Common Neural Mechanisms of Palatable Food Intake and Drug Abuse: Knowledge Obtained with Animal Models

Author(s): Maria C. Blanco-Gandía, José Miñarro, Marta Rodríguez-Arias*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 20 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Eating is necessary for survival, but it is also one of the great pleasures enjoyed by human beings. Research to date shows that palatable food can be rewarding in a similar way to drugs of abuse, indicating considerable comorbidity between eating disorders and substance-use disorders. Analysis of the common characteristics of both types of disorder has led to a new wave of studies proposing a Gateway Theory of food as a vulnerability factor that modulates the development of drug addiction. The homeostatic and hedonic mechanisms of feeding overlap with some of the mechanisms implicated in drug abuse and their interaction plays a crucial role in the development of drug addiction. Studies in animal models have shown how palatable food sensitizes the reward circuit and makes individuals more sensitive to other substances of abuse, such as cocaine or alcohol. However, when palatable food is administered continuously as a model of obesity, the consequences are different, and studies provide controversial data. In the present review, we will cover the main homeostatic and hedonic mechanisms that regulate palatable food intake behavior and will explain, using animal models, how different types of diet and their intake patterns have direct consequences on the rewarding effects of psychostimulants and ethanol.

Keywords: Palatable food, binge, alcohol, cocaine, rodent, diet, addiction.

[1]
Leonard WR. Human nutritional evolution Human Nutritional Evolution Human Biology: an Evolutionary and Biocultural Perspective. 2nd ed. New York, NY: Wiley 2012; pp. 251-324.
[2]
Kelley AE, Schiltz CA, Landry CF. Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav 2005; 86(1-2): 11-4.
[http://dx.doi.org/10.1016/j.physbeh.2005.06.018] [PMID: 16139315]
[3]
Rada P, Avena NM, Hoebel BG. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 2005; 134(3): 737-44.
[http://dx.doi.org/10.1016/j.neuroscience.2005.04.043] [PMID: 15987666]
[4]
Narayanaswami V, Thompson AC, Cassis LA, Bardo MT, Dwoskin LP. Diet-induced obesity: dopamine transporter function, impulsivity and motivation. Int J Obes 2013; 37(8): 1095-103.
[http://dx.doi.org/10.1038/ijo.2012.178] [PMID: 23164701]
[5]
Gold MS. From bedside to bench and back again: a 30-year saga. Physiol Behav 2011; 104(1): 157-61.
[http://dx.doi.org/10.1016/j.physbeh.2011.04.027] [PMID: 21530563]
[6]
Baladi MG, Daws LC, France CP. You are what you eat: influence of type and amount of food consumed on central dopamine systems and the behavioral effects of direct- and indirect-acting dopamine receptor agonists. Neuropharmacology 2012; 63(1): 76-86.
[http://dx.doi.org/10.1016/j.neuropharm.2012.02.005] [PMID: 22710441]
[7]
Herpertz-Dahlmann B. Adolescent eating disorders: update on definitions, symptomatology, epidemiology, and comorbidity. Child Adolesc Psychiatr Clin N Am 2015; 24(1): 177-96.
[http://dx.doi.org/10.1016/j.chc.2014.08.003] [PMID: 25455581]
[8]
Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev 2013; 14(1): 2-18.
[http://dx.doi.org/10.1111/j.1467-789X.2012.01031.x] [PMID: 23016694]
[9]
Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron 2002; 36(2): 199-211.
[http://dx.doi.org/10.1016/S0896-6273(02)00969-8] [PMID: 12383777]
[10]
Zheng H, Berthoud HR. Eating for pleasure or calories. Curr Opin Pharmacol 2007; 7(6): 607-12.
[http://dx.doi.org/10.1016/j.coph.2007.10.011] [PMID: 18037344]
[11]
Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 2008; 32(1): 20-39.
[http://dx.doi.org/10.1016/j.neubiorev.2007.04.019] [PMID: 17617461]
[12]
Hoebel BG, Avena NM, Bocarsly ME, Rada P. Natural addiction: a behavioral and circuit model based on sugar addiction in rats. J Addict Med 2009; 3(1): 33-41.
[http://dx.doi.org/10.1097/ADM.0b013e31819aa621] [PMID: 21768998]
[13]
Berridge KC. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 2009; 97(5): 537-50.
[http://dx.doi.org/10.1016/j.physbeh.2009.02.044] [PMID: 19336238]
[14]
Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 2008; 363(1507): 3137-46.
[http://dx.doi.org/10.1098/rstb.2008.0093] [PMID: 18640920]
[15]
Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35(1): 217-38.
[http://dx.doi.org/10.1038/npp.2009.110] [PMID: 19710631]
[16]
Daws LC, Avison MJ, Robertson SD, Niswender KD, Galli A, Saunders C. Insulin signaling and addiction. Neuropharmacology 2011; 61(7): 1123-8.
[http://dx.doi.org/10.1016/j.neuropharm.2011.02.028] [PMID: 21420985]
[17]
Garber AK, Lustig RH. Is fast food addictive? Curr Drug Abuse Rev 2011; 4(3): 146-62.
[http://dx.doi.org/10.2174/1874473711104030146] [PMID: 21999689]
[18]
Avena NM, Gold JA, Kroll C, Gold MS. Further developments in the neurobiology of food and addiction: update on the state of the science. Nutrition 2012; 28(4): 341-3.
[http://dx.doi.org/10.1016/j.nut.2011.11.002] [PMID: 22305533]
[19]
Swanson SA, Crow SJ, Le Grange D, Swendsen J, Merikangas KR. Prevalence and correlates of eating disorders in adolescents. Results from the national comorbidity survey replication adolescent supplement. Arch Gen Psychiatry 2011; 68(7): 714-23.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.22] [PMID: 21383252]
[20]
Flores-Fresco MJ, Blanco-Gandía MDC, Rodríguez-Arias M. Alterations in eating behavior in patients with substance abuse disorders. Clin Salud 2018; 29(3): 125-32.
[http://dx.doi.org/10.5093/clysa2018a18]
[21]
Root TL, Pisetsky EM, Thornton L, Lichtenstein P, Pedersen NL, Bulik CM. Patterns of co-morbidity of eating disorders and substance use in Swedish females. Psychol Med 2010; 40(1): 105-15.
[http://dx.doi.org/10.1017/S0033291709005662] [PMID: 19379530]
[22]
Bisetto Pons D, Botella Guijarro Á, Sancho Muñoz A. [Eating Disorders and drug use in adolescents]. Adicciones 2012; 24(1): 9-16.
