Why Multiples of 21? Why does Selenoprotein P Contain Multiple Selenocysteine Residues?

Author(s): Janinah Baclaocos, John James Mackrill*

Journal Name: Current Nutraceuticals

Volume 1 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: In animals, the 21st amino acid selenocysteine is incorporated into a restricted subset of proteins by recoding of a UGA stop codon. This recoding requires a distinctive selenocysteine insertion sequence in selenoprotein encoding mRNAs, trans-acting factors and in most cases, adequate dietary intake of selenium. With one exception, selenoproteins contain a single selenocysteine, which is incorporated with low translational efficiency. The exception is selenoprotein P, which in some species is predicted to contain as many as 132 selenocysteines and which is considered to play roles in selenium transport and storage.

Objective: This study aimed to develop comparative physiological and evolutionary perspectives on the function(s) of selenoprotein P.

Methods: The review of the literature on the roles of selenoprotein P in diverse animals.

Results: Selenoprotein P contains multiple selenocysteines, making it energetically costly to produce. Furthermore, it is often associated with detrimental effects to the animals that produce it. Possible benefits that outweigh these costs include the general storage and transport of selenium; the transport of both toxic and useful metal ions; and specific functions in reproduction and in the nervous system.

Conclusion: A probable reconciliation of the negative effects of producing Selenoprotein P is its benefit in terms of promoting reproductive success.

Keywords: Selenium, selenoprotein P, comparative physiology, evolution, lifespan, reproduction.

[1]
Rayman, M.P. Selenium intake, status, and health: a complex relationship. Hormones, 2020, 19, 9-14.
[http://dx.doi.org/10.1007/s42000-019-00125-5]
[2]
Nuttall, K.L. Evaluating selenium poisoning. Ann. Clin. Lab. Sci., 2006, 36(4), 409-420.
[PMID: 17127727]
[3]
Burk, R.F.; Hill, K.E. Regulation of selenium metabolism and transport. Annu. Rev. Nutr., 2015, 35, 109-134.
[http://dx.doi.org/10.1146/annurev-nutr-071714-034250] [PMID: 25974694]
[4]
Zhou, H.; Wang, T.; Li, Q.; Li, D. Prevention of keshan disease by selenium supplementation: A systematic review and meta-analysis. Biol. Trace Elem. Res., 2018, 186(1), 98-105.
[http://dx.doi.org/10.1007/s12011-018-1302-5] [PMID: 29627894]
[5]
Robberecht, H.; De Bruyne, T.; Davioud-Charvet, E.; Mackrill, J.; Hermans, N. Selenium status in elderly people: Longevity and age-related diseases. Curr. Pharm. Des., 2019, 25(15), 1694-1706.
[http://dx.doi.org/10.2174/1381612825666190701144709] [PMID: 31267854]
[6]
Schweizer, U.; Fradejas-Villar, N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J., 2016, 30(11), 3669-3681.
[http://dx.doi.org/10.1096/fj.201600424] [PMID: 27473727]
[7]
Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci., 2014, 39(3), 112-120.
[http://dx.doi.org/10.1016/j.tibs.2013.12.007] [PMID: 24485058]
[8]
Flohé, L. The labour pains of biochemical selenology: the history of selenoprotein biosynthesis. Biochim. Biophys. Acta, 2009, 1790(11), 1389-1403.
[http://dx.doi.org/10.1016/j.bbagen.2009.03.031] [PMID: 19358874]
[9]
White, P.J. Selenium metabolism in plants. Biochim. Biophys. Acta, Gen. Subj., 2018, pii: S0304-4165(18), 30138-7.
[PMID: 29751098]
[10]
Suzuki, K.T.; Kurasaki, K.; Suzuki, N. Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide. Biochim. Biophys. Acta, 2007, 1770(7), 1053-1061.
[http://dx.doi.org/10.1016/j.bbagen.2007.03.007] [PMID: 17451884]
[11]
Yamashita, Y.; Yamashita, M. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J. Biol. Chem., 2010, 285(24), 18134-18138.
[http://dx.doi.org/10.1074/jbc.C110.106377] [PMID: 20388714]
[12]
Elhodaky, M.; Diamond, A.M. Selenium-binding protein 1 in human health and disease. Int. J. Mol. Sci., 2018, 19(11) E3437
[http://dx.doi.org/10.3390/ijms19113437] [PMID: 30400135]
[13]
Kim, I.Y.; Guimarães, M.J.; Zlotnik, A.; Bazan, J.F.; Stadtman, T.C. Fetal mouse selenophosphate synthetase 2 (SPS2): characterization of the cysteine mutant form overproduced in a baculovirus-insect cell system. Proc. Natl. Acad. Sci. USA, 1997, 94(2), 418-421.
[http://dx.doi.org/10.1073/pnas.94.2.418] [PMID: 9012797]
[14]
Amberg, R.; Mizutani, T.; Wu, X.Q.; Gross, H.J. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec). J. Mol. Biol., 1996, 263(1), 8-19.
