1), 105-112.
[http://dx.doi.org/10.1038/hdy.2010.2] [PMID: 20179736]
[114]
Kawanishi, S.; Oikawa, S.; Inoue, S.; Nishino, K. Distinct mechanisms of oxidative DNA damage induced by carcinogenic nickel subsulfide and nickel oxides. Environ. Health Perspect., 2002, 110(Suppl. 5), 789-791.
[http://dx.doi.org/10.1289/ehp.02110s5789] [PMID: 12426132]
[115]
Belliardo, C.; Di Giorgio, C.; Chaspoul, F.; Gallice, P.; Bergé-Lefranc, D. Direct DNA interaction and genotoxic impact of three metals: Cadmium, nickel and aluminum. J. Chem. Thermodyn., 2018, 125, 271-277.
[http://dx.doi.org/10.1016/j.jct.2018.05.028]
[116]
Nickels, J.T., Jr New links between lipid accumulation and cancer progression. J. Biol. Chem., 2018, 293(17), 6635-6636.
[http://dx.doi.org/10.1074/jbc.H118.002654] [PMID: 29703762]
[117]
Facchini, L.M.; Penn, L.Z. The molecular role of Myc in growth and transformation: Recent discoveries lead to new insights. FASEB J., 1998, 12(9), 633-651.
[http://dx.doi.org/10.1096/fasebj.12.9.633] [PMID: 9619443]
[118]
Ruggero, D. The role of Myc-induced protein synthesis in cancer. Cancer Res., 2009, 69(23), 8839-8843.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1970] [PMID: 19934336]
[119]
Gordan, J.D.; Bertout, J.A.; Hu, C-J.; Diehl, J.A.; Simon, M.C. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell, 2007, 11(4), 335-347.
[http://dx.doi.org/10.1016/j.ccr.2007.02.006] [PMID: 17418410]
[120]
Bermudez, Y.; Yang, H.; Cheng, J.Q.; Kruk, P.A. Pyk2/ERK 1/2 mediate Sp1- and c-Myc-dependent induction of telomerase activity by epidermal growth factor. Growth Factors, 2008, 26(1), 1-11.
[http://dx.doi.org/10.1080/08977190802001389] [PMID: 18365874]
[121]
Li, Q.; Kluz, T.; Sun, H.; Costa, M. Mechanisms of c-myc degradation by nickel compounds and hypoxia. PLoS One, 2009, 4(12)e8531
[http://dx.doi.org/10.1371/journal.pone.0008531] [PMID: 20046830]
[122]
Li, Q.; Suen, T-C.; Sun, H.; Arita, A.; Costa, M. Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway. Toxicol. Appl. Pharmacol., 2009, 235(2), 191-198.
[http://dx.doi.org/10.1016/j.taap.2008.12.005] [PMID: 19135467]
[123]
Chen, C.Y.; Lin, T.H. Nickel toxicity to human term placenta: In vitro study on lipid peroxidation. J. Toxicol. Environ. Health A, 1998, 54(1), 37-47.
[http://dx.doi.org/10.1080/009841098159015] [PMID: 9588347]
[124]
Kang, G.S.; Li, Q.; Chen, H.; Costa, M. Effect of metal ions on HIF-1α and Fe homeostasis in human A549 cells. Mutat. Res., 2006, 610(1-2), 48-55.
[http://dx.doi.org/10.1016/j.mrgentox.2006.06.012] [PMID: 16877034]
[125]
Chen, H.; Costa, M. Iron- and 2-oxoglutarate-dependent dioxygenases: an emerging group of molecular targets for nickel toxicity and carcinogenicity. Biometals, 2009, 22(1), 191-196.
[http://dx.doi.org/10.1007/s10534-008-9190-3] [PMID: 19096759]
[126]
Salnikow, K.; Davidson, T.; Zhang, Q.; Chen, L.C.; Su, W.; Costa, M. The involvement of hypoxia-inducible transcription factor-1-dependent pathway in nickel carcinogenesis. Cancer Res., 2003, 63(13), 3524-3530.
[PMID: 12839937]
[127]
Clemens, F.; Verma, R.; Ramnath, J.; Landolph, J.R. Amplification of the Ect2 proto-oncogene and over-expression of Ect2 mRNA and protein in nickel compound and methylcholanthrene-transformed 10T1/2 mouse fibroblast cell lines. Toxicol. Appl. Pharmacol., 2005, 206(2), 138-149.
[http://dx.doi.org/10.1016/j.taap.2005.02.009] [PMID: 15967202]
[128]
Chiocca, S.M.; Sterner, D.A.; Biggart, N.W.; Murphy, E.C., Jr Nickel mutagenesis: Alteration of the MuSVts110 thermosensitive splicing phenotype by a nickel-induced duplication of the 3′ splice site. Mol. Carcinog., 1991, 4(1), 61-71.