[http://dx.doi.org/10.20882/adicciones.112] [PMID: 22508012]
[23]
Obesity and overweight. Fact sheet Nº 311, World Health Organization: January . 2015. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
[24]
Arteaga I, Chen CC, Reynolds AJ. Childhood predictors of adult substance abuse. Child Youth Serv Rev 2010; 32(8): 1108-20.
[http://dx.doi.org/10.1016/j.childyouth.2010.04.025] [PMID: 27867242]
[25]
Merline AC, O’Malley PM, Schulenberg JE, Bachman JG, Johnston LD. Substance use among adults 35 years of age: prevalence, adulthood predictors, and impact of adolescent substance use. Am J Public Health 2004; 94(1): 96-102.
[http://dx.doi.org/10.2105/AJPH.94.1.96] [PMID: 14713705]
[26]
Degenhardt L, Chiu WT, Conway K, et al. Does the ‘gateway’ matter? Associations between the order of drug use initiation and the development of drug dependence in the National Comorbidity Study Replication. Psychol Med 2009; 39(1): 157-67.
[http://dx.doi.org/10.1017/S0033291708003425] [PMID: 18466664]
[27]
Puhl MD, Cason AM, Wojnicki FH, Corwin RL, Grigson PS. A history of bingeing on fat enhances cocaine seeking and taking. Behav Neurosci 2011; 125(6): 930-42.
[http://dx.doi.org/10.1037/a0025759] [PMID: 21988520]
[28]
Blanco-Gandía MC, Cantacorps L, Aracil-Fernández A, et al. Effects of bingeing on fat during adolescence on the reinforcing effects of cocaine in adult male mice. Neuropharmacology 2017; 113(Pt A): 31-44.
[http://dx.doi.org/10.1016/j.neuropharm.2016.09.020] [PMID: 27666001]
[29]
Bocarsly ME, Berner LA, Hoebel BG, Avena NM. Rats that binge eat fat-rich food do not show somatic signs or anxiety associated with opiate-like withdrawal: implications for nutrient-specific food addiction behaviors. Physiol Behav 2011; 104(5): 865-72.
[http://dx.doi.org/10.1016/j.physbeh.2011.05.018] [PMID: 21635910]
[30]
Ahima RS, Antwi DA. Brain regulation of appetite and satiety. Endocrinol Metab Clin North Am 2008; 37(4): 811-23.
[http://dx.doi.org/10.1016/j.ecl.2008.08.005] [PMID: 19026933]
[31]
Seeley AP, Stephens T, Tate P. Endocrine glands. Anat Physiol 2003; 616-20.
[32]
Anand BK, Brobeck JR. Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 1951; 77(2): 323-4.
[http://dx.doi.org/10.3181/00379727-77-18766] [PMID: 14854036]
[33]
Delgado J M, Anand B K. Increase of food intake induced by electrical stimulation of the lateral hypothalamus. American J Physiol-- Legacy Content 1952; 172(1): 162-8.
[34]
Coons EE, Cruce JAF. Lateral hypothalamus: food current intensity in maintaining self-stimulation of hunger. Science 1968; 159(3819): 1117-9.
[http://dx.doi.org/10.1126/science.159.3819.1117] [PMID: 5636349]
[35]
Gehlert DR, Chronwall BM, Schafer MP, O’Donohue TL. Localization of neuropeptide Y messenger ribonucleic acid in rat and mouse brain by in situ hybridization. Synapse 1987; 1(1): 25-31.
[http://dx.doi.org/10.1002/syn.890010106] [PMID: 3333197]
[36]
Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL. Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet 1997; 17(3): 273-4.
[http://dx.doi.org/10.1038/ng1197-273] [PMID: 9354787]
[37]
Mercer RE, Michaelson SD, Chee MJ, Atallah TA, Wevrick R, Colmers WF. Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice. PLoS Genet 2013; 9(1): e1003207
[http://dx.doi.org/10.1371/journal.pgen.1003207] [PMID: 23341784]
[38]
Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 1998; 21(6): 1375-85.
[http://dx.doi.org/10.1016/S0896-6273(00)80656-X] [PMID: 9883730]
[39]
Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1995; 1(12): 1311-4.
[http://dx.doi.org/10.1038/nm1295-1311] [PMID: 7489415]
[40]
Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995; 1(11): 1155-61.
[http://dx.doi.org/10.1038/nm1195-1155] [PMID: 7584987]
[41]
Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets of leptin action in rat hypothalamus. J Clin Invest 1996; 98(5): 1101-6.
[http://dx.doi.org/10.1172/JCI118891] [PMID: 8787671]
[42]
Horvath TL, Diano S, Sotonyi P, Heiman M, Tschöp M. Minireview: ghrelin and the regulation of energy balance--a hypothalamic perspective. Endocrinology 2001; 142(10): 4163-9.
[http://dx.doi.org/10.1210/endo.142.10.8490] [PMID: 11564668]
[43]
Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001; 50(8): 1714-9.
[http://dx.doi.org/10.2337/diabetes.50.8.1714] [PMID: 11473029]
[44]
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402(6762): 656-60.
[http://dx.doi.org/10.1038/45230] [PMID: 10604470]
[45]
Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000; 407(6806): 908-13.
[http://dx.doi.org/10.1038/35038090] [PMID: 11057670]
[46]
Niswender KD, Daws LC, Avison MJ, Galli A. Insulin regulation of monoamine signaling: pathway to obesity. Neuropsychopharmacology 2011; 36(1): 359-60.
[http://dx.doi.org/10.1038/npp.2010.167] [PMID: 21116253]
[47]
Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron 2011; 69(4): 664-79.
[http://dx.doi.org/10.1016/j.neuron.2011.02.016] [PMID: 21338878]
[48]
You ZB, Wang B, Liu QR, Wu Y, Otvos L, Wise RA. Reciprocal inhibitory interactions between the reward-related effects of leptin and cocaine. Neuropsychopharmacology 2016; 41(4): 1024-33.
[http://dx.doi.org/10.1038/npp.2015.230] [PMID: 26243270]
[49]
Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 1996; 20(1): 1-25.
[http://dx.doi.org/10.1016/0149-7634(95)00033-B] [PMID: 8622814]
[50]
Berthoud HR, Morrison C. The brain, appetite, and obesity. Annu Rev Psychol 2008; 59: 55-92.
[http://dx.doi.org/10.1146/annurev.psych.59.103006.093551] [PMID: 18154499]
[51]
Volkow ND, Fowler JS, Wang GJ. Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol 2002; 13(5-6): 355-66.
[http://dx.doi.org/10.1097/00008877-200209000-00008] [PMID: 12394411]
[52]
Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci (Regul Ed) 2011; 15(1): 37-46.
[http://dx.doi.org/10.1016/j.tics.2010.11.001] [PMID: 21109477]
[53]
Szczypka MS, Kwok K, Brot MD, et al. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 2001; 30(3): 819-28.