[http://dx.doi.org/10.1006/jmbi.1996.0552] [PMID: 8890909]
[15]
Berry, M.J.; Banu, L.; Harney, J.W.; Larsen, P.R. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J., 1993, 12(8), 3315-3322.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06001.x] [PMID: 8344267]
[16]
Wessjohann, L.A.; Schneider, A.; Abbas, M.; Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem., 2007, 388(10), 997-1006.
[http://dx.doi.org/10.1515/BC.2007.138] [PMID: 17937613]
[17]
Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[18]
Castellano, S.; Andrés, A.M.; Bosch, E.; Bayes, M.; Guigó, R.; Clark, A.G. Low exchangeability of selenocysteine, the 21st amino acid, in vertebrate proteins. Mol. Biol. Evol., 2009, 26(9), 2031-2040.
[http://dx.doi.org/10.1093/molbev/msp109] [PMID: 19487332]
[19]
Gobler, C.J.; Lobanov, A.V.; Tang, Y.Z.; Turanov, A.A.; Zhang, Y.; Doblin, M.; Taylor, G.T.; Sañudo-Wilhelmy, S.A.; Grigoriev, I.V.; Gladyshev, V.N. The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens. ISME J., 2013, 7(7), 1333-1343.
[http://dx.doi.org/10.1038/ismej.2013.25] [PMID: 23466703]
[20]
Wu, S.; Mariotti, M.; Santesmasses, D.; Hill, K.E.; Baclaocos, J.; Aparicio-Prat, E.; Li, S.; Mackrill, J.; Wu, Y.; Howard, M.T.; Capecchi, M.; Guigó, R.; Burk, R.F.; Atkins, J.F. Human selenoprotein P and S variant mRNAs with different numbers of SECIS elements and inferences from mutant mice of the roles of multiple SECIS elements. Open Biol., 2016, 6(11) 160241
[http://dx.doi.org/10.1098/rsob.160241] [PMID: 27881738]
[21]
Hill, K.E.; Zhou, J.; McMahan, W.J.; Motley, A.K.; Atkins, J.F.; Gesteland, R.F.; Burk, R.F. Deletion of selenoprotein P alters distribution of selenium in the mouse. J. Biol. Chem., 2003, 278(16), 13640-13646.
[http://dx.doi.org/10.1074/jbc.M300755200] [PMID: 12574155]
[22]
Schomburg, L.; Schweizer, U.; Holtmann, B.; Flohé, L.; Sendtner, M.; Köhrle, J. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem. J., 2003, 370(Pt 2), 397-402.
[http://dx.doi.org/10.1042/bj20021853] [PMID: 12521380]
[23]
Olson, G.E.; Winfrey, V.P.; Nagdas, S.K.; Hill, K.E.; Burk, R.F. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J. Biol. Chem., 2007, 282(16), 12290-12297.
[http://dx.doi.org/10.1074/jbc.M611403200] [PMID: 17314095]
[24]
Hill, K.E.; Zhou, J.; McMahan, W.J.; Motley, A.K.; Burk, R.F. Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J. Nutr., 2004, 134(1), 157-161.
[http://dx.doi.org/10.1093/jn/134.1.157] [PMID: 14704310]
[25]
Schweizer, U.; Streckfuss, F.; Pelt, P.; Carlson, B.A.; Hatfield, D.L.; Köhrle, J.; Schomburg, L. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem. J., 2005, 386(Pt 2), 221-226.
[http://dx.doi.org/10.1042/BJ20041973] [PMID: 15638810]
[26]
Hill, K.E.; Lloyd, R.S.; Burk, R.F. Conserved nucleotide sequences in the open reading frame and 3′ untranslated region of selenoprotein P mRNA. Proc. Natl. Acad. Sci. USA, 1993, 90(2), 537-541.
[http://dx.doi.org/10.1073/pnas.90.2.537] [PMID: 8421687]
[27]
Baclaocos, J.; Santesmasses, D.; Mariotti, M.; Bierła, K.; Vetick, M.B.; Lynch, S.; McAllen, R.; Mackrill, J.J.; Loughran, G.; Guigó, R.; Szpunar, J.; Copeland, P.R.; Gladyshev, V.N.; Atkins, J.F. Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs. J. Mol. Biol., 2019, 431(22), 4381-4407.
[http://dx.doi.org/10.1016/j.jmb.2019.08.007] [PMID: 31442478]
[28]
Andersson, J.O. Lateral gene transfer in eukaryotes. Cell. Mol. Life Sci., 2005, 62(11), 1182-1197.
[http://dx.doi.org/10.1007/s00018-005-4539-z] [PMID: 15761667]
[29]
Goulas, T.; Arolas, J.L.; Gomis-Rüth, F.X. Structure, function and latency regulation of a bacterial enterotoxin potentially derived from a mammalian adamalysin/ADAM xenolog. Proc. Natl. Acad. Sci. USA, 2011, 108(5), 1856-1861.
[http://dx.doi.org/10.1073/pnas.1012173108] [PMID: 21233422]
[30]
Underriner, A.; Silverwood, T.; Kelley, C.; MacLea, K.S. Genome Sequence of the Halophilic Bacterium Kangiella spongicola ATCC BAA-2076(T). Microbiol Resour Announc, 2018, 7(2), pii: e00847-e18.