[http://dx.doi.org/10.1002/mc.2940040110] [PMID: 1848987]
[129]
Salnikow, K.; Davidson, T.; Kluz, T.; Chen, H.; Zhou, D.; Costa, M. GeneChip analysis of signaling pathways effected by nickel. J. Environ. Monit., 2003, 5(2), 206-209.
[http://dx.doi.org/10.1039/b210262p] [PMID: 12729255]
[130]
Haugen, A.; Maehle, L.; Mollerup, S.; Rivedal, E.; Ryberg, D. Nickel-induced alterations in human renal epithelial cells. Environ. Health Perspect., 1994, 102(Suppl. 3), 117-118.
[PMID: 7843084]
[131]
Nishimura, M.; Umeda, M. Induction of chromosomal aberrations in cultured mammalian cells by nickel compounds. Mutat. Res-Gen. Tox., 1979, 68(4), 337-349.
[132]
Ohshima, S. Induction of genetic instability and chromosomal instability by nickel sulfate in V79 Chinese hamster cells. Mutagenesis, 2003, 18(2), 133-137.
[http://dx.doi.org/10.1093/mutage/18.2.133] [PMID: 12621068]
[133]
Maehle, L.; Metcalf, R.A.; Ryberg, D.; Bennett, W.P.; Harris, C.C.; Haugen, A. Altered p53 gene structure and expression in human epithelial cells after exposure to nickel. Cancer Res., 1992, 52(1), 218-221.
[PMID: 1727381]
[134]
Schwerdtle, T.; Seidel, A.; Hartwig, A. Effect of soluble and particulate nickel compounds on the formation and repair of stable benzo[a]pyrene DNA adducts in human lung cells. Carcinogenesis, 2002, 23(1), 47-53.
[http://dx.doi.org/10.1093/carcin/23.1.47] [PMID: 11756222]
[135]
Ellen, T.P.; Kluz, T.; Harder, M.E.; Xiong, J.; Costa, M. Heterochromatinization as a potential mechanism of nickel-induced carcinogenesis. Biochemistry, 2009, 48(21), 4626-4632.
[http://dx.doi.org/10.1021/bi900246h] [PMID: 19338343]
[136]
Esteller, M. Epigenetics in cancer. N. Engl. J. Med., 2008, 358(11), 1148-1159.
[http://dx.doi.org/10.1056/NEJMra072067] [PMID: 18337604]
[137]
Arita, A.; Costa, M. Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium. Metallomics, 2009, 1(3), 222-228.
[http://dx.doi.org/10.1039/b903049b] [PMID: 20461219]
[138]
Martinez-Zamudio, R.; Ha, H.C. Environmental epigenetics in metal exposure. Epigenetics, 2011, 6(7), 820-827.
[http://dx.doi.org/10.4161/epi.6.7.16250] [PMID: 21610324]
[139]
Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud., 2006, 15(3), 375-382.
[140]
Yan, Y.; Kluz, T.; Zhang, P.; Chen, H.B.; Costa, M. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol. Appl. Pharmacol., 2003, 190(3), 272-277.
[http://dx.doi.org/10.1016/S0041-008X(03)00169-8] [PMID: 12902198]
[141]
Ke, Q.; Li, Q.; Ellen, T.P.; Sun, H.; Costa, M. Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNK-MAPK pathway. Carcinogenesis, 2008, 29(6), 1276-1281.
[http://dx.doi.org/10.1093/carcin/bgn084] [PMID: 18375956]
[142]
Broday, L.; Cai, J.; Costa, M. Nickel enhances telomeric silencing in Saccharomyces cerevisiae. Mutat. Res., 1999, 440(2), 121-130.
[http://dx.doi.org/10.1016/S1383-5718(99)00018-2] [PMID: 10209334]
[143]
Kang, J.; Zhang, Y.; Chen, J.; Chen, H.; Lin, C.; Wang, Q.; Ou, Y. Nickel-induced histone hypoacetylation: The role of reactive oxygen species. Toxicol. Sci., 2003, 74(2), 279-286.
[http://dx.doi.org/10.1093/toxsci/kfg137] [PMID: 12773760]
[144]
Henriksson, J.; Tallkvist, J.; Tjälve, H. Uptake of nickel into the brain via olfactory neurons in rats. Toxicol. Lett., 1997, 91(2), 153-162.
[http://dx.doi.org/10.1016/S0378-4274(97)03885-X] [PMID: 9175852]
[145]
Hattiwale, S.H.; Saha, S.; Yendigeri, S.M.; Jargar, J.G.; Dhundasi, S.A.; Das, K.K. Protective effect of L-ascorbic acid on nickel induced pulmonary nitrosative stress in male albino rats. Biometals, 2013, 26(2), 329-336.