[http://dx.doi.org/10.1016/S0896-6273(01)00319-1] [PMID: 11430814]
[54]
Reynolds SM, Berridge KC. Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J Neurosci 2001; 21(9): 3261-70.
[http://dx.doi.org/10.1523/JNEUROSCI.21-09-03261.2001] [PMID: 11312311]
[55]
Stratford TR, Holahan MR, Kelley AE. Injections of nociceptin into nucleus accumbens shell or ventromedial hypothalamic nucleus increase food intake. Neuroreport 1997; 8(2): 423-6.
[http://dx.doi.org/10.1097/00001756-199701200-00009] [PMID: 9080421]
[56]
Zhang M, Kelley AE. Enhanced intake of high-fat food following striatal mu-opioid stimulation: microinjection mapping and fos expression. Neuroscience 2000; 99(2): 267-77.
[http://dx.doi.org/10.1016/S0306-4522(00)00198-6] [PMID: 10938432]
[57]
Zhang M, Kelley AE. Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu opioid agonist into the nucleus accumbens. Psychopharmacology (Berl) 2002; 159(4): 415-23.
[http://dx.doi.org/10.1007/s00213-001-0932-y] [PMID: 11823894]
[58]
Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M. Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 2002; 76(3): 365-77.
[http://dx.doi.org/10.1016/S0031-9384(02)00751-5] [PMID: 12117573]
[59]
Bassareo V, Di Chiara G. Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 1997; 17(2): 851-61.
[http://dx.doi.org/10.1523/JNEUROSCI.17-02-00851.1997] [PMID: 8987806]
[60]
Di Chiara G. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol (Oxford) 1998; 12(1): 54-67.
[http://dx.doi.org/10.1177/026988119801200108] [PMID: 9584969]
[61]
Di Chiara G. Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 2000; 393(1-3): 295-314.
[http://dx.doi.org/10.1016/S0014-2999(00)00122-9] [PMID: 10771025]
[62]
Phillipson OT, Griffiths AC. The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 1985; 16(2): 275-96.
[http://dx.doi.org/10.1016/0306-4522(85)90002-8] [PMID: 4080159]
[63]
Stratford TR, Kelley AE. Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci 1999; 19(24): 11040-8.
[http://dx.doi.org/10.1523/JNEUROSCI.19-24-11040.1999] [PMID: 10594084]
[64]
Groenewegen HJ, Berendse HW, Haber SN. Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 1993; 57(1): 113-42.
[http://dx.doi.org/10.1016/0306-4522(93)90115-V] [PMID: 8278047]
[65]
Hernandez L, Hoebel BG. Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol Behav 1988; 44(4-5): 599-606.
[http://dx.doi.org/10.1016/0031-9384(88)90324-1] [PMID: 3237847]
[66]
Sotak BN, Hnasko TS, Robinson S, Kremer EJ, Palmiter RD. Dysregulation of dopamine signaling in the dorsal striatum inhibits feeding. Brain Res 2005; 1061(2): 88-96.
[http://dx.doi.org/10.1016/j.brainres.2005.08.053] [PMID: 16226228]
[67]
Evans KR, Vaccarino FJ. Intra-nucleus accumbens amphetamine: dose-dependent effects on food intake. Pharmacol Biochem Behav 1986; 25(6): 1149-51.
[http://dx.doi.org/10.1016/0091-3057(86)90102-4] [PMID: 3809216]
[68]
Yang ZJ, Meguid MM, Chai JK, Chen C, Oler A. Bilateral hypothalamic dopamine infusion in male Zucker rat suppresses feeding due to reduced meal size. Pharmacol Biochem Behav 1997; 58(3): 631-5.
[http://dx.doi.org/10.1016/S0091-3057(97)00022-1] [PMID: 9329051]
[69]
Hajnal A, Smith GP, Norgren R. Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 2004; 286(1): R31-7.
[http://dx.doi.org/10.1152/ajpregu.00282.2003] [PMID: 12933362]
[70]
Rada P, Bocarsly ME, Barson JR, Hoebel BG, Leibowitz SF. Reduced accumbens dopamine in Sprague-Dawley rats prone to overeating a fat-rich diet. Physiol Behav 2010; 101(3): 394-400.
[http://dx.doi.org/10.1016/j.physbeh.2010.07.005] [PMID: 20643155]
[71]
Hodge CW, Samson HH, Tolliver GA, Haraguchi M. Effects of intraaccumbens injections of dopamine agonists and antagonists on sucrose and sucrose-ethanol reinforced responding. Pharmacol Biochem Behav 1994; 48(1): 141-50.
[http://dx.doi.org/10.1016/0091-3057(94)90510-X] [PMID: 7913224]
[72]
Rao RE, Wojnicki FHE, Coupland J, Ghosh S, Corwin RLW. Baclofen, raclopride, and naltrexone differentially reduce solid fat emulsion intake under limited access conditions. Pharmacol Biochem Behav 2008; 89(4): 581-90.
[http://dx.doi.org/10.1016/j.pbb.2008.02.013] [PMID: 18353432]
[73]
Eny KM, Corey P, El-Sohemy A. Dopamine D2 receptor genotype (C957T) is associated with habitual consumption of sugars in a free-living population. FASEB J 2009; 2(4-5): 235-42.
[74]
Shinohara M, Mizushima H, Hirano M, et al. Eating disorders with binge-eating behaviour are associated with the s allele of the 3′-UTR VNTR polymorphism of the dopamine transporter gene. J Psychiatry Neurosci 2004; 29(2): 134-7.
[PMID: 15069467]
[75]
Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012; 53(1): 35-58.
[http://dx.doi.org/10.1093/ilar.53.1.35] [PMID: 23520598]
[76]
South T, Huang XF. High-fat diet exposure increases dopamine D2 receptor and decreases dopamine transporter receptor binding density in the nucleus accumbens and caudate putamen of mice. Neurochem Res 2008; 33(3): 598-605.
[http://dx.doi.org/10.1007/s11064-007-9483-x] [PMID: 17940894]
[77]
Huang XF, Zavitsanou K, Huang X, et al. Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity. Behav Brain Res 2006; 175(2): 415-9.
[http://dx.doi.org/10.1016/j.bbr.2006.08.034] [PMID: 17000016]
[78]
Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 2010; 13(5): 635-41.
[http://dx.doi.org/10.1038/nn.2519] [PMID: 20348917]
[79]
Speed N, Saunders C, Davis AR, et al. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PLoS One 2011; 6(9): e25169
[http://dx.doi.org/10.1371/journal.pone.0025169] [PMID: 21969871]
[80]
Davis JF, Tracy AL, Schurdak JD, et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 2008; 122(6): 1257-63.
