Stem Cells in Tumour Microenvironment Aid in Prolonged Survival Rate of Cancer Cells and Developed Drug Resistance: Major Challenge in Osteosarcoma Treatment

Author(s): Bhaskar Birru, ChandraSai Potla Durthi*, Santhosh Kacham, Madhuri Pola, Satish Babu Rajulapati, Sreenivasa Rao Parcha, Mohammad Amjad Kamal

Journal Name: Current Drug Metabolism

Volume 21 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Osteosarcoma is an aggressive bone cancer found in children and adolescents. The combined treatment strategy includes the surgical removal of tumour and subsequent chemotherapy to prevent the reoccurrence has been a widely accepted approach. However, the drug resistance developed by tumour cells causes recurrence of cancer. It is imperative to understand the molecular mechanism involved in the development of drug resistance and tumour progression for developing potential therapy. Tumour microenvironment and cellular cross-talk via activation of various signalling pathways are responsible for tumour progression and metastasis. The comprehensive reviews are already available on the tumour microenvironment, signalling cascades responsible for tumour progression, and cellular crosstalk between malignant cells and immune cells. Therefore, we intend to provide comprehend review postulating the importance of mesenchymal stem cells (MSCs) in osteosarcoma progression and metastasis. This paper is aimed to provide information sequentially includes: tumour microenvironment, MSCs role in osteosarcoma progression, the hypoxic environment in MSCs recruitment at the tumour site and the importance of exosomes in tumorigenesis, progression and metastasis. Overall, this review may enlighten the research on the role of MSCs and MSCs derived exosome in osteosarcoma progression and drug resistance. This possibly may result in developing novel therapeutic approaches to combat the osteosarcoma effectively and contributes for the development of prognosis tools for early diagnosis.

Keywords: Osteosarcoma, mesenchymal stem cells (MSCs), tumour, exosome, bone cancer, drug resistance.

