Fatty Acid Profile and In Vitro Anticancer Activity of Two Marine Sponge- Associated Bacteria

Author(s): Giuseppina Tommonaro*, Ali M. El-Hagrassi, Walid Fayad, Carmine Iodice, Kamel H. Shaker, Faten K. Abd EL-Hady

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Colorectal cancer represents one of the prominent causes of mortality worldwide in men and women. The objective of this study was to search for new potential anticancer compounds, both in prevention and treatment of colorectal cancer. The anticancer potential of marine bacterial extracts against Human colorectal carcinoma cell line (HCT116) was evaluated as well as the partial identification of bioactive metabolites.

Methods: All bacterial extracts were tested for their cytotoxicity against HCT116 cell line by means of MTT assay. The highly cytotoxic dichloromethane extracts of marine sponge-associated bacteria Vibrio sp. and Bacillus sp. were analyzed by GC-MS.

Results: Two fractions, Vib3 and Bac3, exhibited a very interesting cytotoxicity against human colorectal carcinoma (HCT116) cell line, with a percentage of cytotoxicity of 96.04 % and 29.48 %, respectively.

Discussion: The GC-MS analysis revealed the presence of two major fatty acids, palmitic and oleic acids, in Vib3 fraction and fatty acid esters and phenolic compounds in Bac3 fraction.

Conclusion: Based on previous literature, it may be hypothesized that the anticancer activity of bacterial extracts could be, at least partially, to the fatty acids fraction.

Keywords: Marine bacteria, marine sponges, fatty acids, human colorectal carcinoma cell line (HCT116), GC-MS, cancer.

