Functionalised Dendrimers: Potential Tool for Antiretroviral Therapy

Author(s): Rohini Kharwade*, Sachin More, Nilesh Mahajan, Pratibha Agrawal

Journal Name: Current Nanoscience

Volume 16 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

HAART (Highly Active Antiretroviral Therapy) revolutionized HIV (Human Immunodeficiency Virus) treatment upon its introduction in 1996. But, HAART has not been a complete solution for HIV infection. HIV remains viable in latent viral reservoirs even when the adequate concentration of a drug is available in the blood. Hence, nanotechnology-based delivery systems are being developed to target the HIV virus and evaluated for their safety and efficacy. Among employed nanocarriers, dendrimers are repetitively branched molecules which are an ideal carrier for developing preventive antiretroviral drug delivery system with low-level cytotoxicity and targeted action. Dendrimers with potentially active multivalent sites combine with the gp120 of HIV and CD4 receptors of the host cells and inhibit the attachment of HIV to host cells. Some of the dendrimers are capable of interfering in HIV replication. The main objective of this review is to reveal the mechanism of anti-retroviral action of different types of functionalized dendrimers in HIV. The significance of dendrimers as therapeutic agents for targeting the viral reservoirs in case of HIV was discussed. From the published literature reviewed, it can be concluded that the functionalized dendrimers are useful as anti-HIV agents and highlighting that advance studies are required for the development of more effective dendrimers based therapy which noticeably increases the anti-HIV activity.

Keywords: Nanocarriers, dendrimers, anti-retroviral, pamam, CD4 receptors, anti- HIV, functionalised dendrimer.

[1]
Kulkosky, J.; Bray, S. HAART-persistent HIV-1 latent reservoirs: their origin, mechanisms of stability and potential strategies for eradication. Curr. HIV Res., 2006, 4(2), 199-208.
[http://dx.doi.org/10.2174/157016206776055084] [PMID: 16611058]
[2]
Damond, F.; Apetrei, C.; Robertson, D.L.; Souquière, S.; Leprêtre, A.; Matheron, S.; Plantier, J.C.; Brun-Vézinet, F.; Simon, F. Variability of human immunodeficiency virus type 2 (hiv-2) infecting patients living in france. Virology, 2001, 280(1), 19-30.
[http://dx.doi.org/10.1006/viro.2000.0685] [PMID: 11162815]
[3]
Brun-Vézinet, F.; Charpentier, C. Update on the human immunodeficiency virus. Med. Mal. Infect., 2013, 43(5), 177-184.
[http://dx.doi.org/10.1016/j.medmal.2013.03.001] [PMID: 23628423]
[4]
Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinsztejn, B.; Pilotto, J.H.; Godbole, S.V.; Mehendale, S.; Chariyalertsak, S.; Santos, B.R.; Mayer, K.H.; Hoffman, I.F.; Eshleman, S.H.; Piwowar-Manning, E.; Wang, L.; Makhema, J.; Mills, L.A.; de Bruyn, G.; Sanne, I.; Eron, J.; Gallant, J.; Havlir, D.; Swindells, S.; Ribaudo, H.; Elharrar, V.; Burns, D.; Taha, T.E.; Nielsen-Saines, K.; Celentano, D.; Essex, M.; Fleming, T.R. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med., 2011, 365(6), 493-505.
[http://dx.doi.org/10.1056/NEJMoa1105243] [PMID: 21767103]
[5]
Faria, N.R.; Rambaut, A.; Suchard, M.A.; Baele, G.; Bedford, T.; Ward, M.J.; Tatem, A.J.; Sousa, J.D.; Arinaminpathy, N.; Pépin, J.; Posada, D.; Peeters, M.; Pybus, O.G.; Lemey, P. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science, 2014, 346(6205), 56-61.
[http://dx.doi.org/10.1126/science.1256739] [PMID: 25278604]
[6]
Bisson, G.P.; Molefi, M.; Bellamy, S.; Thakur, R.; Steenhoff, A.; Tamuhla, N.; Rantleru, T.; Tsimako, I.; Gluckman, S.; Ravimohan, S.; Weissman, D.; Tebas, P. Early versus delayed antiretroviral therapy and cerebrospinal fluid fungal clearance in adults with HIV and cryptococcal meningitis. Clin. Infect. Dis., 2013, 56(8), 1165-1173.