[http://dx.doi.org/10.1128/MRA.00847-18] [PMID: 30533801]
[31]
Saito, Y.; Sato, N.; Hirashima, M.; Takebe, G.; Nagasawa, S.; Takahashi, K. Domain structure of bi-functional selenoprotein P. Biochem. J., 2004, 381(Pt 3), 841-846.
[http://dx.doi.org/10.1042/BJ20040328] [PMID: 15117283]
[32]
Shetty, S.P.; Shah, R.; Copeland, P.R. Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P. J. Biol. Chem., 2014, 289(36), 25317-25326.
[http://dx.doi.org/10.1074/jbc.M114.590430] [PMID: 25063811]
[33]
Saito, Y.; Hayashi, T.; Tanaka, A.; Watanabe, Y.; Suzuki, M.; Saito, E.; Takahashi, K. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p. J. Biol. Chem., 1999, 274(5), 2866-2871.
[http://dx.doi.org/10.1074/jbc.274.5.2866] [PMID: 9915822]
[34]
Kurokawa, S.; Eriksson, S.; Rose, K.L.; Wu, S.; Motley, A.K.; Hill, S.; Winfrey, V.P.; McDonald, W.H.; Capecchi, M.R.; Atkins, J.F.; Arnér, E.S.; Hill, K.E.; Burk, R.F. Sepp1(UF) forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1. Free Radic. Biol. Med., 2014, 69, 67-76.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.010] [PMID: 24434121]
[35]
Bosschaerts, T.; Guilliams, M.; Noel, W.; Hérin, M.; Burk, R.F.; Hill, K.E.; Brys, L.; Raes, G.; Ghassabeh, G.H.; De Baetselier, P.; Beschin, A. Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P. J. Immunol., 2008, 180(9), 6168-6175.
[http://dx.doi.org/10.4049/jimmunol.180.9.6168] [PMID: 18424738]
[36]
Olson, G.E.; Winfrey, V.P.; Hill, K.E.; Burk, R.F. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J. Biol. Chem., 2008, 283(11), 6854-6860.
[http://dx.doi.org/10.1074/jbc.M709945200] [PMID: 18174160]
[37]
Burk, R.F.; Hill, K.E.; Olson, G.E.; Weeber, E.J.; Motley, A.K.; Winfrey, V.P.; Austin, L.M. Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J. Neurosci., 2007, 27(23), 6207-6211.
[http://dx.doi.org/10.1523/JNEUROSCI.1153-07.2007] [PMID: 17553992]
[38]
Kurokawa, S.; Bellinger, F.P.; Hill, K.E.; Burk, R.F.; Berry, M.J. Isoform-specific binding of selenoprotein P to the β-propeller domain of apolipoprotein E receptor 2 mediates selenium supply. J. Biol. Chem., 2014, 289(13), 9195-9207.
[http://dx.doi.org/10.1074/jbc.M114.549014] [PMID: 24532792]
[39]
Motsenbocker, M.A.; Tappel, A.L. A selenocysteine-containing selenium-transport protein in rat plasma. Biochim. Biophys. Acta, 1982, 719(1), 147-153.
[http://dx.doi.org/10.1016/0304-4165(82)90318-X] [PMID: 6216918]
[40]
Hybsier, S.; Schulz, T.; Wu, Z.; Demuth, I.; Minich, W.B.; Renko, K.; Rijntjes, E.; Köhrle, J.; Strasburger, C.J.; Steinhagen-Thiessen, E.; Schomburg, L. Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated ELISA for selenoprotein P. Redox Biol., 2017, 11, 403-414.
[http://dx.doi.org/10.1016/j.redox.2016.12.025] [PMID: 28064116]
[41]
Ma, S.; Hill, K.E.; Caprioli, R.M.; Burk, R.F. Mass spectrometric characterization of full-length rat selenoprotein P and three isoforms shortened at the C terminus. Evidence that three UGA codons in the mRNA open reading frame have alternative functions of specifying selenocysteine insertion or translation termination. J. Biol. Chem., 2002, 277(15), 12749-12754.
[http://dx.doi.org/10.1074/jbc.M111462200] [PMID: 11821412]
[42]
Mariotti, M.; Ridge, P.G.; Zhang, Y.; Lobanov, A.V.; Pringle, T.H.; Guigo, R.; Hatfield, D.L.; Gladyshev, V.N. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One, 2012, 7(3) e33066
[http://dx.doi.org/10.1371/journal.pone.0033066] [PMID: 22479358]
[43]
Read, R.; Bellew, T.; Yang, J.G.; Hill, K.E.; Palmer, I.S.; Burk, R.F. Selenium and amino acid composition of selenoprotein P, the major selenoprotein in rat serum. J. Biol. Chem., 1990, 265(29), 17899-17905.