[http://dx.doi.org/10.1037/a0013111] [PMID: 19045945]
[81]
Baptista T. Body weight gain induced by antipsychotic drugs: mechanisms and management. Acta Psychiatr Scand 1999; 100(1): 3-16.
[http://dx.doi.org/10.1111/j.1600-0447.1999.tb10908.x] [PMID: 10442434]
[82]
Basile VS, Masellis M, McIntyre RS, Meltzer HY, Lieberman JA, Kennedy JL. Genetic dissection of atypical antipsychotic-induced weight gain: novel preliminary data on the pharmacogenetic puzzle. J Clin Psychiatry 2001; 62(23)(Suppl. 23): 45-66.
[PMID: 11603885]
[83]
Tardieu S, Micallef J, Gentile S, Blin O. Weight gain profiles of new anti-psychotics: public health consequences. Obes Rev 2003; 4(3): 129-38.
[http://dx.doi.org/10.1046/j.1467-789X.2003.00105.x] [PMID: 12916814]
[84]
Will MJ, Franzblau EB, Kelley AE. Nucleus accumbens μ-opioids regulate intake of a high-fat diet via activation of a distributed brain network. J Neurosci 2003; 23(7): 2882-8.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-02882.2003] [PMID: 12684475]
[85]
Maldonado R. [The endogenous opioid system and drug addiction]. Ann Pharm Fr 2010; 68(1): 3-11.
[http://dx.doi.org/10.1016/j.pharma.2009.12.001] [PMID: 20176158]
[86]
Carelli RM. The nucleus accumbens and reward: neurophysiological investigations in behaving animals. Behav Cogn Neurosci Rev 2002; 1(4): 281-96.
[http://dx.doi.org/10.1177/1534582302238338] [PMID: 17712985]
[87]
De Vries TJ, Shippenberg TS. Neural systems underlying opiate addiction. J Neurosci 2002; 22(9): 3321-5.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03321.2002] [PMID: 11978806]
[88]
Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005; 8(11): 1481-9.
[http://dx.doi.org/10.1038/nn1579] [PMID: 16251991]
[89]
Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev 1993; 18(1): 75-113.
[http://dx.doi.org/10.1016/0165-0173(93)90008-N] [PMID: 8096779]
[90]
Chefer VI, Denoroy L, Zapata A, Shippenberg TS. Mu opioid receptor modulation of somatodendritic dopamine overflow: GABAergic and glutamatergic mechanisms. Eur J Neurosci 2009; 30(2): 272-8.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06827.x] [PMID: 19614973]
[91]
Glass MJ, Billington CJ, Levine AS. Opioids and food intake: distributed functional neural pathways? Neuropeptides 1999; 33(5): 360-8.
[http://dx.doi.org/10.1054/npep.1999.0050] [PMID: 10657513]
[92]
Cota D, Proulx K, Smith KAB, et al. Hypothalamic mTOR signaling regulates food intake. Science 2006; 312(5775): 927-30.
[http://dx.doi.org/10.1126/science.1124147] [PMID: 16690869]
[93]
Esch T, Stefano GB. The neurobiology of pleasure, reward processes, addiction and their health implications. Neuroendocrinol Lett 2004; 25(4): 235-51.
[PMID: 15361811]
[94]
Peciña S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do μ-opioids cause increased hedonic impact of sweetness? J Neurosci 2005; 25(50): 11777-86.
[http://dx.doi.org/10.1523/JNEUROSCI.2329-05.2005] [PMID: 16354936]
[95]
Kawahara Y, Kaneko F, Yamada M, Kishikawa Y, Kawahara H, Nishi A. Food reward-sensitive interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system. Neuropharmacology 2013; 67: 395-402.
[http://dx.doi.org/10.1016/j.neuropharm.2012.11.022] [PMID: 23220294]
[96]
Peciña S, Berridge KC. Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res 2000; 863(1-2): 71-86.
[http://dx.doi.org/10.1016/S0006-8993(00)02102-8] [PMID: 10773195]
[97]
Figlewicz DP, Sipols AJ. Energy regulatory signals and food reward. Pharmacol Biochem Behav 2010; 97(1): 15-24.
[http://dx.doi.org/10.1016/j.pbb.2010.03.002] [PMID: 20230849]
[98]
Hagan MM, Rushing PA, Benoit SC, Woods SC, Seeley RJ. Opioid receptor involvement in the effect of AgRP- (83-132) on food intake and food selection. Am J Physiol Regul Integr Comp Physiol 2001; 280(3): R814-21.
[http://dx.doi.org/10.1152/ajpregu.2001.280.3.R814] [PMID: 11171662]
[99]
Bodnar RJ, Glass MJ, Ragnauth A, Cooper ML. General, μ and κ opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Res 1995; 700(1-2): 205-12.
[http://dx.doi.org/10.1016/0006-8993(95)00957-R] [PMID: 8624711]
[100]
Kanarek RB, Homoleski B. Modulation of morphine-induced antinociception by palatable solutions in male and female rats. Pharmacol Biochem Behav 2000; 66(3): 653-9.
[http://dx.doi.org/10.1016/S0091-3057(00)00251-3] [PMID: 10899384]
[101]
Blendy JA, Strasser A, Walters CL, et al. Reduced nicotine reward in obesity: cross-comparison in human and mouse. Psychopharmacology (Berl) 2005; 180(2): 306-15.
[http://dx.doi.org/10.1007/s00213-005-2167-9] [PMID: 15719224]
[102]
Vucetic Z, Kimmel J, Reyes TM. Chronic high-fat diet drives postnatal epigenetic regulation of μ-opioid receptor in the brain. Neuropsychopharmacology 2011; 36(6): 1199-206.
[http://dx.doi.org/10.1038/npp.2011.4] [PMID: 21326195]
[103]
Martire SI, Maniam J, South T, Holmes N, Westbrook RF, Morris MJ. Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res 2014; 265: 132-41.
[http://dx.doi.org/10.1016/j.bbr.2014.02.027] [PMID: 24583192]
[104]
Smith SL, Harrold JA, Williams G. Diet-induced obesity increases μ opioid receptor binding in specific regions of the rat brain. Brain Res 2002; 953(1-2): 215-22.
[http://dx.doi.org/10.1016/S0006-8993(02)03291-2] [PMID: 12384255]
[105]
Ong ZY, Wanasuria AF, Lin MZ, Hiscock J, Muhlhausler BS. Chronic intake of a cafeteria diet and subsequent abstinence. Sex-specific effects on gene expression in the mesolimbic reward system. Appetite 2013; 65: 189-99.