[http://dx.doi.org/10.1007/s10534-013-9617-3] [PMID: 23463385]
[146]
Brant, K.A.; Fabisiak, J.P. Nickel and the microbial toxin, MALP-2, stimulate proangiogenic mediators from human lung fibroblasts via a HIF-1alpha and COX-2-mediated pathway. Toxicol. Sci., 2009, 107(1), 227-237.
[147]
Gopal, R.; Narmada, S.; Vijayakumar, R.; Jaleel, C.A. Chelating efficacy of CaNa(2) EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation. C. R. Biol., 2009, 332(8), 685-696.
[http://dx.doi.org/10.1016/j.crvi.2009.03.004] [PMID: 19632651]
[148]
Ptashynski, M.D.; Pedlar, R.M.; Evans, R.E.; Wautier, K.G.; Baron, C.L.; Klaverkamp, J.F. Accumulation, distribution and toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis) and lake trout (Salvelinus namaycush). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2001, 130(2), 145-162.
[http://dx.doi.org/10.1016/S1532-0456(01)00228-9] [PMID: 11574285]
[149]
Rufer, E.S.; Hacker, T.A.; Flentke, G.R.; Drake, V.J.; Brody, M.J.; Lough, J.; Smith, S.M. Altered cardiac function and ventricular septal defect in avian embryos exposed to low-dose trichloroethylene. Toxicol. Sci., 2010, 113(2), 444-452.
[http://dx.doi.org/10.1093/toxsci/kfp269] [PMID: 19910388]
[150]
de la Monte, S.M.; Luong, T.; Neely, T.R.; Robinson, D.; Wands, J.R. Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Lab. Invest., 2000, 80(8), 1323-1335.
[http://dx.doi.org/10.1038/labinvest.3780140] [PMID: 10950123]
[151]
He, M.D.; Xu, S.C.; Lu, Y.H.; Li, L.; Zhong, M.; Zhang, Y.W.; Wang, Y.; Li, M.; Yang, J.; Zhang, G.B.; Yu, Z.P.; Zhou, Z. L-carnitine protects against nickel-induced neurotoxicity by maintaining mitochondrial function in Neuro-2a cells. Toxicol. Appl. Pharmacol., 2011, 253(1), 38-44.
[http://dx.doi.org/10.1016/j.taap.2011.03.008] [PMID: 21419151]
[152]
El Idrissi, A. Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids, 2008, 34(2), 321-328.
[http://dx.doi.org/10.1007/s00726-006-0396-9] [PMID: 16955229]
[153]
Panat, N.A.; Maurya, D.K.; Ghaskadbi, S.S.; Sandur, S.K. Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chem., 2016, 194, 32-45.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.078] [PMID: 26471524]
[154]
Lu, J.; Wu, D.M.; Zheng, Y.L.; Hu, B.; Cheng, W.; Zhang, Z.F.; Li, M.Q. Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress. J. Immunol., 2013, 190(7), 3466-3479.
[http://dx.doi.org/10.4049/jimmunol.1202862] [PMID: 23420885]
[155]
Vinothkumar, R.; Vinoth Kumar, R.; Karthikkumar, V.; Viswanathan, P.; Kabalimoorthy, J.; Nalini, N. Oral supplementation with troxerutin (trihydroxyethylrutin), modulates lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Environ. Toxicol. Pharmacol., 2014, 37(1), 174-184.
[http://dx.doi.org/10.1016/j.etap.2013.11.022] [PMID: 24355798]
[156]
Forte, R.; Cennamo, G.; Finelli, M.L.; Bonavolontà, P.; de Crecchio, G.; Greco, G.M. Combination of flavonoids with Centella asiatica and Melilotus for diabetic cystoid macular edema without macular thickening. J. Ocul. Pharmacol. Ther., 2011, 27(2), 109-113.
[http://dx.doi.org/10.1089/jop.2010.0159] [PMID: 21314440]
[157]
Elangovan, P.; Ramakrishnan, R.; Amudha, K.; Jalaludeen, A.M.; Sagaran, G.K.; Babu, F.R.; Pari, L. Beneficial Protective Effect of Troxerutin on Nickel-Induced Renal Dysfunction in Wistar Rats. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(1), 1-14.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2017025087] [PMID: 29772996]
[158]
Khodayar, M.J.; Kalantari, H.; Mahdavinia, M.; Khorsandi, L.; Alboghobeish, S.; Samimi, A.; Alizadeh, S.; Zeidooni, L. Protective effect of naringin against BPA-induced cardiotoxicity through prevention of oxidative stress in male Wistar rats. Drug Chem. Toxicol., 2018, 43(1), 85-95.
[http://dx.doi.org/10.1080/01480545.2018.1504958] [PMID: 30264589]
[159]
Amudha, K.; Pari, L. Beneficial role of naringin, a flavanoid on nickel induced nephrotoxicity in rats. Chem. Biol. Interact., 2011, 193(1), 57-64.