[PMID: 2211667]
[44]
Turanov, A.A.; Everley, R.A.; Hybsier, S.; Renko, K.; Schomburg, L.; Gygi, S.P.; Hatfield, D.L.; Gladyshev, V.N. Regulation of selenocysteine content of human selenoprotein p by dietary selenium and insertion of cysteine in place of selenocysteine. PLoS One, 2015, 10(10) e0140353
[http://dx.doi.org/10.1371/journal.pone.0140353] [PMID: 26452064]
[45]
Renko, K.; Martitz, J.; Hybsier, S.; Heynisch, B.; Voss, L.; Everley, R.A.; Gygi, S.P.; Stoedter, M.; Wisniewska, M.; Köhrle, J.; Gladyshev, V.N.; Schomburg, L. Aminoglycoside-driven biosynthesis of selenium-deficient Selenoprotein P. Sci. Rep., 2017, 7(1), 4391.
[http://dx.doi.org/10.1038/s41598-017-04586-9] [PMID: 28663583]
[46]
Méplan, C.; Nicol, F.; Burtle, B.T.; Crosley, L.K.; Arthur, J.R.; Mathers, J.C.; Hesketh, J.E. Relative abundance of selenoprotein P isoforms in human plasma depends on genotype, se intake, and cancer status. Antioxid. Redox Signal., 2009, 11(11), 2631-2640.
[http://dx.doi.org/10.1089/ars.2009.2533] [PMID: 19453253]
[47]
Méplan, C.; Crosley, L.K.; Nicol, F.; Beckett, G.J.; Howie, A.F.; Hill, K.E.; Horgan, G.; Mathers, J.C.; Arthur, J.R.; Hesketh, J.E. Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J., 2007, 21(12), 3063-3074.
[http://dx.doi.org/10.1096/fj.07-8166com] [PMID: 17536041]
[48]
Kopp, T.I.; Outzen, M.; Olsen, A.; Vogel, U.; Ravn-Haren, G. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes. Genes Nutr., 2018, 13, 20.
[http://dx.doi.org/10.1186/s12263-018-0608-4] [PMID: 30008961]
[49]
Donadio, J.L.S.; Rogero, M.M.; Cockell, S.; Hesketh, J.; Cozzolino, S.M.F. Influence of genetic variations in selenoprotein genes on the pattern of gene expression after supplementation with Brazil Nuts. Nutrients, 2017, 9(7) E739
[http://dx.doi.org/10.3390/nu9070739] [PMID: 28696394]
[50]
Lobanov, A.V.; Fomenko, D.E.; Zhang, Y.; Sengupta, A.; Hatfield, D.L.; Gladyshev, V.N. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol., 2007, 8(9), R198.
[http://dx.doi.org/10.1186/gb-2007-8-9-r198] [PMID: 17880704]
[51]
Lobanov, A.V.; Hatfield, D.L.; Gladyshev, V.N. Reduced reliance on the trace element selenium during evolution of mammals. Genome Biol., 2008, 9(3), R62.
[http://dx.doi.org/10.1186/gb-2008-9-3-r62] [PMID: 18377657]
[52]
Sarangi, G.K.; Romagné, F.; Castellano, S. Distinct Patterns of Selection in Selenium-Dependent Genes between Land and Aquatic Vertebrates. Mol. Biol. Evol., 2018, 35(7), 1744-1756.
[http://dx.doi.org/10.1093/molbev/msy070] [PMID: 29669130]
[53]
White, L.; Romagné, F.; Müller, E.; Erlebach, E.; Weihmann, A.; Parra, G.; Andrés, A.M.; Castellano, S. Genetic adaptation to levels of dietary selenium in recent human history. Mol. Biol. Evol., 2015, 32(6), 1507-1518.
[http://dx.doi.org/10.1093/molbev/msv043] [PMID: 25739735]
[54]
Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28(10), 2731-2739.
[http://dx.doi.org/10.1093/molbev/msr121] [PMID: 21546353]
[55]
Fixsen, S.M.; Howard, M.T. Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins. J. Mol. Biol., 2010, 399(3), 385-396.
[http://dx.doi.org/10.1016/j.jmb.2010.04.033] [PMID: 20417644]
[56]
Fletcher, J.E.; Copeland, P.R.; Driscoll, D.M. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon. RNA, 2000, 6(11), 1573-1584.
[http://dx.doi.org/10.1017/S1355838200000625] [PMID: 11105757]
[57]
Stoytcheva, Z.; Tujebajeva, R.M.; Harney, J.W.; Berry, M.J. Efficient incorporation of multiple selenocysteines involves an inefficient decoding step serving as a potential translational checkpoint and ribosome bottleneck. Mol. Cell. Biol., 2006, 26(24), 9177-9184.
[http://dx.doi.org/10.1128/MCB.00856-06] [PMID: 17000762]
[58]
Misu, H.; Takamura, T.; Takayama, H.; Hayashi, H.; Matsuzawa-Nagata, N.; Kurita, S.; Ishikura, K.; Ando, H.; Takeshita, Y.; Ota, T.; Sakurai, M.; Yamashita, T.; Mizukoshi, E.; Yamashita, T.; Honda, M.; Miyamoto, K.; Kubota, T.; Kubota, N.; Kadowaki, T.; Kim, H.J.; Lee, I.K.; Minokoshi, Y.; Saito, Y.; Takahashi, K.; Yamada, Y.; Takakura, N.; Kaneko, S. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab., 2010, 12(5), 483-495.