[http://dx.doi.org/10.1016/j.appet.2013.01.014] [PMID: 23402719]
[106]
Blanco-Gandía MC, Aracil-Fernández A, Montagud-Romero S, et al. Changes in gene expression and sensitivity of cocaine reward produced by a continuous fat diet. Psychopharmacology (Berl) 2017; 234(15): 2337-52.
[http://dx.doi.org/10.1007/s00213-017-4630-9] [PMID: 28456841]
[107]
Cristino L, Becker T, Di Marzo V. Endocannabinoids and energy homeostasis: an update. Biofactors 2014; 40(4): 389-97.
[http://dx.doi.org/10.1002/biof.1168] [PMID: 24752980]
[108]
Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol 2013; 64: 21-47.
[http://dx.doi.org/10.1146/annurev-psych-113011-143739] [PMID: 22804774]
[109]
Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry 2016; 79(7): 516-25.
[http://dx.doi.org/10.1016/j.biopsych.2015.07.028] [PMID: 26698193]
[110]
Pertwee RG. Endocannabinoids and their pharmacological actionsEndocannabinoids. Springer International Publishing 2015; pp. 1-37.
[http://dx.doi.org/10.1007/978-3-319-20825-1_1]
[111]
Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 2003; 83(3): 1017-66.
[http://dx.doi.org/10.1152/physrev.00004.2003] [PMID: 12843414]
[112]
Marsicano G, Lutz B. Neuromodulatory functions of the endocannabinoid system. J Endocrinol Invest 2006; 29(3)(Suppl.): 27-46.
[PMID: 16751707]
[113]
Cota D, Woods SC. The role of the endocannabinoid system in the regulation of energy homeostasis. Curr Opin Endocrinol Diabetes Obes 2005; 12(5): 338-51.
[http://dx.doi.org/10.1097/01.med.0000178715.87999.69]
[114]
Cota D, Marsicano G, Tschöp M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003; 112(3): 423-31.
[http://dx.doi.org/10.1172/JCI17725] [PMID: 12897210]
[115]
Osei-Hyiaman D, DePetrillo M, Pacher P, et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115(5): 1298-305.
[http://dx.doi.org/10.1172/JCI200523057] [PMID: 15864349]
[116]
Cavuoto P, McAinch AJ, Hatzinikolas G, Cameron-Smith D, Wittert GA. Effects of cannabinoid receptors on skeletal muscle oxidative pathways. Mol Cell Endocrinol 2007; 267(1-2): 63-9.
[http://dx.doi.org/10.1016/j.mce.2006.12.038] [PMID: 17270342]
[117]
Juan-Picó P, Fuentes E, Bermúdez-Silva FJ, et al. Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic β-cell. Cell Calcium 2006; 39(2): 155-62.
[http://dx.doi.org/10.1016/j.ceca.2005.10.005] [PMID: 16321437]
[118]
Bermudez-Silva FJ, Viveros MP, McPartland JM, Rodriguez de Fonseca F. The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning? Pharmacol Biochem Behav 2010; 95(4): 375-82.
[http://dx.doi.org/10.1016/j.pbb.2010.03.012] [PMID: 20347862]
[119]
Kirkham TC. Endogenous cannabinoids: a new target in the treatment of obesity. Am J Physiol Regul Integr Comp Physiol 2003; 284(2): R343-4.
[http://dx.doi.org/10.1152/ajpregu.00706.2002] [PMID: 12529283]
[120]
Harrold JA, Elliott JC, King PJ, Widdowson PS, Williams G. Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity: a role for endogenous cannabinoids in driving appetite for palatable food? Brain Res 2002; 952(2): 232-8.
[http://dx.doi.org/10.1016/S0006-8993(02)03245-6] [PMID: 12376184]
[121]
Lindqvist A, Baelemans A, Erlanson-Albertsson C. Effects of sucrose, glucose and fructose on peripheral and central appetite signals. Regul Pept 2008; 150(1-3): 26-32.
[http://dx.doi.org/10.1016/j.regpep.2008.06.008] [PMID: 18627777]
[122]
Mahler SV, Smith KS, Berridge KC. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology 2007; 32(11): 2267-78.
[http://dx.doi.org/10.1038/sj.npp.1301376] [PMID: 17406653]
[123]
Koch JEΔ. (9)-THC stimulates food intake in Lewis rats: effects on chow, high-fat and sweet high-fat diets. Pharmacol Biochem Behav 2001; 68(3): 539-43.
[http://dx.doi.org/10.1016/S0091-3057(01)00467-1] [PMID: 11325410]
[124]
Massa F, Mancini G, Schmidt H, et al. Alterations in the hippocampal endocannabinoid system in diet-induced obese mice. J Neurosci 2010; 30(18): 6273-81.
[http://dx.doi.org/10.1523/JNEUROSCI.2648-09.2010] [PMID: 20445053]
[125]
Higuchi S, Irie K, Yamaguchi R, et al. Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences. PLoS One 2012; 7(6): e38609
[http://dx.doi.org/10.1371/journal.pone.0038609] [PMID: 22737214]
[126]
Deshmukh RAHUL, Sharma PL. Activation of central cannabinoid CB1 receptors by WIN 55, 212-2 induces hyperphagia and facilitates preferential increase in palatable diet consumption in Wistar rats. Int J Recent Adv Pharm Res 2012; 2012(2): 62-9.
[127]
Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrié P. CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 2004; 28(4): 640-8.
[http://dx.doi.org/10.1038/sj.ijo.0802583] [PMID: 14770190]
[128]
López-Moreno JA, González-Cuevas G, Moreno G, Navarro M. The pharmacology of the endocannabinoid system: functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction. Addict Biol 2008; 13(2): 160-87.
[http://dx.doi.org/10.1111/j.1369-1600.2008.00105.x] [PMID: 18422831]
[129]
Berghuis P, Rajnicek AM, Morozov YM, et al. Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 2007; 316(5828): 1212-6.
[http://dx.doi.org/10.1126/science.1137406] [PMID: 17525344]
[130]
Caillé S, Parsons LH. Cannabinoid modulation of opiate reinforcement through the ventral striatopallidal pathway. Neuropsychopharmacology 2006; 31(4): 804-13.
[http://dx.doi.org/10.1038/sj.npp.1300848] [PMID: 16123766]
[131]
Parylak SL, Cottone P, Sabino V, Rice KC, Zorrilla EP. Effects of CB1 and CRF1 receptor antagonists on binge-like eating in rats with limited access to a sweet fat diet: lack of withdrawal-like responses. Physiol Behav 2012; 107(2): 231-42.
[http://dx.doi.org/10.1016/j.physbeh.2012.06.017] [PMID: 22776620]
[132]
Melis T, Succu S, Sanna F, Boi A, Argiolas A, Melis MR. The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neurosci Lett 2007; 419(3): 231-5.