[http://dx.doi.org/10.1093/cid/cit019] [PMID: 23362285]
[7]
Liu, R.; Paxton, W.A.; Choe, S.; Ceradini, D.; Martin, S.R.; Horuk, R.; MacDonald, M.E.; Stuhlmann, H.; Koup, R.A.; Landau, N.R. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 1996, 86(3), 367-377.
[http://dx.doi.org/10.1016/S0092-8674(00)80110-5] [PMID: 8756719]
[8]
Trabattoni, D.; Lo Caputo, S.; Biasin, M.; Seminari, E.; Di Pietro, M.; Ravasi, G.; Mazzotta, F.; Maserati, R.; Clerici, M. Modulation of human immunodeficiency virus (HIV)-specific immune response by using efavirenz, nelfinavir, and stavudine in a rescue therapy regimen for HIV-infected, drug-experienced patients. Clin. Diagn. Lab. Immunol., 2002, 9(5), 1114-1118.
[PMID: 12204968]
[9]
Karris, M.Y.; Haubrich, R.H. Antiretroviral therapy in the elite controller: justified or premature? J. Infect. Dis., 2015, 211(11), 1689-1691.
[http://dx.doi.org/10.1093/infdis/jiu812] [PMID: 25512628]
[10]
Sekaly, R.P. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J. Exp. Med., 2008, 205(1), 7-12.
[http://dx.doi.org/10.1084/jem.20072681] [PMID: 18195078]
[11]
Postorino, M.C.; Prosperi, E.; Quiros, R. Maggiolo. F.; Giambenedetto, D.S.; Saracino, A.; Costarelli, S.; Lorenzotti, S.; Sighinolfi, L.; Di Pietro, M.; Torti, C.; MASTER Study Group. Clinical microbiological use of Efavirenz or Atazanavir/Ritonavir is associated with better clinical outcomes of HAART compared to other protease inhibitors. Clin. Microbiol. Infect., 2014, 21, 386.e1-386.e9.
[http://dx.doi.org/10.1016/j.cmi.2014.10.022]
[12]
Jarvis, J.N.; Bicanic, T.; Loyse, A.; Namarika, D.; Jackson, A.; Nussbaum, J.C.; Longley, N.; Muzoora, C.; Phulusa, J.; Taseera, K.; Kanyembe, C.; Wilson, D.; Hosseinipour, M.C.; Brouwer, A.E.; Limmathurotsakul, D.; White, N.; van der Horst, C.; Wood, R.; Meintjes, G.; Bradley, J.; Jaffar, S.; Harrison, T. Determinants of mortality in a combined cohort of 501 patients with HIV-associated Cryptococcal meningitis: implications for improving outcomes. Clin. Infect. Dis., 2014, 58(5), 736-745.
[http://dx.doi.org/10.1093/cid/cit794] [PMID: 24319084]
[13]
Wada, N.; Jacobson, L.P.; Cohen, M.; French, A.; Phair, J.; Muñoz, A. Cause-specific mortality among HIV-infected individuals, by CD4(+) cell count at HAART initiation, compared with HIV-uninfected individuals. AIDS, 2014, 28(2), 257-265.
[http://dx.doi.org/10.1097/QAD.0000000000000078] [PMID: 24105030]
[14]
Esté, J.A.; Cihlar, T. Current status and challenges of antiretroviral research and therapy. Antiviral Res., 2010, 85(1), 25-33.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.007] [PMID: 20018390]
[15]
Marsden, M.D.; Zack, J.A. Eradication of HIV: current challenges and new directions. J. Antimicrob. Chemother., 2009, 63(1), 7-10.
[http://dx.doi.org/10.1093/jac/dkn455] [PMID: 18984648]
[16]
McGee, B.; Smith, N.; Aweeka, F. HIV pharmacology: barriers to the eradication of HIV from the CNS. HIV Clin. Trials, 2006, 7(3), 142-153.
[http://dx.doi.org/10.1310/AW2H-TP5C-NP43-K6BY] [PMID: 16880170]
[17]
McCarthy, T.D.; Karellas, P.; Henderson, S.A.; Giannis, M.; O’Keefe, D.F.; Heery, G.; Paull, J.R.; Matthews, B.R.; Holan, G. Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm., 2005, 2(4), 312-318.