[http://dx.doi.org/10.1016/j.cmet.2010.09.015] [PMID: 21035759]
[59]
Mita, Y.; Nakayama, K.; Inari, S.; Nishito, Y.; Yoshioka, Y.; Sakai, N.; Sotani, K.; Nagamura, T.; Kuzuhara, Y.; Inagaki, K.; Iwasaki, M.; Misu, H.; Ikegawa, M.; Takamura, T.; Noguchi, N.; Saito, Y. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat. Commun., 2017, 8(1), 1658.
[http://dx.doi.org/10.1038/s41467-017-01863-z] [PMID: 29162828]
[60]
Speckmann, B.; Sies, H.; Steinbrenner, H. Attenuation of hepatic expression and secretion of selenoprotein P by metformin. Biochem. Biophys. Res. Commun., 2009, 387(1), 158-163.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.143] [PMID: 19576170]
[61]
Cetindağlı, I.; Kara, M.; Tanoglu, A.; Ozalper, V.; Aribal, S.; Hancerli, Y.; Unal, M.; Ozarı, O.; Hira, S.; Kaplan, M.; Yazgan, Y. Evaluation of endothelial dysfunction in patients with nonalcoholic fatty liver disease: Association of selenoprotein P with carotid intima-media thickness and endothelium-dependent vasodilation. Clin. Res. Hepatol. Gastroenterol., 2017, 41(5), 516-524.
[http://dx.doi.org/10.1016/j.clinre.2017.01.005] [PMID: 28760353]
[62]
Choi, H.Y.; Hwang, S.Y.; Lee, C.H.; Hong, H.C.; Yang, S.J.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Increased selenoprotein p levels in subjects with visceral obesity and nonalcoholic Fatty liver disease. Diabetes Metab. J., 2013, 37(1), 63-71.
[http://dx.doi.org/10.4093/dmj.2013.37.1.63] [PMID: 23439771]
[63]
Polyzos, S.A.; Kountouras, J.; Goulas, A.; Duntas, L. Selenium and selenoprotein P in nonalcoholic fatty liver disease. Hormones (Athens), 2020, 19(1), 61-72.
[http://dx.doi.org/10.1007/s42000-019-00127-3]
[64]
Strauss, E.; Oszkinis, G.; Staniszewski, R. SEPP1 gene variants and abdominal aortic aneurysm: gene association in relation to metabolic risk factors and peripheral arterial disease coexistence. Sci. Rep., 2014, 4, 7061.
[http://dx.doi.org/10.1038/srep07061] [PMID: 25395084]
[65]
Kikuchi, N.; Satoh, K.; Kurosawa, R.; Yaoita, N.; Elias-Al-Mamun, M.; Siddique, M.A.H.; Omura, J.; Satoh, T.; Nogi, M.; Sunamura, S.; Miyata, S.; Saito, Y.; Hoshikawa, Y.; Okada, Y.; Shimokawa, H. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension. Circulation, 2018, 138(6), 600-623.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.033113] [PMID: 29636330]
[66]
Chadani, H.; Usui, S.; Inoue, O.; Kusayama, T.; Takashima, S.I.; Kato, T.; Murai, H.; Furusho, H.; Nomura, A.; Misu, H.; Takamura, T.; Kaneko, S.; Takamura, M. Endogenous selenoprotein P, a liver-derived secretory protein, mediates myocardial ischemia/reperfusion injury in mice. Int. J. Mol. Sci., 2018, 19(3) E878
[http://dx.doi.org/10.3390/ijms19030878] [PMID: 29547524]
[67]
Ma, S.; Lee, S.G.; Kim, E.B.; Park, T.J.; Seluanov, A.; Gorbunova, V.; Buffenstein, R.; Seravalli, J.; Gladyshev, V.N. Organization of the mammalian ionome according to organ origin, lineage specialization, and longevity. Cell Rep., 2015, 13(7), 1319-1326.
[http://dx.doi.org/10.1016/j.celrep.2015.10.014] [PMID: 26549444]
[68]
Kasaikina, M.V.; Lobanov, A.V.; Malinouski, M.Y.; Lee, B.C.; Seravalli, J.; Fomenko, D.E.; Turanov, A.A.; Finney, L.; Vogt, S.; Park, T.J.; Miller, R.A.; Hatfield, D.L.; Gladyshev, V.N. Reduced utilization of selenium by naked mole rats due to a specific defect in GPx1 expression. J. Biol. Chem., 2011, 286(19), 17005-17014.
[http://dx.doi.org/10.1074/jbc.M110.216267] [PMID: 21372135]
[69]
Penglase, S.; Hamre, K.; Ellingsen, S. The selenium content of SEPP1 versus selenium requirements in vertebrates. PeerJ, 2015, 3 e1244
[http://dx.doi.org/10.7717/peerj.1244] [PMID: 26734501]
[70]
Jiang, L.; Liu, Q.; Ni, J. In silico identification of the sea squirt selenoproteome. BMC Genomics, 2010, 11, 289.