[http://dx.doi.org/10.1016/j.neulet.2007.04.012] [PMID: 17462824]
[133]
Russo P, Strazzullo P, Cappuccio FP, et al. Genetic variations at the endocannabinoid type 1 receptor gene (CNR1) are associated with obesity phenotypes in men. J Clin Endocrinol Metab 2007; 92(6): 2382-6.
[http://dx.doi.org/10.1210/jc.2006-2523] [PMID: 17405839]
[134]
Figlewicz DP, Bennett JL, Naleid AM, Davis C, Grimm JW. Intraventricular insulin and leptin decrease sucrose self-administration in rats. Physiol Behav 2006; 89(4): 611-6.
[http://dx.doi.org/10.1016/j.physbeh.2006.07.023] [PMID: 17045623]
[135]
Fulton S, Woodside B, Shizgal P. Modulation of brain reward circuitry by leptin. Science 2000; 287(5450): 125-8.
[http://dx.doi.org/10.1126/science.287.5450.125] [PMID: 10615045]
[136]
Hommel JD, Trinko R, Sears RM, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006; 51(6): 801-10.
[http://dx.doi.org/10.1016/j.neuron.2006.08.023] [PMID: 16982424]
[137]
Scott MM, Lachey JL, Sternson SM, et al. Leptin targets in the mouse brain. J Comp Neurol 2009; 514(5): 518-32.
[http://dx.doi.org/10.1002/cne.22025] [PMID: 19350671]
[138]
Roseberry AG, Painter T, Mark GP, Williams JT. Decreased vesicular somatodendritic dopamine stores in leptin-deficient mice. J Neurosci 2007; 27(26): 7021-7.
[http://dx.doi.org/10.1523/JNEUROSCI.1235-07.2007] [PMID: 17596451]
[139]
Leinninger GM, Jo YH, Leshan RL, et al. Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab 2009; 10(2): 89-98.
[http://dx.doi.org/10.1016/j.cmet.2009.06.011] [PMID: 19656487]
[140]
Krügel U, Schraft T, Kittner H, Kiess W, Illes P. Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol 2003; 482(1-3): 185-7.
[http://dx.doi.org/10.1016/j.ejphar.2003.09.047] [PMID: 14660021]
[141]
Figlewicz DP, MacDonald Naleid A, Sipols AJ. Modulation of food reward by adiposity signals. Physiol Behav 2007; 91(5): 473-8.
[http://dx.doi.org/10.1016/j.physbeh.2006.10.008] [PMID: 17137609]
[142]
Di Marzo V, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410(6830): 822-5.
[http://dx.doi.org/10.1038/35071088] [PMID: 11298451]
[143]
Kawai K, Sugimoto K, Nakashima K, Miura H, Ninomiya Y. Leptin as a modulator of sweet taste sensitivities in mice. Proc Natl Acad Sci USA 2000; 97(20): 11044-9.
[http://dx.doi.org/10.1073/pnas.190066697] [PMID: 10995460]
[144]
Guan XM, Yu H, Palyha OC, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 1997; 48(1): 23-9.
[http://dx.doi.org/10.1016/S0169-328X(97)00071-5] [PMID: 9379845]
[145]
Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006; 116(12): 3229-39.
[http://dx.doi.org/10.1172/JCI29867] [PMID: 17060947]
[146]
Jerlhag E. Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol 2008; 13(3-4): 358-63.
[http://dx.doi.org/10.1111/j.1369-1600.2008.00125.x] [PMID: 18782383]
[147]
Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol 2006; 11(1): 45-54.
[http://dx.doi.org/10.1111/j.1369-1600.2006.00002.x] [PMID: 16759336]
[148]
Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 2007; 12(1): 6-16.
[http://dx.doi.org/10.1111/j.1369-1600.2006.00041.x] [PMID: 17407492]
[149]
Wellman PJ, Clifford PS, Rodriguez JA. Ghrelin and ghrelin receptor modulation of psychostimulant action. Front Neurosci 2013; 7: 171.
[http://dx.doi.org/10.3389/fnins.2013.00171] [PMID: 24093007]
[150]
Egecioglu E, Jerlhag E, Salomé N, et al. Ghrelin increases intake of rewarding food in rodents. Addict Biol 2010; 15(3): 304-11.
[http://dx.doi.org/10.1111/j.1369-1600.2010.00216.x] [PMID: 20477752]
[151]
Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience 2011; 180: 129-37.
[http://dx.doi.org/10.1016/j.neuroscience.2011.02.016] [PMID: 21335062]
[152]
Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 2008; 7(5): 400-9.
[http://dx.doi.org/10.1016/j.cmet.2008.03.007] [PMID: 18460331]
[153]
Skibicka KP, Shirazi RH, Rabasa-Papio C, et al. Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin’s effect on food reward but not food intake. Neuropharmacology 2013; 73: 274-83.
[http://dx.doi.org/10.1016/j.neuropharm.2013.06.004] [PMID: 23770258]
[154]
Wellman PJ, Davis KW, Nation JR. Augmentation of cocaine hyperactivity in rats by systemic ghrelin. Regul Pept 2005; 125(1-3): 151-4.
[http://dx.doi.org/10.1016/j.regpep.2004.08.013] [PMID: 15582726]
[155]
Abizaid A, Mineur YS, Roth RH, et al. Reduced locomotor responses to cocaine in ghrelin-deficient mice. Neuroscience 2011; 192: 500-6.
[http://dx.doi.org/10.1016/j.neuroscience.2011.06.001] [PMID: 21699961]
[156]
Jerlhag E, Egecioglu E, Landgren S, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci USA 2009; 106(27): 11318-23.
[http://dx.doi.org/10.1073/pnas.0812809106] [PMID: 19564604]
[157]
Davis C, Patte K, Levitan R, Reid C, Tweed S, Curtis C. From motivation to behaviour: a model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite 2007; 48(1): 12-9.
[http://dx.doi.org/10.1016/j.appet.2006.05.016] [PMID: 16875757]
[158]
Aguilar MA, Rodríguez-Arias M, Miñarro J. Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Brain Res Rev 2009; 59(2): 253-77.
[http://dx.doi.org/10.1016/j.brainresrev.2008.08.002] [PMID: 18762212]
[159]
Sanchis-Segura C, Spanagel R. Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 2006; 11(1): 2-38.