[http://dx.doi.org/10.1021/mp050023q] [PMID: 16053334]
[18]
Kolhe, P.; Misra, E.; Kannan, R.M.; Kannan, S.; Lieh-Lai, M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int. J. Pharm., 2003, 259(1-2), 143-160.
[http://dx.doi.org/10.1016/S0378-5173(03)00225-4] [PMID: 12787643]
[19]
Heegaard, P.M.; Boas, U.; Sorensen, N.S. Dendrimers for vaccine and immunostimulatory uses. A review. Bioconjug. Chem., 2010, 21(3), 405-418.
[http://dx.doi.org/10.1021/bc900290d] [PMID: 19886668]
[20]
Javan, F.; Vatanara, A.; Azadmanesh, K.; Nabi-Meibodi, M.; Shakouri, M. Encapsulation of ritonavir in solid lipid nanoparticles: in-vitro anti-HIV-1 activity using lentiviral particles. J. Pharm. Pharmacol., 2017, 69(8), 1002-1009.
[http://dx.doi.org/10.1111/jphp.12737] [PMID: 28471000]
[21]
Ravi, P.R.; Vats, R.; Dalal, V.; Murthy, A.N. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation. J. Pharm. Pharmacol., 2014, 66(7), 912-926.
[http://dx.doi.org/10.1111/jphp.12217] [PMID: 24697749]
[22]
Hsu, H.J.; Bugno, J.; Lee, S.R.; Hong, S. Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1), e1409.
[http://dx.doi.org/10.1002/wnan.1409] [PMID: 27126551]
[23]
Peng, J.; Wu, Z.; Qi, X.; Chen, Y.; Li, X. Dendrimers as potential therapeutic tools in HIV inhibition. Molecules, 2013, 18(7), 7912-7929.
[http://dx.doi.org/10.3390/molecules18077912] [PMID: 23884127]
[24]
Dzmitruk, V.; Shcharbin, D.; Pedziwiatr, E.; Bryszewska, M. Dendrimers in anti-HIV therapy. In: Hashim, A., (ed.). Advances in Nanocomposite Technology; IntechOpen, 2011, pp. 359-374.
[http://dx.doi.org/10.5772/17027]
[25]
Shibata, A.; McMullen, E.; Pham, A.; Belshan, M.; Sanford, B.; Zhou, Y.; Goede, M.; Date, A.A.; Destache, C.J. Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment. AIDS Res. Hum. Retroviruses, 2013, 29(5), 746-754.
[http://dx.doi.org/10.1089/aid.2012.0301] [PMID: 23289671]
[26]
das Neves, J.; Amiji, M.M.; Bahia, M.F.; Sarmento, B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv. Drug Deliv. Rev., 2010, 62(4-5), 458-477.
[http://dx.doi.org/10.1016/j.addr.2009.11.017] [PMID: 19914314]
[27]
Lembo, D.; Donalisio, M.; Civra, A.; Argenziano, M.; Cavalli, R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin. Drug Deliv., 2018, 15(1), 93-114.
[http://dx.doi.org/10.1080/17425247.2017.1360863] [PMID: 28749739]
[28]
Sheikholeslami, M.; Ghasemi, A.; Shafee, A.; Saleem, S.; Li, Z. Influence of CuO nanoparticles on heat transfer behaviour of PCM solidification process considering radiative source term. Int. J. Heat Mass Transf., 2018, 126, 1252-1264.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.05.116]
[29]
Kayser, O.; Lemke, A.; Hernández-Trejo, N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol., 2005, 6(1), 3-5.
[http://dx.doi.org/10.2174/1389201053167158] [PMID: 15727551]
[30]
Li, Z.; Sheikholeslami, M.; Shafee, A.; Saleem, S.; Chamkha, A. Effect of dispersing nanoparticles on solidification process in existence of Lorenze forces in a permeable media. J. Mol. Liq., 2018, 266, 181-193.
[http://dx.doi.org/10.1016/j.molliq.2018.06.063]
[31]
Iannazzo, D.; Pistone, A.; Romeo, R.; Giofre, S.V. Nanotechnology approaches for anti-retroviral drugs delivery. J. AIDS HIV Infec., 2015, 1, 1-13.