[http://dx.doi.org/10.1186/1471-2164-11-289] [PMID: 20459719]
[71]
Lu, W.; Li, W.W.; Jin, X.K.; He, L.; Jiang, H.; Wang, Q. Reproductive function of Selenoprotein M in Chinese mitten crabs (Eriocheir sinesis). Peptides, 2012, 34(1), 168-176.
[http://dx.doi.org/10.1016/j.peptides.2011.04.022] [PMID: 21557973]
[72]
Jiang, L.; Zhu, H.Z.; Xu, Y.Z.; Ni, J.Z.; Zhang, Y.; Liu, Q. Comparative selenoproteome analysis reveals a reduced utilization of selenium in parasitic platyhelminthes. PeerJ, 2013, 1 e202
[http://dx.doi.org/10.7717/peerj.202] [PMID: 24255816]
[73]
Oke, T.T.; Moskovitz, J.; Williams, D.L. Characterization of the methionine sulfoxide reductases of Schistosoma mansoni. J. Parasitol., 2009, 95(6), 1421-1428.
[http://dx.doi.org/10.1645/GE-2062.1] [PMID: 19604033]
[74]
Hughes, D.J.; Duarte-Salles, T.; Hybsier, S.; Trichopoulou, A.; Stepien, M.; Aleksandrova, K.; Overvad, K.; Tjønneland, A.; Olsen, A.; Affret, A.; Fagherazzi, G.; Boutron-Ruault, M.C.; Katzke, V.; Kaaks, R.; Boeing, H.; Bamia, C.; Lagiou, P.; Peppa, E.; Palli, D.; Krogh, V.; Panico, S.; Tumino, R.; Sacerdote, C.; Bueno-de-Mesquita, H.B.; Peeters, P.H.; Engeset, D.; Weiderpass, E.; Lasheras, C.; Agudo, A.; Sánchez, M.J.; Navarro, C.; Ardanaz, E.; Dorronsoro, M.; Hemmingsson, O.; Wareham, N.J.; Khaw, K.T.; Bradbury, K.E.; Cross, A.J.; Gunter, M.; Riboli, E.; Romieu, I.; Schomburg, L.; Jenab, M. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Am. J. Clin. Nutr., 2016, 104(2), 406-414.
[http://dx.doi.org/10.3945/ajcn.116.131672] [PMID: 27357089]
[75]
Wang, Q.; Gong, L.; Dong, R.; Qiao, Q.; He, X.L.; Chu, Y.K.; Du, X.L.; Yang, Y.; Zang, L.; Nan, J.; Lin, C.; Lu, J.G. Tissue microarray assessment of selenoprotein P expression in gastric adenocarcinoma. J. Int. Med. Res., 2009, 37(1), 169-174.
[http://dx.doi.org/10.1177/147323000903700120] [PMID: 19215687]
[76]
Gonzalez-Moreno, O.; Boque, N.; Redrado, M.; Milagro, F.; Campion, J.; Endermann, T.; Takahashi, K.; Saito, Y.; Catena, R.; Schomburg, L.; Calvo, A. Selenoprotein-P is down-regulated in prostate cancer, which results in lack of protection against oxidative damage. Prostate, 2011, 71(8), 824-834.
[http://dx.doi.org/10.1002/pros.21298] [PMID: 21456065]
[77]
Penney, K.L.; Li, H.; Mucci, L.A.; Loda, M.; Sesso, H.D.; Stampfer, M.J.; Ma, J. Selenoprotein P genetic variants and mrna expression, circulating selenium, and prostate cancer risk and survival. Prostate, 2013, 73(7), 700-705.
[http://dx.doi.org/10.1002/pros.22611] [PMID: 23129481]
[78]
Hughes, D.J.; Kunická, T.; Schomburg, L.; Liška, V.; Swan, N.; Souček, P. Expression of selenoprotein genes and association with selenium status in colorectal adenoma and colorectal cancer. Nutrients, 2018, 10(11) E1812
[http://dx.doi.org/10.3390/nu10111812] [PMID: 30469315]
[79]
Fedirko, V.; Jenab, M.; Méplan, C.; Jones, J.S.; Zhu, W.; Schomburg, L.; Siddiq, A.; Hybsier, S.; Overvad, K.; Tjønneland, A.; Omichessan, H.; Perduca, V.; Boutron-Ruault, M.C.; Kühn, T.; Katzke, V.; Aleksandrova, K.; Trichopoulou, A.; Karakatsani, A.; Kotanidou, A.; Tumino, R.; Panico, S.; Masala, G.; Agnoli, C.; Naccarati, A.; Bueno-de-Mesquita, B.; Vermeulen, R.C.H.; Weiderpass, E.; Skeie, G.; Nøst, T.H.; Lujan-Barroso, L.; Quirós, J.R.; Huerta, J.M.; Rodríguez-Barranco, M.; Barricarte, A.; Gylling, B.; Harlid, S.; Bradbury, K.E.; Wareham, N.; Khaw, K.T.; Gunter, M.; Murphy, N.; Freisling, H.; Tsilidis, K.; Aune, D.; Riboli, E.; Hesketh, J.E.; Hughes, D.J. Association of selenoprotein and selenium pathway genotypes with risk of colorectal cancer and interaction with selenium status. Nutrients, 2019, 11(4) E935
[http://dx.doi.org/10.3390/nu11040935] [PMID: 31027226]
[80]
Braunstein, M.; Kusmenkov, T.; Zuck, C.; Angstwurm, M.; Becker, N.P.; Böcker, W. Selenium and selenoprotein p deficiency correlates with complications and adverse outcome after major trauma. Shock, 2020, 53(1), 63-70.