[http://dx.doi.org/10.1111/j.1369-1600.2006.00012.x] [PMID: 16759333]
[160]
Valdivia S, Patrone A, Reynaldo M, Perello M. Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model. PLoS One 2014; 9(1): e87478
[http://dx.doi.org/10.1371/journal.pone.0087478] [PMID: 24466352]
[161]
Blanco-Gandía MC, Ledesma JC, Aracil-Fernández A, et al. The rewarding effects of ethanol are modulated by binge eating of a high-fat diet during adolescence. Neuropharmacology 2017; 121: 219-30.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.040] [PMID: 28457972]
[162]
Avena NM. Examining the addictive-like properties of binge eating using an animal model of sugar dependence. Exp Clin Psychopharmacol 2007; 15(5): 481-91.
[http://dx.doi.org/10.1037/1064-1297.15.5.481] [PMID: 17924782]
[163]
Avena NM, Rada P, Hoebel BG. Sugar and fat bingeing have notable differences in addictive-like behavior. J Nutr 2009; 139(3): 623-8.
[http://dx.doi.org/10.3945/jn.108.097584] [PMID: 19176748]
[164]
Avena NM, Carrillo CA, Needham L, Leibowitz SF, Hoebel BG. Sugar-dependent rats show enhanced intake of unsweetened ethanol. Alcohol 2004; 34(2-3): 203-9.
[http://dx.doi.org/10.1016/j.alcohol.2004.09.006] [PMID: 15902914]
[165]
Blanco-Gandía MC, Miñarro J, Rodríguez-Arias M. Behavioral profile of intermittent vs continuous access to a high fat diet during adolescence. Behav Brain Res 2019; 368: 111891
[http://dx.doi.org/10.1016/j.bbr.2019.04.005] [PMID: 31009646]
[166]
Teegarden SL, Bale TL. Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 2007; 61(9): 1021-9.
[http://dx.doi.org/10.1016/j.biopsych.2006.09.032] [PMID: 17207778]
[167]
Beck B, Stricker-Krongrad A, Burlet A, Nicolas JP, Burlet C. Influence of diet composition on food intake and hypothalamic neuropeptide Y (NPY) in the rat. Neuropeptides 1990; 17(4): 197-203.
[http://dx.doi.org/10.1016/0143-4179(90)90036-X] [PMID: 2093153]
[168]
Marmonier C, Chapelot D, Louis-Sylvestre J. Effects of macronutrient content and energy density of snacks consumed in a satiety state on the onset of the next meal. Appetite 2000; 34(2): 161-8.
[http://dx.doi.org/10.1006/appe.1999.0302] [PMID: 10744905]
[169]
Warwick ZS, Synowski SJ, Rice KD, Smart AB. Independent effects of diet palatability and fat content on bout size and daily intake in rats. Physiol Behav 2003; 80(2-3): 253-8.
[http://dx.doi.org/10.1016/j.physbeh.2003.07.007] [PMID: 14637223]
[170]
Corwin RL, Avena NM, Boggiano MM. Feeding and reward: perspectives from three rat models of binge eating. Physiol Behav 2011; 104(1): 87-97.
[http://dx.doi.org/10.1016/j.physbeh.2011.04.041] [PMID: 21549136]
[171]
Zhang S, Zhang Q, Zhang L, Li C, Jiang H. Expression of ghrelin and leptin during the development of type 2 diabetes mellitus in a rat model. Mol Med Rep 2013; 7(1): 223-8.
[http://dx.doi.org/10.3892/mmr.2012.1154] [PMID: 23129112]
[172]
Thanos PK, Kim R, Cho J, et al. Obesity-resistant S5B rats showed greater cocaine conditioned place preference than the obesity-prone OM rats. Physiol Behav 2010; 101(5): 713-8.
[http://dx.doi.org/10.1016/j.physbeh.2010.08.011] [PMID: 20801137]
[173]
Morales L, Del Olmo N, Valladolid-Acebes I, et al. Shift of circadian feeding pattern by high-fat diets is coincident with reward deficits in obese mice. PLoS One 2012; 7(5): e36139
[http://dx.doi.org/10.1371/journal.pone.0036139] [PMID: 22570696]
[174]
Wellman PJ, Nation JR, Davis KW. Impairment of acquisition of cocaine self-administration in rats maintained on a high-fat diet. Pharmacol Biochem Behav 2007; 88(1): 89-93.
[http://dx.doi.org/10.1016/j.pbb.2007.07.008] [PMID: 17764729]
[175]
Edge PJ, Gold MS. Drug withdrawal and hyperphagia: lessons from tobacco and other drugs. Curr Pharm Des 2011; 17(12): 1173-9.
[http://dx.doi.org/10.2174/138161211795656738] [PMID: 21492091]
[176]
Chechlacz M, Rotshtein P, Klamer S, et al. Diabetes dietary management alters responses to food pictures in brain regions associated with motivation and emotion: a functional magnetic resonance imaging study. Diabetologia 2009; 52(3): 524-33.
[http://dx.doi.org/10.1007/s00125-008-1253-z] [PMID: 19139843]
[177]
Collins GT, Chen Y, Tschumi C, et al. Effects of consuming a diet high in fat and/or sugar on the locomotor effects of acute and repeated cocaine in male and female C57BL/6J mice. Exp Clin Psychopharmacol 2015; 23(4): 228-37.
[http://dx.doi.org/10.1037/pha0000019] [PMID: 26237320]
[178]
Kuhn FT, Roversi K, Antoniazzi CT, et al. Influence of trans fat and omega-3 on the preference of psychostimulant drugs in the first generation of young rats. Pharmacol Biochem Behav 2013; 110: 58-65.
[http://dx.doi.org/10.1016/j.pbb.2013.06.001] [PMID: 23769696]
[179]
Peleg-Raibstein D, Sarker G, Litwan K, et al. 2016; Enhanced sensitivity to drugs of abuse and palatable foods following maternal overnutrition. Transl Psychiatry 4 6(10): e911
[http://dx.doi.org/10.1038/tp.2016.176]
[180]
Baladi MG, Horton RE, Owens WA, Daws LC, France CP. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents. Int J Neuropsychopharmacol 2015; 18(7): pyv024
[http://dx.doi.org/10.1093/ijnp/pyv024] [PMID: 25805560]
[181]
Pekkanen L, Eriksson K, Sihvonen ML. Dietarily-induced changes in voluntary ethanol consumption and ethanol metabolism in the rat. Br J Nutr 1978; 40(1): 103-13.
[http://dx.doi.org/10.1079/BJN19780100] [PMID: 666993]
[182]
Carrillo CA, Leibowitz SF, Karatayev O, Hoebel BG. A high-fat meal or injection of lipids stimulates ethanol intake. Alcohol 2004; 34(2-3): 197-202.
[http://dx.doi.org/10.1016/j.alcohol.2004.08.009] [PMID: 15902913]
[183]
Dorofeikova MV, Egorov AY, Filatova EV, Orlov AA. Sucrose-enriched diet during maturation increases ethanol preference in rats. Dokl Biol Sci 2017; 475(1): 148-50.