[32]
Klajnert, B.; Bryszewska, M. Dendrimers: properties and applications. Acta Biochim. Pol., 2001, 48(1), 199-208.
[http://dx.doi.org/10.18388/abp.2001_5127] [PMID: 11440170]
[33]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimers as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39, 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[34]
Jain, S.; Kaur, A.; Puri, R.; Utreja, P.; Jain, A.; Bhide, M.; Ratnam, R.; Singh, V.; Patil, A.S.; Jayaraman, N.; Kaushik, G.; Yadav, S.; Khanduja, K.L. Poly propyl ether imine (PETIM) dendrimer: a novel non-toxic dendrimer for sustained drug delivery. Eur. J. Med. Chem., 2010, 45(11), 4997-5005.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.006] [PMID: 20805013]
[35]
Brouwer, A.J.; Mulders, S.J.; Liskamp, R.M. Convergent synthesis and diversity of amino acid based dendrimers. Eur. J. Org. Chem., 2001, 10, 1903-1915.
[http://dx.doi.org/10.1002/1099-0690(200105)2001:10<1903::AIDEJOC1903>3.0.CO;2-W]
[36]
Feng, Y.; Broder, C.C.; Kennedy, P.E.; Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996, 272(5263), 872-877.
[http://dx.doi.org/10.1126/science.272.5263.872] [PMID: 8629022]
[37]
Gunaseelan, S.; Gunaseelan, K.; Deshmukh, M.; Zhang, X.; Sinko, P.J. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv. Drug Deliv. Rev., 2010, 62(4-5), 518-531.
[http://dx.doi.org/10.1016/j.addr.2009.11.021] [PMID: 19941919]
[38]
Gillies, E.R.; Dy, E.; Fréchet, J.M.; Szoka, F.C. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharm., 2005, 2(2), 129-138.
[http://dx.doi.org/10.1021/mp049886u] [PMID: 15804187]
[39]
Jevprasesphant, R.; Penny, J.; Attwood, D.; McKeown, N.B.; D’Emanuele, A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res., 2003, 20(10), 1543-1550.
[http://dx.doi.org/10.1023/A:1026166729873] [PMID: 14620505]
[40]
Tomalia, D.A. Dendrimers molecules. Sci. Am., 1995, 272, 62-66.
[http://dx.doi.org/10.1038/scientificamerican0595-62]
[41]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules, 1986, 19, 2466-2468.
[http://dx.doi.org/10.1021/ma00163a029]
[42]
Jiménez, J.L.; Pion, M.; de la Mata, F.J.; Gomez, R.; Muñoz, E.; Leal, M.; Muñoz-Fernandez, M.A. Dendrimers as topical microbicides with activity against HIV. New J. Chem., 2012, 36, 299-309.
[http://dx.doi.org/10.1039/C1NJ20396G]
[43]
Buckheit, R.W., Jr; Watson, K.M.; Morrow, K.M.; Ham, A.S. Development of topical microbicides to prevent the sexual transmission of HIV. Antiviral Res., 2010, 85(1), 142-158.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.013] [PMID: 19874851]
[44]
Ladd, E.; Sheikhi, A.; Li, N.; van de Ven, T.G.M.; Kakkar, A. Design and synthesis of dendrimers with facile surface group functionalization and an evaluation of their bactericidal efficacy. Molecules, 2017, 22(6), 868-876.
[http://dx.doi.org/10.3390/molecules22060868] [PMID: 28538670]
[45]
Kaur, D.; Jain, K.; Mehra, N.K.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res., 2016, 18, 146-169.
[http://dx.doi.org/10.1007/s11051-016-3423-0]
[46]
Hug, P.; Lin, H.M.; Korte, T.; Xiao, X.; Dimitrov, D.S.; Wang, J.M.; Puri, A.; Blumenthal, R. Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J. Virol., 2000, 74(14), 6377-6385.
[http://dx.doi.org/10.1128/JVI.74.14.6377-6385.2000] [PMID: 10864648]
[47]
Chan, D.C. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997, 89, 263e73.
[48]
Yahi, N.; Sabatier, J.M.; Nickel, P.; Mabrouk, K.; Gonzalez-Scarano, F.; Fantini, J. Suramin inhibits binding of the V3 region of HIV-1 envelope glycoprotein gp120 to galactosylceramide, the receptor for HIV-1 gp120 on human colon epithelial cells. J. Biol. Chem., 1994, 269(39), 24349-24353.