[PMID: 30998646]
[81]
Schomburg, L.; Orho-Melander, M.; Struck, J.; Bergmann, A.; Melander, O. Selenoprotein-P Deficiency Predicts Cardiovascular Disease and Death. Nutrients, 2019, 11(8) E1852
[http://dx.doi.org/10.3390/nu11081852] [PMID: 31404994]
[82]
Sidenius, U.; Farver, O.; Jøns, O.; Gammelgaard, B. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma. J. Chromatogr. B Biomed. Sci. Appl., 1999, 735(1), 85-91.
[http://dx.doi.org/10.1016/S0378-4347(99)00401-6] [PMID: 10630893]
[83]
Du, X.; Wang, Z.; Zheng, Y.; Li, H.; Ni, J.; Liu, Q. Inhibitory effect of selenoprotein P on Cu(+)/Cu(2+)-induced Aβ42 aggregation and toxicity. Inorg. Chem., 2014, 53(3), 1672-1678.
[http://dx.doi.org/10.1021/ic4028282] [PMID: 24437729]
[84]
Fujii, M.; Saijoh, K.; Kobayashi, T.; Fujii, S.; Lee, M.J.; Sumino, K. Analysis of bovine selenoprotein P-like protein gene and availability of metal responsive element (MRE) located in its promoter. Gene, 1997, 199(1-2), 211-217.
[http://dx.doi.org/10.1016/S0378-1119(97)00369-7] [PMID: 9358058]
[85]
Osman, K.; Schütz, A.; Akesson, B.; Maciag, A.; Vahter, M. Interactions between essential and toxic elements in lead exposed children in Katowice, Poland. Clin. Biochem., 1998, 31(8), 657-665.
[http://dx.doi.org/10.1016/S0009-9120(98)00071-X] [PMID: 9876899]
[86]
Smits, J.E.; Krohn, R.M.; Akhtar, E.; Hore, S.K.; Yunus, M.; Vandenberg, A.; Raqib, R. Food as medicine: Selenium enriched lentils offer relief against chronic arsenic poisoning in Bangladesh. Environ. Res., 2019, 176 108561
[http://dx.doi.org/10.1016/j.envres.2019.108561] [PMID: 31299617]
[87]
Sasakura, C.; Suzuki, K.T. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P. J. Inorg. Biochem., 1998, 71(3-4), 159-162.
[http://dx.doi.org/10.1016/S0162-0134(98)10048-X] [PMID: 9833321]
[88]
Yoneda, S.; Suzuki, K.T. Equimolar Hg-Se complex binds to selenoprotein P. Biochem. Biophys. Res. Commun., 1997, 231(1), 7-11.
[http://dx.doi.org/10.1006/bbrc.1996.6036] [PMID: 9070209]
[89]
Chen, C.; Yu, H.; Zhao, J.; Li, B.; Qu, L.; Liu, S.; Zhang, P.; Chai, Z. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ. Health Perspect., 2006, 114(2), 297-301.
[http://dx.doi.org/10.1289/ehp.7861] [PMID: 16451871]
[90]
Liu, Y.; Zhang, W.; Zhao, J.; Lin, X.; Liu, J.; Cui, L. Selenoprotein P as the major transporter for mercury in serum from methylmercury-poisoned rats. J. Trace Elem. Med. Biol., 2018, 50, 589-595.
[91]
Kuras, R.; Reszka, E.; Wieczorek, E.; Jablonska, E.; Gromadzinska, J.; Malachowska, B. Biomarkers of selenium status and antioxidant effect in workers occupationally exposed to mercury. J. Trace Elem. Med. Biol., 2018, 49, 43-50.
[http://dx.doi.org/10.1016/j.jtemb.2018.04.032]
[92]
Qazi, I.H.; Angel, C.; Yang, H.; Zoidis, E.; Pan, B.; Wu, Z.; Ming, Z.; Zeng, C.J.; Meng, Q.; Han, H.; Zhou, G. Role of selenium and selenoproteins in male reproductive function: a review of past and present evidences. Antioxidants, 2019, 8(8) E268
[http://dx.doi.org/10.3390/antiox8080268] [PMID: 31382427]
[93]
Olson, G.E.; Winfrey, V.P.; Nagdas, S.K.; Hill, K.E.; Burk, R.F. Selenoprotein P is required for mouse sperm development. Biol. Reprod., 2005, 73(1), 201-211.