[1]
Kansara, M.; Teng, M.W.; Smyth, M.J.; Thomas, D.M. Translational biology of osteosarcoma. Nat. Rev. Cancer, 2014, 14(11), 722-735.
[http://dx.doi.org/10.1038/nrc3838] [PMID: 25319867]
[2]
Ma, H.; He, C.; Cheng, Y.; Yang, Z.; Zang, J.; Liu, J.; Chen, X. Localized co-delivery of doxorubicin, cisplatin, and methotrexate by thermosensitive hydrogels for enhanced osteosarcoma treatment. ACS Appl. Mater. Interfaces, 2015, 7(49), 27040-27048.
[http://dx.doi.org/10.1021/acsami.5b09112] [PMID: 26575336]
[3]
Li, S.; Sun, W.; Wang, H.; Zuo, D.; Hua, Y.; Cai, Z. Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal. Tumour Biol., 2015, 36(3), 1329-1338.
[http://dx.doi.org/10.1007/s13277-015-3181-0] [PMID: 25666750]
[4]
Desandes, E. Survival from adolescent cancer. Cancer Treat. Rev., 2007, 33(7), 609-615.
[http://dx.doi.org/10.1016/j.ctrv.2006.12.007] [PMID: 17398011]
[5]
Barcellos-de-Souza, P.; Gori, V.; Bambi, F.; Chiarugi, P. Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim. Biophys. Acta, 2013, 1836(2), 321-335.
[http://dx.doi.org/10.1016/j.bbcan.2013.10.004] [PMID: 24183942]
[6]
Darash-Yahana, M.; Pikarsky, E.; Abramovitch, R.; Zeira, E.; Pal, B.; Karplus, R.; Beider, K.; Avniel, S.; Kasem, S.; Galun, E.; Peled, A. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J., 2004, 18(11), 1240-1242.
[http://dx.doi.org/10.1096/fj.03-0935fje] [PMID: 15180966]
[7]
Qiao, H.; Tang, T. Engineering 3D approaches to model the dynamic microenvironments of cancer bone metastasis. Bone Res., 2018, 6, 3.
[http://dx.doi.org/10.1038/s41413-018-0008-9] [PMID: 29507817]
[8]
Auguste, P.; Lemiere, S.; Larrieu-Lahargue, F.; Bikfalvi, A. Molecular mechanisms of tumor vascularization. Crit. Rev. Oncol. Hematol., 2005, 54(1), 53-61.
[http://dx.doi.org/10.1016/j.critrevonc.2004.11.006] [PMID: 15780907]
[9]
Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol., 2006, 7(2), 131-142.
[http://dx.doi.org/10.1038/nrm1835] [PMID: 16493418]
[10]
Massagué, J.; Obenauf, A.C. Metastatic colonization by circulating tumour cells. Nature, 2016, 529(7586), 298-306.
[http://dx.doi.org/10.1038/nature17038] [PMID: 26791720]
[11]
Baron, R. Molecular mechanisms of bone resorption. An update. Acta Orthop. Scand. Suppl., 1995, 266, 66-70.
[http://dx.doi.org/10.3109/17453679509157650] [PMID: 8553865]
[12]
Bhaskar, B.; Mekala, N.K.; Baadhe, R.R.; Rao, P.S. Role of ion. Curr. Stem Cell Res. Ther., 2014, 9(6), 508-512.
[http://dx.doi.org/10.2174/1574888X09666140812112002]
[13]
Birru, B.; Mekala, N.K.; Parcha, S.R. Mechanistic role of perfusion culture on bone regeneration. J. Biosci., 2019, 44(1), 23.
[http://dx.doi.org/10.1007/s12038-018-9827-5] [PMID: 30837374]
[14]
Giuliani, N.; Ferretti, M.; Bolzoni, M.; Storti, P.; Lazzaretti, M.; Dalla Palma, B.; Bonomini, S.; Martella, E.; Agnelli, L.; Neri, A.; Ceccarelli, F.; Palumbo, C. Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia, 2012, 26(6), 1391-1401.
[http://dx.doi.org/10.1038/leu.2011.381] [PMID: 22289923]
[15]
Sottnik, J.L.; Dai, J.; Zhang, H.; Campbell, B.; Keller, E.T. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res., 2015, 75(11), 2151-2158.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2493] [PMID: 25855383]
[16]
Qiao, H.; Cui, Z.; Yang, S.; Ji, D.; Wang, Y.; Yang, Y.; Han, X.; Fan, Q.; Qin, A.; Wang, T.; He, X.P.; Bu, W.; Tang, T. Targeting osteocytes to attenuate early breast cancer bone metastasis by theranostic upconversion nanoparticles with responsive plumbagin release. ACS Nano, 2017, 11(7), 7259-7273.
[http://dx.doi.org/10.1021/acsnano.7b03197] [PMID: 28692257]
[17]
Hensel, J.; Thalmann, G.N. Biology of bone metastases in prostate cancer. Urology, 2016, 92, 6-13.
[http://dx.doi.org/10.1016/j.urology.2015.12.039] [PMID: 26768714]
[18]
Hattinger, C.M.; Pasello, M.; Ferrari, S.; Picci, P.; Serra, M. Emerging drugs for high-grade osteosarcoma. Expert Opin. Emerg. Drugs, 2010, 15(4), 615-634.
[http://dx.doi.org/10.1517/14728214.2010.505603] [PMID: 20690888]
[19]