[PMID: 7929093]
[49]
Jagodzinski, P.P.; Wustner, J.; Kmieciak, D.; Wasik, T.J.; Fertala, A.; Sieron, A.L.; Takahashi, M.; Tsuji, T.; Mimura, T.; Fung, M.S.; Gorny, M.K.; Kloczewiak, M.; Kaneko, Y.; Kozbor, D. Role of the V2, V3, and CD4-binding domains of GP120 in curdlan sulfate neutralization sensitivity of HIV-1 during infection of T lymphocytes. Virology, 1996, 226(2), 217-227.
[http://dx.doi.org/10.1006/viro.1996.0649] [PMID: 8955041]
[50]
Doménech, R.; Abian, O.; Bocanegra, R.; Correa, J.; Sousa-Herves, A.; Riguera, R.; Mateu, M.G.; Fernandez-Megia, E.; Velázquez-Campoy, A.; Neira, J.L. Dendrimers as potential inhibitors of the dimerization of the capsid protein of HIV-1. Biomacromolecules, 2010, 11(8), 2069-2078.
[http://dx.doi.org/10.1021/bm100432x] [PMID: 20690715]
[51]
Suazo, P.A.; Tognarelli, E.I.; Kalergis, A.M.; González, P.A. Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease. Med. Microbiol. Immunol. (Berl.), 2015, 204(2), 161-176.
[http://dx.doi.org/10.1007/s00430-014-0358-x] [PMID: 25209142]
[52]
Mallipeddi, R.; Rohan, L.C. Progress in antiretroviral drug delivery using nanotechnology. Int. J. Nanomedicine, 2010, 5, 533-547.
[PMID: 20957115]
[53]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[54]
Baig, T.; Nayak, J.; Dwivedi, V.; Singh, A.; Srivastava, A.; Tripathi, P.K. A review about dendrimers: Synthesis, types, characterization and applications. IJAPBC, 2015, 4, 44-59.
[55]
Bosman, A.W.; Janssen, H.M.; Meijer, E.W. About dendrimers: structure, physical properties and applications. Chem. Rev., 1999, 99(7), 1665-1688.
[http://dx.doi.org/10.1021/cr970069y] [PMID: 11849007]
[56]
Sharma, P.; Garg, S. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv. Drug Deliv. Rev., 2010, 62(4-5), 491-502.
[http://dx.doi.org/10.1016/j.addr.2009.11.019] [PMID: 19931328]
[57]
Dezzutti, C.S.; James, V.N.; Ramos, A.; Sullivan, S.T.; Siddig, A.; Bush, T.J.; Grohskopf, L.A.; Paxton, L.; Subbarao, S.; Hart, C.E. In vitro comparison of topical microbicides for prevention of human immunodeficiency virus type 1 transmission. Antimicrob. Agents Chemother., 2004, 48(10), 3834-3844.
[http://dx.doi.org/10.1128/AAC.48.10.3834-3844.2004] [PMID: 15388443]
[58]
Torchilin, V.P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 2006, 58(14), 1532-1555.
[http://dx.doi.org/10.1016/j.addr.2006.09.009] [PMID: 17092599]
[59]
Mhlwatika, Z.; Aderibigbe, B.A. Application of dendrimers for the treatment of infectious diseases. Molecules, 2018, 23(9), 2205-2237.
[http://dx.doi.org/10.3390/molecules23092205] [PMID: 30200314]
[60]
Tyssen, D.; Henderson, S.A.; Johnson, A.; Sterjovski, J.; Moore, K.; La, J.; Zanin, M.; Sonza, S.; Karellas, P.; Giannis, M.P.; Krippner, G.; Wesselingh, S.; McCarthy, T.; Gorry, P.R.; Ramsland, P.A.; Cone, R.; Paull, J.R.; Lewis, G.R.; Tachedjian, G. Structure activity relationship of dendrimer microbicides with dual action antiviral activity. PLoS One, 2010, 5(8), e12309.
[http://dx.doi.org/10.1371/journal.pone.0012309] [PMID: 20808791]
[61]
Wong, H.L.; Chattopadhyay, N.; Wu, X.Y.; Bendayan, R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv. Drug Deliv. Rev., 2010, 62(4-5), 503-517.