[http://dx.doi.org/10.1134/S0012496617040068] [PMID: 28861882]
[184]
Del Olmo N, Blanco-Gandía MC, Mateos-García A, et al. differential impact of ad libitum or intermittent high-fat diets on bingeing ethanol-mediated behaviors. Nutrients 2019; 11(9): 2253.
[http://dx.doi.org/10.3390/nu11092253] [PMID: 31546853]
[185]
Corwin RL, Wojnicki FH. Binge eating in rats with limited access to vegetable shortening. In: Curr Protoc Neurosci . 2006; Chapter 9 23B.: pp. ()-.
[http://dx.doi.org/10.1002/0471142301.ns0923bs36] [PMID: 18428650]
[186]
Corwin RL, Buda-Levin A. Behavioral models of binge-type eating. Physiol Behav 2004; 82(1): 123-30.
[http://dx.doi.org/10.1016/j.physbeh.2004.04.036] [PMID: 15234600]
[187]
Zernig G, Ahmed SH, Cardinal RN, et al. Explaining the escalation of drug use in substance dependence: models and appropriate animal laboratory tests. Pharmacology 2007; 80(2-3): 65-119.
[http://dx.doi.org/10.1159/000103923] [PMID: 17570954]
[188]
Goeders JE, Murnane KS, Banks ML, Fantegrossi WE. Escalation of food-maintained responding and sensitivity to the locomotor stimulant effects of cocaine in mice. Pharmacol Biochem Behav 2009; 93(1): 67-74.
[http://dx.doi.org/10.1016/j.pbb.2009.04.008] [PMID: 19376153]
[189]
Perello M, Valdivia S, García Romero G, Raingo J. Considerations about rodent models of binge eating episodes. Front Psychol 2014; 5: 372.
[http://dx.doi.org/10.3389/fpsyg.2014.00372] [PMID: 24808881]
[190]
Valdivia S, Cornejo MP, Reynaldo M, De Francesco PN, Perello M. Escalation in high fat intake in a binge eating model differentially engages dopamine neurons of the ventral tegmental area and requires ghrelin signaling. Psychoneuroendocrinology 2015; 60: 206-16.
[http://dx.doi.org/10.1016/j.psyneuen.2015.06.018] [PMID: 26186250]
[191]
Avena NM, Hoebel BG. A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience 2003; 122(1): 17-20.
[http://dx.doi.org/10.1016/S0306-4522(03)00502-5] [PMID: 14596845]
[192]
Gosnell BA. Sucrose intake enhances behavioral sensitization produced by cocaine. Brain Res 2005; 1031(2): 194-201.
[http://dx.doi.org/10.1016/j.brainres.2004.10.037] [PMID: 15649444]
[193]
Serafine KM, Bentley TA, Koek W, France CP. Eating high fat chow, but not drinking sucrose or saccharin, enhances the development of sensitization to the locomotor effects of cocaine in adolescent female rats. Behav Pharmacol 2015; 26(3): 321-5.
[http://dx.doi.org/10.1097/FBP.0000000000000114] [PMID: 25485647]
[194]
Sirohi S, Van Cleef A, Davis JF. Intermittent access to a nutritionally complete high-fat diet attenuates alcohol drinking in rats. Pharmacol Biochem Behav 2017; 153: 105-15.
[http://dx.doi.org/10.1016/j.pbb.2016.12.009] [PMID: 27998722]
[195]
Sirohi S, Van Cleef A, Davis JF. Binge-like intake of HFD attenuates alcohol intake in rats. Physiology and Behavior 2017 Oct 17; pii: S0031-9384(16): 30599-6.
[196]
Rogers PJ, Smit HJ. Food craving and food “addiction”: a critical review of the evidence from a biopsychosocial perspective. Pharmacol Biochem Behav 2000; 66(1): 3-14.
[http://dx.doi.org/10.1016/S0091-3057(00)00197-0] [PMID: 10837838]
[197]
Cottone P, Sabino V, Steardo L, Zorrilla EP. Intermittent access to preferred food reduces the reinforcing efficacy of chow in rats. Am J Physiol Regul Integr Comp Physiol 2008; 295(4): R1066-76.
[http://dx.doi.org/10.1152/ajpregu.90309.2008] [PMID: 18667718]
[198]
Teegarden SL, Bale TL. Effects of stress on dietary preference and intake are dependent on access and stress sensitivity. Physiol Behav 2008; 93(4-5): 713-23.
[http://dx.doi.org/10.1016/j.physbeh.2007.11.030] [PMID: 18155095]
[199]
Koob GF, Zorrilla EP. 2010; Neurobiological mechanisms of addiction: focus on corticotropin-releasing factor. Current opinion in investigational drugs 11(1): 63.
[200]
Pickering C, Alsiö J, Hulting AL, Schiöth HB. Withdrawal from free-choice high-fat high-sugar diet induces craving only in obesity-prone animals. Psychopharmacology (Berl) 2009; 204(3): 431-43.
[http://dx.doi.org/10.1007/s00213-009-1474-y] [PMID: 19205668]
[201]
Teegarden SL, Scott AN, Bale TL. Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience 2009; 162(4): 924-32.
[http://dx.doi.org/10.1016/j.neuroscience.2009.05.029] [PMID: 19465087]
[202]
Le Merrer J, Stephens DN. Food-induced behavioral sensitization, its cross-sensitization to cocaine and morphine, pharmacological blockade, and effect on food intake. J Neurosci 2006; 26(27): 7163-71.
[http://dx.doi.org/10.1523/JNEUROSCI.5345-05.2006] [PMID: 16822973]
[203]
Blanco-Gandía MC, Miñarro J, Aguilar MA, Rodríguez-Arias M. Increased ethanol consumption after interruption of fat bingeing. PLoS One 2018; 13(3): e0194431
[http://dx.doi.org/10.1371/journal.pone.0194431] [PMID: 29590149]
[204]
Sinha R, Jastreboff AM. Stress as a common risk factor for obesity and addiction. Biol Psychiatry 2013; 73(9): 827-35.
[http://dx.doi.org/10.1016/j.biopsych.2013.01.032] [PMID: 23541000]
[205]
Cartwright M, Wardle J, Steggles N, Simon AE, Croker H, Jarvis MJ. Stress and dietary practices in adolescents. Health Psychol 2003; 22(4): 362-9.
[http://dx.doi.org/10.1037/0278-6133.22.4.362] [PMID: 12940392]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 20
Year: 2020
Page: [2372 - 2384]
Pages: 13
DOI: 10.2174/1381612826666200213123608
Price: $65

Article Metrics

PDF: 21
HTML: 7