Chou, A.J.; Gorlick, R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev. Anticancer Ther., 2006, 6(7), 1075-1085.
[http://dx.doi.org/10.1586/14737140.6.7.1075] [PMID: 16831079]
[20]
Scionti, I.; Michelacci, F.; Pasello, M.; Hattinger, C.M.; Alberghini, M.; Manara, M.C.; Bacci, G.; Ferrari, S.; Scotlandi, K.; Picci, P.; Serra, M. Clinical impact of the methotrexate resistance-associated genes C-MYC and dihydrofolate reductase (DHFR) in high-grade osteosarcoma. Ann. Oncol., 2008, 19(8), 1500-1508.
[http://dx.doi.org/10.1093/annonc/mdn148] [PMID: 18385200]
[21]
Diao, C.; Xi, Y.; Xiao, T. Identification and analysis of key genes in osteosarcoma using bioinformatics. Oncol. Lett., 2018, 15(3), 2789-2794.
[http://dx.doi.org/10.3892/ol.2017.7649] [PMID: 29435005]
[22]
Hattinger, C.M.; Patrizio, M.P.; Magagnoli, F.; Luppi, S.; Serra, M. An update on emerging drugs in osteosarcoma: towards tailored therapies? Expert Opin. Emerg. Drugs, 2019, 24(3), 153-171.
[http://dx.doi.org/10.1080/14728214.2019.1654455] [PMID: 31401903]
[23]
Tu, B.; Zhu, J.; Liu, S.; Wang, L.; Fan, Q.; Hao, Y.; Fan, C.; Tang, T.T. Mesenchymal stem cells promote osteosarcoma cell survival and drug resistance through activation of STAT3. Oncotarget, 2016, 7(30), 48296-48308.
[http://dx.doi.org/10.18632/oncotarget.10219] [PMID: 27340780]
[24]
Han, Z.; Shi, L. Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis. Biochem. Biophys. Res. Commun., 2018, 495(1), 947-953.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.121] [PMID: 29170124]
[25]
Huang, J.; Ni, J.; Liu, K.; Yu, Y.; Xie, M.; Kang, R.; Vernon, P.; Cao, L.; Tang, D. HMGB1 promotes drug resistance in osteosarcoma. Cancer Res., 2012, 72(1), 230-238.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2001] [PMID: 22102692]
[26]
Birru, B.; Mekala, N.K.; Parcha, S.R. Improved osteogenic differentiation of umbilical cord blood MSCs using custom made perfusion bioreactor. Biomed. J., 2018, 41(5), 290-297.
[http://dx.doi.org/10.1016/j.bj.2018.07.002] [PMID: 30580792]
[27]
Weiss, A.R.R.; Dahlke, M.H. Immunomodulation by Mesenchymal Stem Cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front. Immunol., 2019, 10, 1191.
[http://dx.doi.org/10.3389/fimmu.2019.01191] [PMID: 31214172]
[28]
Schäfer, M.; Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol., 2008, 9(8), 628-638.
[http://dx.doi.org/10.1038/nrm2455] [PMID: 18628784]
[29]
Sun, Z.; Wang, S.; Zhao, R.C. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J. Hematol. Oncol., 2014, 7, 14.
[http://dx.doi.org/10.1186/1756-8722-7-14] [PMID: 24502410]
[30]
Lourenco, S.; Teixeira, V.H.; Kalber, T.; Jose, R.J.; Floto, R.A.; Janes, S.M. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J. Immunol., 2015, 194(7), 3463-3474.
[http://dx.doi.org/10.4049/jimmunol.1402097] [PMID: 25712213]
[31]
Bharti, R.; Dey, G.; Mandal, M. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement. Cancer Lett., 2016, 375(1), 51-61.
[http://dx.doi.org/10.1016/j.canlet.2016.02.048] [PMID: 26945971]
[32]
Duan, Z.; Lamendola, D.E.; Penson, R.T.; Kronish, K.M.; Seiden, M.V. Overexpression of IL-6 but not IL-8 increases paclitaxel resistance of U-2OS human osteosarcoma cells. Cytokine, 2002, 17(5), 234-242.
[http://dx.doi.org/10.1006/cyto.2001.1008] [PMID: 12027404]
[33]
Suva, L.J.; Washam, C.; Nicholas, R.W.; Griffin, R.J. Bone metastasis: mechanisms and therapeutic opportunities. Nat. Rev. Endocrinol., 2011, 7(4), 208-218.
[http://dx.doi.org/10.1038/nrendo.2010.227] [PMID: 21200394]
[34]
Tu, B.; Peng, Z.X.; Fan, Q.M.; Du, L.; Yan, W.; Tang, T.T. Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway. Exp. Cell Res., 2014, 320(1), 164-173.
[http://dx.doi.org/10.1016/j.yexcr.2013.10.013] [PMID: 24183998]
[35]
Zhou, S. TGF-β regulates β-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J. Cell. Biochem., 2011, 112(6), 1651-1660.
[http://dx.doi.org/10.1002/jcb.23079] [PMID: 21344492]
[36]