[1]
World Health Organization https://www.who.int/news-room/fact-sheets/detail/cancer [Accessed 12th Sept 2018].
[2]
Kalimuthu, S.; Venkatesan, J.; Kim, S.K. Marine derived bioactive compounds for breast and prostate cancer treatment: A review. Curr. Bioact. Compd., 2014, 10(1), 62-74.
[http://dx.doi.org/10.2174/1573407210666140327212945]
[3]
Saxena, S.; Chhibber, M.; Singh, I.P. Fungal bioactive compounds in pharmaceutical research and development. Curr. Bioact. Compd., 2019, 15(2), 211-231.
[http://dx.doi.org/10.2174/1573407214666180622104720]
[4]
Theodoratou, E.; Timofeeva, M.; Li, X.; Meng, X.; Ioannidis, J.P.A. Nature, nurture, and cancer risks: Genetic and nutritional contributions to cancer. Annu. Rev. Nutr., 2017, 37, 293-320.
[http://dx.doi.org/10.1146/annurev-nutr-071715-051004] [PMID: 28826375]
[5]
Yang, L.; Pei, Z. Bacteria, inflammation, and colon cancer. World J. Gastroenterol., 2006, 12(42), 6741-6746.
[http://dx.doi.org/10.3748/wjg.v12.i42.6741] [PMID: 17106919]
[6]
Oliveira Raphaelli, C.; Gonçalves Azevedo, J.; Ollé Dalmazo, G.; Vinholes, J.; Braganhol, E.; Vizzotto, M.; Nora, L. Effect of fruit secondary metabolites on melanoma: A systematic review of in vitro studies. Curr. Bioact. Compd., 2019, 16(7), 1009-1035.
[7]
Dixon, L.B.; Subar, A.F.; Peters, U.; Weissfeld, J.L.; Bresalier, R.S.; Risch, A.; Schatzkin, A.; Hayes, R.B. Adherence to the USDA Food Guide, DASH Eating Plan, and Mediterranean dietary pattern reduces risk of colorectal adenoma. J. Nutr., 2007, 137(11), 2443-2450.
[http://dx.doi.org/10.1093/jn/137.11.2443] [PMID: 17951483]
[8]
Palozza, P.; Mele, M.C.; Cittadini, A.; Mastrantoni, M. Potential interactions of carotenoids with other bioactive food components in the prevention of chronic diseases. Curr. Bioact. Compd., 2011, 7(4), 243-261.
[http://dx.doi.org/10.2174/157340711798375877]
[9]
Farinetti, A.; Zurlo, V.; Manenti, A.; Coppi, F.; Mattioli, A.V. Mediterranean diet and colorectal cancer: A systematic review. Nutrition, 2017, 43-44, 83-88.
[http://dx.doi.org/10.1016/j.nut.2017.06.008] [PMID: 28935150]
[10]
Pérez-Martínez, P.; García-Ríos, A.; Delgado-Lista, J.; Pérez-Jiménez, F.; López-Miranda, J. Mediterranean diet rich in olive oil and obesity, metabolic syndrome and diabetes mellitus. Curr. Pharm. Des., 2011, 17(8), 769-777.
[http://dx.doi.org/10.2174/138161211795428948] [PMID: 21443484]
[11]
Gill, C.I.R.; Boyd, A.; McDermott, E.; McCann, M.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.; McGlynn, H.; Rowland, I. Potential anti-cancer effects of virgin olive oil phenols on colorectal carcinogenesis models in vitro. Int. J. Cancer, 2005, 117(1), 1-7.
[http://dx.doi.org/10.1002/ijc.21083] [PMID: 15880398]
[12]
Psaltopoulou, T.; Kosti, R.I.; Haidopoulos, D.; Dimopoulos, M.; Panagiotakos, D.B. Olive oil intake is inversely related to cancer prevalence: A systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies. Lipids Health Dis., 2011, 10, 127.
[http://dx.doi.org/10.1186/1476-511X-10-127] [PMID: 21801436]
[13]
Abd Elrazak, A.; Ward, A.C.; Glassey, J. Polyunsaturated fatty acid production by marine bacteria. Bioprocess Biosyst. Eng., 2013, 36(11), 1641-1652.
[http://dx.doi.org/10.1007/s00449-013-0936-0] [PMID: 23525832]
[14]
Moi, I.M.; Leow, A.T.C.; Ali, M.S.M.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Sabri, S. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production. Appl. Microbiol. Biotechnol., 2018, 102(14), 5811-5826.
[http://dx.doi.org/10.1007/s00253-018-9063-9] [PMID: 29749565]
[15]
Gladyshev, M.I.; Sushchik, N.N.; Makhutova, O.N. Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins Other Lipid Mediat., 2013, 107, 117-126.
[http://dx.doi.org/10.1016/j.prostaglandins.2013.03.002] [PMID: 23500063]
[16]
Abbamondi, G.R.; De Rosa, S.; Iodice, C.; Tommonaro, G. Cyclic dipeptides produced by marine sponge-associated bacteria as quorum sensing signals. Nat. Prod. Commun., 2014, 9(2), 229-232.
[http://dx.doi.org/10.1177/1934578X1400900225] [PMID: 24689298]
[17]
De Rosa, S.; Mitova, M.; Tommonaro, G. Marine bacteria associated with sponge as source of cyclic peptides. Biomol. Eng., 2003, 20(4-6), 311-316.
[http://dx.doi.org/10.1016/S1389-0344(03)00038-8] [PMID: 12919814]
[18]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[19]
Christov, R.B.V.; Hegazi, A.; Abd El-Hady, F.; Popov, S. Chemical composition of egyptian propolis. Z. Naturforsch. C, 1998, 53(3-4), 197-200.
[http://dx.doi.org/10.1515/znc-1998-3-409]
[20]
Abd El-Hady, F.K.; Fayad, W.; Iodice, C.; El-Shahid, Z.A.; Abdel-Aziz, M.S.; Crudele, E.; Tommonaro, G. Investigating on the correlation between some biological activities of marine-sponge associated bacteria extracts and isolated diketopiperazines. Curr. Microbiol., 2017, 74(1), 6-13.
[http://dx.doi.org/10.1007/s00284-016-1144-3] [PMID: 27743105]
[21]
Karna, S.; Lim, W.B.; Kim, J.S.; Kim, S.W.; Zheng, H.; Bae, K.H.; Cho, M.S.; Oh, H.K.; Kim, O.S.; Choi, H.R.; Kim, O.J. C16 saturated fatty acid induced autophagy in A549 cells through topoisomerase I inhibition. Food Nutr. Sci., 2012, 3(9), 1220-1227.
[http://dx.doi.org/10.4236/fns.2012.39160]
[22]
Ravi, L.; Krishnan, K. Cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J. Cell Biol, 2017, 12, 20-27.
[23]
Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res., 2002, 22(5), 2587-2590.
[PMID: 12529968]
[24]
Yoo, Y.C.; Shin, B.H.; Hong, J.H.; Lee, J.; Chee, H.Y.; Song, K.S.; Lee, K.B. Isolation of fatty acids with anticancer activity from Protaetia brevitarsis larva. Arch. Pharm. Res., 2007, 30(3), 361-365.
[http://dx.doi.org/10.1007/BF02977619] [PMID: 17424944]
[25]
Tin Win, D. Oleic acid - The anti-breast cancer component in olive oil. A.U.J.T. 2005, 9(2), 75-78.
[26]
Mericli, F.; Becer, E.; Kabadayı, H.; Hanoglu, A.; Yigit Hanoglu, D.; Ozkum Yavuz, D.; Ozek, T.; Vatansever, S. Fatty acid composition and anticancer activity in colon carcinoma cell lines of Prunus dulcis seed oil. Pharm. Biol., 2017, 55(1), 1239-1248.
[http://dx.doi.org/10.1080/13880209.2017.1296003] [PMID: 28262033]
[27]
Haron, N.H.; Md Toha, Z.; Abas, R.; Hamdan, M.R.; Azman, N.; Khairuddean, M.; Arsad, H. In vitro cytotoxic activity of Clinacanthus nutans leaf extracts against HeLa cells. Asian Pac. J. Cancer Prev., 2019, 20(2), 601-609.
[http://dx.doi.org/10.31557/APJCP.2019.20.2.601] [PMID: 30806066]
[28]
Save, S.A.; Lokhande, R.S.; Chowdhary, A.S. Determination of 1, 2-benzenedicarboxylic acid, bis (2-ethylhexyl) ester from the twigs of Thevetia peruviana as a Colwell Biomarker. J.I.A. PS (Wash., D.C.), 2015, 2(3), 349-362.
[29]
Krishnan, K.; Mani, A.; Jasmine, S. Cytotoxic activity of bioactive compound 1, 2-benzene dicarboxylic acid, mono 2-ethylhexyl ester extracted from a marine derived Streptomyces sp. VITSJK8. Int. J. Mol. Cell. Med., 2014, 3(4), 246-254.
[PMID: 25635251]
[30]
Aboul-Enein, A.M.; Shanab, S.M.M.; Shalaby, E.A.; Zahran, M.M.; Lightfoot, D.A.; El-Shemy, H.A. Cytotoxic and antioxidant properties of active principals isolated from water hyacinth against four cancer cells lines. BMC Complement. Altern. Med., 2014, 14, 397-397.
[http://dx.doi.org/10.1186/1472-6882-14-397] [PMID: 25315352]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 9
Year: 2020
Page: [1273 - 1280]
Pages: 8
DOI: 10.2174/1573407216666200214095114
Price: $65

Article Metrics

PDF: 15
HTML: 1