[http://dx.doi.org/10.1095/biolreprod.105.040360] [PMID: 15744015]
[94]
Renko, K.; Werner, M.; Renner-Müller, I.; Cooper, T.G.; Yeung, C.H.; Hollenbach, B.; Scharpf, M.; Köhrle, J.; Schomburg, L.; Schweizer, U. Hepatic selenoprotein P (SePP) expression restores selenium transport and prevents infertility and motor-incoordination in Sepp-knockout mice. Biochem. J., 2008, 409(3), 741-749.
[http://dx.doi.org/10.1042/BJ20071172] [PMID: 17961124]
[95]
Hill, K.E.; Zhou, J.; Austin, L.M.; Motley, A.K.; Ham, A.J.; Olson, G.E.; Atkins, J.F.; Gesteland, R.F.; Burk, R.F. The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium. J. Biol. Chem., 2007, 282(15), 10972-10980.
[http://dx.doi.org/10.1074/jbc.M700436200] [PMID: 17311913]
[96]
Schneider, M.; Förster, H.; Boersma, A.; Seiler, A.; Wehnes, H.; Sinowatz, F.; Neumüller, C.; Deutsch, M.J.; Walch, A.; Hrabé de Angelis, M.; Wurst, W.; Ursini, F.; Roveri, A.; Maleszewski, M.; Maiorino, M.; Conrad, M. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J., 2009, 23(9), 3233-3242.
[http://dx.doi.org/10.1096/fj.09-132795] [PMID: 19417079]
[97]
Michaelis, M.; Gralla, O.; Behrends, T.; Scharpf, M.; Endermann, T.; Rijntjes, E.; Pietschmann, N.; Hollenbach, B.; Schomburg, L. Selenoprotein P in seminal fluid is a novel biomarker of sperm quality. Biochem. Biophys. Res. Commun., 2014, 443(3), 905-910.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.067] [PMID: 24361887]
[98]
Olson, G.E.; Winfrey, V.P.; Hill, K.E.; Burk, R.F. Sequential development of flagellar defects in spermatids and epididymal spermatozoa of selenium-deficient rats. Reproduction, 2004, 127(3), 335-342.
[http://dx.doi.org/10.1530/rep.1.00103] [PMID: 15016953]
[99]
Messaoudi, I.; Banni, M.; Saïd, L.; Saïd, K.; Kerkeni, A. Involvement of selenoprotein P and GPx4 gene expression in cadmium-induced testicular pathophysiology in rat. Chem. Biol. Interact., 2010, 188(1), 94-101.
[http://dx.doi.org/10.1016/j.cbi.2010.07.012] [PMID: 20643113]
[100]
Kryukov, G.V.; Gladyshev, V.N. Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues. Genes Cells, 2000, 5(12), 1049-1060.
[http://dx.doi.org/10.1046/j.1365-2443.2000.00392.x]
[101]
Penglase, S.; Hamre, K.; Rasinger, J.D.; Ellingsen, S. Selenium status affects selenoprotein expression, reproduction, and F1 generation locomotor activity in zebrafish (Danio rerio). Br. J. Nutr., 2014, 111(11), 1918-1931.
[http://dx.doi.org/10.1017/S000711451300439X] [PMID: 24666596]
[102]
Qazi, I.H.; Angel, C.; Yang, H.; Pan, B.; Zoidis, E.; Zeng, C.J.; Han, H.; Zhou, G.B. Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules, 2018, 23(12) E3053
[http://dx.doi.org/10.3390/molecules23123053] [PMID: 30469536]
[103]
Myers, J.E.; Tuytten, R.; Thomas, G.; Laroy, W.; Kas, K.; Vanpoucke, G.; Roberts, C.T.; Kenny, L.C.; Simpson, N.A.; Baker, P.N.; North, R.A. Integrated proteomics pipeline yields novel biomarkers for predicting preeclampsia. Hypertension, 2013, 61(6), 1281-1288.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01168] [PMID: 23547239]
[104]
Rayman, M.P.; Bath, S.C.; Westaway, J.; Williams, P.; Mao, J.; Vanderlelie, J.J.; Perkins, A.V.; Redman, C.W. Selenium status in U.K. pregnant women and its relationship with hypertensive conditions of pregnancy. Br. J. Nutr., 2015, 113(2), 249-258.
[http://dx.doi.org/10.1017/S000711451400364X] [PMID: 25571960]
[105]
Perlman, R.L. Why disease persists: an evolutionary nosology. Med. Health Care Philos., 2005, 8(3), 343-350.
[http://dx.doi.org/10.1007/s11019-005-2655-z] [PMID: 16283497]
[106]
Hedge, L.H.; Knott, N.A.; Johnston, E.L. Dredging related metal bioaccumulation in oysters. Mar. Pollut. Bull., 2009, 58(6), 832-840.
[http://dx.doi.org/10.1016/j.marpolbul.2009.01.020] [PMID: 19261303]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 1
ISSUE: 1
Year: 2020
Page: [42 - 53]
Pages: 12
DOI: 10.2174/2665978601666200213120929

Article Metrics

PDF: 14
HTML: 2
EPUB: 1
PRC: 1