[http://dx.doi.org/10.1016/j.addr.2009.11.020] [PMID: 19914319]
[62]
Palella, F.J., Jr; Delaney, K.M.; Moorman, A.C.; Loveless, M.O.; Fuhrer, J.; Satten, G.A.; Aschman, D.J.; Holmberg, S.D. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N. Engl. J. Med., 1998, 338(13), 853-860.
[http://dx.doi.org/10.1056/NEJM199803263381301] [PMID: 9516219]
[63]
Pedziwiatr-Werbicka, E.; Ferenc, M.; Zaborski, M.; Gabara, B.; Klajnert, B.; Bryszewska, M. Characterization of complexes formed by polypropylene imine dendrimers and anti-HIV oligonucleotides. Colloids Surf. B Biointerfaces, 2011, 83(2), 360-366.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.008] [PMID: 21190815]
[64]
Lüscher-Mattli, M. Polyanions--a lost chance in the fight against HIV and other virus diseases? Antivir. Chem. Chemother., 2000, 11(4), 249-259.
[http://dx.doi.org/10.1177/095632020001100401] [PMID: 10950387]
[65]
Mourez, T.; Simon, F.; Plantier, J.C. Non-M variants of human immunodeficiency virus type 1. Clin. Microbiol. Rev., 2013, 26(3), 448-461.
[http://dx.doi.org/10.1128/CMR.00012-13] [PMID: 23824367]
[66]
Vlasov, G.P. [Starlike branched and hyperbranched biodegradable polymer systems as DNA carriers] Bioorg. Khim., 2006, 32(3), 227-242.
[PMID: 16808165]
[67]
Dutta, T.; Jain, N.K. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim. Biophys. Acta, 2007, 1770(4), 681-686.
[http://dx.doi.org/10.1016/j.bbagen.2006.12.007] [PMID: 17276009]
[68]
Nautan; Gupta, S.K. Microbicides: A new hope for HIV prevention. Indian J. Med. Res., 2011, 124, 939-949.
[69]
Buckley, D.L.; Corson, T.W.; Aberle, N.; Crews, C.M. HIV protease-mediated activation of sterically capped proteasome inhibitors and substrates. J. Am. Chem. Soc., 2011, 133(4), 698-700.
[http://dx.doi.org/10.1021/ja109377p] [PMID: 21186803]
[70]
Witvrouw, M.; Fikkert, V.; Pluymers, W.; Matthews, B.; Mardel, K.; Schols, D.; Raff, J.; Debyser, Z.; De Clercq, E.; Holan, G.; Pannecouque, C. Polyanionic (i.e., polysulfonate) dendrimers can inhibit the replication of human immunodeficiency virus by interfering with both virus adsorption and later steps (reverse transcriptase/integrase) in the virus replicative cycle. Mol. Pharmacol., 2000, 58(5), 1100-1108.
[http://dx.doi.org/10.1124/mol.58.5.1100] [PMID: 11040059]
[71]
Nanjwade, B.K.; Bechra, H.M.; Derkar, G.K.; Manvi, F.V.; Nanjwade, V.K. Dendrimers: emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci., 2009, 38(3), 185-196.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[72]
García-Gallego, S.; Franci, G.; Falanga, A.; Gómez, R.; Folliero, V.; Galdiero, S.; de la Mata, F.J.; Galdiero, M.; Galdiero, M. Function oriented molecular design: dendrimers as novel antimicrobials. Molecules, 2017, 22(10), 1581-1610.
[http://dx.doi.org/10.3390/molecules22101581] [PMID: 28934169]
[73]
Denkewalter, R.G.; Kolc, J.; Lukasavage, W.J. Macromolecular highly branched homogeneous compound based on lysine units. U.S. Patent 4,289,872 September 15, 1981.
[74]
Bernstein, D.I.; Stanberry, L.R.; Sacks, S.; Ayisi, N.K.; Gong, Y.H.; Ireland, J.; Mumper, R.J.; Holan, G.; Matthews, B.; McCarthy, T.; Bourne, N. Evaluations of unformulated and formulated dendrimer-based microbicide candidates in mouse and guinea pig models of genital herpes. Antimicrob. Agents Chemother., 2003, 47(12), 3784-3788.