Han, Y.; Guo, W.; Ren, T.; Huang, Y.; Wang, S.; Liu, K.; Zheng, B.; Yang, K.; Zhang, H.; Liang, X. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett., 2019, 440-441, 116-125.
[http://dx.doi.org/10.1016/j.canlet.2018.10.011] [PMID: 30343113]
[37]
Broadhead, M.L.; Clark, J.C.; Myers, D.E.; Dass, C.R.; Choong, P.F. The molecular pathogenesis of osteosarcoma: a review. Sarcoma, 2011, 2011, 959248
[http://dx.doi.org/10.1155/2011/959248] [PMID: 21559216]
[38]
Lamora, A.; Talbot, J.; Mullard, M.; Brounais-Le Royer, B.; Redini, F.; Verrecchia, F. TGF-β signaling in bone remodeling and osteosarcoma progression. J. Clin. Med., 2016, 5(11), 96.
[http://dx.doi.org/10.3390/jcm5110096] [PMID: 27827889]
[39]
Dumars, C.; Ngyuen, J.M.; Gaultier, A.; Lanel, R.; Corradini, N.; Gouin, F.; Heymann, D.; Heymann, M.F. Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma. Oncotarget, 2016, 7(48), 78343-78354.
[http://dx.doi.org/10.18632/oncotarget.13055] [PMID: 27823976]
[40]
Zhang, P.; Dong, L.; Yan, K.; Long, H.; Yang, T.T.; Dong, M.Q.; Zhou, Y.; Fan, Q.Y.; Ma, B.A. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF. Oncol. Rep., 2013, 30(4), 1753-1761.
[http://dx.doi.org/10.3892/or.2013.2619] [PMID: 23863999]
[41]
Gutova, M.; Najbauer, J.; Frank, R.T.; Kendall, S.E.; Gevorgyan, A.; Metz, M.Z.; Guevorkian, M.; Edmiston, M.; Zhao, D.; Glackin, C.A.; Kim, S.U.; Aboody, K.S. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells, 2008, 26(6), 1406-1413.
[http://dx.doi.org/10.1634/stemcells.2008-0141] [PMID: 18403751]
[42]
Bergfeld, S.A.; DeClerck, Y.A. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev., 2010, 29(2), 249-261.
[http://dx.doi.org/10.1007/s10555-010-9222-7] [PMID: 20411303]
[43]
Chaturvedi, P.; Gilkes, D.M.; Wong, C.C.; Luo, W.; Zhang, H.; Wei, H.; Takano, N.; Schito, L.; Levchenko, A.; Semenza, G.L. Kshitiz. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J. Clin. Invest., 2013, 123(1), 189-205.
[http://dx.doi.org/10.1172/JCI64993.even] [PMID: 23318994]
[44]
Maurizi, G.; Verma, N.; Gadi, A.; Mansukhani, A.; Basilico, C. Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma. Oncogene, 2018, 37(33), 4626-4632.
[http://dx.doi.org/10.1038/s41388-018-0292-2] [PMID: 29743593]
[45]
Bellavia, D.; Raimondi, L.; Costa, V.; De Luca, A.; Carina, V.; Maglio, M.; Fini, M.; Alessandro, R.; Giavaresi, G. Engineered exosomes: A new promise for the management of musculoskeletal diseases. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(9), 1893-1901.
[http://dx.doi.org/10.1016/j.bbagen.2018.06.003] [PMID: 29885361]
[46]
Zhou, J.; Tan, X.; Tan, Y.; Li, Q.; Ma, J.; Wang, G. Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: A comprehensive review. J. Cancer, 2018, 9(17), 3129-3137.
[http://dx.doi.org/10.7150/jca.25376] [PMID: 30210636]
[47]
Li, X.; Wang, X. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer. Mol. Cancer, 2017, 16(1), 92.
[http://dx.doi.org/10.1186/s12943-017-0659-y] [PMID: 28506269]
[48]
Miller, I.V.; Raposo, G.; Welsch, U.; Prazeres da Costa, O.; Thiel, U.; Lebar, M.; Maurer, M.; Bender, H.U.; von Luettichau, I.; Richter, G.H.; Burdach, S.; Grunewald, T.G. First identification of Ewing’s sarcoma-derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biol. Cell, 2013, 105(7), 289-303.
[http://dx.doi.org/10.1111/boc.201200086] [PMID: 23521563]
[49]
Scita, G.; Di Fiore, P.P. The endocytic matrix. Nature, 2010, 463(7280), 464-473.
[http://dx.doi.org/10.1038/nature08910] [PMID: 20110990]
[50]
Zheng, Y.; Wang, G.; Chen, R.; Hua, Y.; Cai, Z. Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res. Ther., 2018, 9(1), 22.
[http://dx.doi.org/10.1186/s13287-018-0780-x] [PMID: 29386041]
[51]
Ludwig, A.K.; Giebel, B. Exosomes: small vesicles participating in intercellular communication. Int. J. Biochem. Cell Biol., 2012, 44(1), 11-15.
[http://dx.doi.org/10.1016/j.biocel.2011.10.005] [PMID: 22024155]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2020
Page: [44 - 52]
Pages: 9
DOI: 10.2174/1389200221666200214120226
Price: $65

Article Metrics

PDF: 53
HTML: 1