[http://dx.doi.org/10.1016/j.cbi.2011.05.003] [PMID: 21600195]
[160]
Surai, P.F. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants, 2015, 4(1), 204-247.
[http://dx.doi.org/10.3390/antiox4010204] [PMID: 26785346]
[161]
Frassinetti, S.; Bronzetti, G.; Caltavuturo, L.; Cini, M.; Croce, C.D. The role of zinc in life: a review. J. Environ. Pathol. Toxicol. Oncol., 2006, 25(3), 597-610.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i3.40] [PMID: 17073562]
[162]
Sidhu, P.; Garg, M.L.; Dhawan, D.K. Protective role of zinc in nickel induced hepatotoxicity in rats. Chem. Biol. Interact., 2004, 150(2), 199-209.
[http://dx.doi.org/10.1016/j.cbi.2004.09.012] [PMID: 15535990]
[163]
Sidhu, P.; Garg, M.L.; Morgenstern, P.; Vogt, J.; Butz, T.; Dhawan, D.K. Role of zinc in regulating the levels of hepatic elements following nickel toxicity in rats. Biol. Trace Elem. Res., 2004, 102(1-3), 161-172.
[http://dx.doi.org/10.1385/BTER:102:1-3:161] [PMID: 15621936]
[164]
Figueroa-Méndez, R.; Rivas-Arancibia, S. Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Front. Physiol., 2015, 6, 397.
[http://dx.doi.org/10.3389/fphys.2015.00397] [PMID: 26779027]
[165]
Das, K.K.; Büchner, V. Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev. Environ. Health, 2007, 22(2), 157-173.
[http://dx.doi.org/10.1515/REVEH.2007.22.2.157] [PMID: 17894205]
[166]
Das, K.K.; Gupta, A.D.; Dhundasi, S.A.; Patil, A.M.; Das, S.N.; Ambekar, J.G. Protective role of L-ascorbic acid on antioxidant defense system in erythrocytes of albino rats exposed to nickel sulfate. Biometals, 2007, 20(2), 177-184.
[http://dx.doi.org/10.1007/s10534-006-9025-z] [PMID: 16900397]
[167]
Azzi, A. Molecular mechanism of α-tocopherol action. Free Radic. Biol. Med., 2007, 43(1), 16-21.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.013] [PMID: 17561089]
[168]
Acharya, U.R.; Mishra, M.; Mishra, I.; Tripathy, R.R. Potential role of vitamins in chromium induced spermatogenesis in Swiss mice. Environ. Toxicol. Pharmacol., 2004, 15(2-3), 53-59.
[http://dx.doi.org/10.1016/j.etap.2003.08.010] [PMID: 21782680]
[169]
Jargar, J.G.; Yendigeri, S.; Dhundasi, S.A.; Das, K.K. Protective effect of Vitamin E (a-tocopherol) on nickel-induced alteration of testicular pathophysiology in alloxan-treated diabetic rats. Int. J. Clin. Exp. Physiol., 2014, 1(4), 290.
[http://dx.doi.org/10.4103/2348-8093.149762]
[170]
Littlefield, N.A.; Hass, B.S.; James, S.J.; Poirier, L.A. Protective effect of magnesium on DNA strand breaks induced by nickel or cadmium. Cell Biol. Toxicol., 1994, 10(2), 127-135.
[http://dx.doi.org/10.1007/BF00756493] [PMID: 7953910]
[171]
Midorikawa, K.; Murata, M.; Oikawa, S.; Hiraku, Y.; Kawanishi, S. Protective effect of phytic acid on oxidative DNA damage with reference to cancer chemoprevention. Biochem. Biophys. Res. Commun., 2001, 288(3), 552-557.
[http://dx.doi.org/10.1006/bbrc.2001.5808] [PMID: 11676478]
[172]
Sunderman, F.W., Jr; Kasprzak, K.S.; Lau, T.J.; Minghetti, P.P.; Maenza, R.M.; Becker, N.; Onkelinx, C.; Goldblatt, P.J. Effects of manganese on carcinogenicity and metabolism of nickel subsulfide. Cancer Res., 1976, 36(5), 1790-1800.
[PMID: 1268836]
[173]
Prasad, L.; Husain Khan, T.; Jahangir, T.; Sultana, S. Effect of luteolin on nickel chloride–induced renal hyperproliferation and biotransformation parameters in wistar rats. Pharm. Biol., 2007, 45(2), 116-123.
[http://dx.doi.org/10.1080/13880200601113057]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 7
Year: 2020
Page: [968 - 984]
Pages: 17
DOI: 10.2174/1871530320666200214123118
Price: $65

Article Metrics

PDF: 24
HTML: 1