[http://dx.doi.org/10.1128/AAC.47.12.3784-3788.2003] [PMID: 14638483]
[75]
Vinogradov, S.V.; Poluektova, L.Y.; Makarov, E.; Gerson, T.; Senanayake, M.T. Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir. Chem. Chemother., 2010, 21(1), 1-14.
[http://dx.doi.org/10.3851/IMP1680] [PMID: 21045256]
[76]
Telwatte, S.; Moore, K.; Johnson, A.; Tyssen, D.; Sterjovski, J.; Aldunate, M.; Gorry, P.R.; Ramsland, P.A.; Lewis, G.R.; Paull, J.R.; Sonza, S.; Tachedjian, G. Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. Antiviral Res., 2011, 90(3), 195-199.
[http://dx.doi.org/10.1016/j.antiviral.2011.03.186] [PMID: 21459115]
[77]
Jiang, Y.H.; Emau, P.; Cairns, J.S.; Flanary, L.; Morton, W.R.; McCarthy, T.D.; Tsai, C.C. SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. AIDS Res. Hum. Retroviruses, 2005, 21(3), 207-213.
[http://dx.doi.org/10.1089/aid.2005.21.207] [PMID: 15795526]
[78]
Price, C.F.; Tyssen, D.; Sonza, S.; Davie, A.; Evans, S.; Lewis, G.R.; Xia, S.; Spelman, T.; Hodsman, P.; Moench, T.R.; Humberstone, A.; Paull, J.R.; Tachedjian, G. SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS One, 2011, 6(9), e24095.
[http://dx.doi.org/10.1371/journal.pone.0024095] [PMID: 21935377]
[79]
Abdoli, A.; Radmehr, N.; Bolhassani, A.; Eidi, A.; Mehrbod, P.; Motevalli, F.; Kianmehr, Z.; Chiani, M.; Mahdavi, M.; Yazdani, S.; Ardestani, M.S.; Kandi, M.R.; Aghasadeghi, M.R. Conjugated anionic PEG-citrate G2 dendrimer with multi-epitopic HIV-1 vaccine candidate enhance the cellular immune responses in mice. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1762-1768.
[http://dx.doi.org/10.1080/21691401.2017.1290642] [PMID: 28278580]
[80]
Bhadra, D.; Bhadra, S.; Jain, N.K. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J. Pharm. Pharm. Sci., 2005, 8(3), 467-482.
[PMID: 16401394]
[81]
Sepúlveda-Crespo, D.; Gómez, R.; De La Mata, F.J.; Jiménez, J.L.; Muñoz-Fernández, M.Á. Polyanionic carbosilane dendrimer-conjugated antiviral drugs as efficient microbicides: Recent trends and developments in HIV treatment/therapy. Nanomedicine (Lond.), 2015, 11(6), 1481-1498.
[http://dx.doi.org/10.1016/j.nano.2015.03.008] [PMID: 25835558]
[82]
Sepúlveda-Crespo, D.; Sánchez-Rodríguez, J.; Serramía, M.J.; Gómez, R.; De La Mata, F.J.; Jiménez, J.L.; Muñoz-Fernández, M.Á. Triple combination of carbosilane dendrimers, tenofovir and maraviroc as potential microbicide to prevent HIV-1 sexual transmission. Nanomedicine (Lond.), 2015, 10(6), 899-914.
[http://dx.doi.org/10.2217/nnm.14.79] [PMID: 25867856]
[83]
Jiménez, J.L.; Clemente, M.I.; Weber, N.D.; Sanchez, J.; Ortega, P.; de la Mata, F.J.; Gómez, R.; García, D.; López-Fernández, L.A.; Muñoz-Fernández, M.A. Carbosilane dendrimers to transfect human astrocytes with small interfering RNA targeting human immunodeficiency virus. BioDrugs, 2010, 24(5), 331-343.
[http://dx.doi.org/10.2165/11538400-000000000-00000] [PMID: 20795754]
[84]
Rosa Borges, A.; Wieczorek, L.; Johnson, B.; Benesi, A.J.; Brown, B.K.; Kensinger, R.D.; Krebs, F.C.; Wigdahl, B.; Blumenthal, R.; Puri, A.; McCutchan, F.E.; Birx, D.L.; Polonis, V.R.; Schengrund, C-L. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1. Virology, 2010, 408(1), 80-88.
[http://dx.doi.org/10.1016/j.virol.2010.09.004] [PMID: 20880566]
[85]
Liu, J.; Gray, W.D.; Davis, M.E.; Luo, Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus, 2012, 2(3), 307-324.
[http://dx.doi.org/10.1098/rsfs.2012.0009] [PMID: 23741608]
[86]
Perisé-Barrios, A.J.; Jiménez, J.L.; Domínguez-Soto, A.; de la Mata, F.J.; Corbí, A.L.; Gomez, R.; Muñoz-Fernandez, M.Á. Carbosilane dendrimers as gene delivery agents for the treatment of HIV infection. J. Control. Release, 2014, 184, 51-57.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.048] [PMID: 24721235]
[87]
Chonco, L.; Pion, M.; Vacas, E.; Rasines, B.; Maly, M.; Serramía, M.J.; López-Fernández, L.; De la Mata, J.; Alvarez, S.; Gómez, R.; Muñoz-Fernández, M.A. Carbosilane dendrimer nanotechnology outlines of the broad HIV blocker profile. J. Control. Release, 2012, 161(3), 949-958.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.050] [PMID: 22652549]
[88]
Ionov, M.; Ciepluch, K.; Klajnert, B.; Glińska, S.; Gomez-Ramirez, R.; de la Mata, F.J.; Munoz-Fernandez, M.A.; Bryszewska, M. Complexation of HIV derived peptides with carbosilane dendrimers. Colloids Surf. B Biointerfaces, 2013, 101, 236-242.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.011] [PMID: 23010025]
[89]
Ortega, P.; Bermejo, J.F.; Chonco, L.; de-Jesus, E.; Dela-Mata, F.J.; Fernandez, G.; Flores, J.; Gomez, R.; Serramia, M.J.; Munoz-Fernandez, M.A. Novel water soluble carbosilane dendrimers: synthesis and biocompatibility. Eur. J. Inorg. Chem., 2006, 7, 1388-1396.
[http://dx.doi.org/10.1002/ejic.200500782]
[90]
de Las Cuevas, N.; Garcia-Gallego, S.; Rasines, B.; de la Mata, F.J.; Guijarro, L.G.; Muñoz-Fernández, M.A.; Gómez, R. In vitro studies of water-stable cationic carbosilane dendrimers as delivery vehicles for gene therapy against HIV and hepatocarcinoma. Curr. Med. Chem., 2012, 19(29), 5052-5061.
[http://dx.doi.org/10.2174/0929867311209025052] [PMID: 22963627]
[91]
Kensinger, R.D.; Yowler, B.C.; Benesi, A.J.; Schengrund, C.L. Synthesis of novel, multivalent glycodendrimers as ligands for HIV-1 gp120. Bioconjug. Chem., 2004, 15(2), 349-358.
[http://dx.doi.org/10.1021/bc034156a] [PMID: 15025531]
[92]
Kensinger, R.D.; Catalone, B.J.; Krebs, F.C.; Wigdahl, B.; Schengrund, C-L. Novel polysulfated galactose-derivatized dendrimers as binding antagonists of human immunodeficiency virus type 1 infection. Antimicrob. Agents Chemother., 2004, 48(5), 1614-1623.
[http://dx.doi.org/10.1128/AAC.48.5.1614-1623.2004] [PMID: 15105112]
[93]
Astruc, D.; Liang, L.; Rapakousiou, A.; Ruiz, J. Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials. Acc. Chem. Res., 2012, 45(4), 630-640.
[http://dx.doi.org/10.1021/ar200235m] [PMID: 22148925]
[94]
Chai, M.; Niu, Y.; Youngs, W.J.; Rinaldi, P.L. Structure and conformation of DAB dendrimers in solution via multidimensional NMR techniques. J. Am. Chem. Soc., 2001, 123(20), 4670-4678.
[http://dx.doi.org/10.1021/ja002824m] [PMID: 11457275]
[95]
Merkel, O.M.; Mintzer, M.A.; Sitterberg, J.; Bakowsky, U.; Simanek, E.E.; Kissel, T. Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjug. Chem., 2009, 20(9), 1799-1806.
[http://dx.doi.org/10.1021/bc900243r] [PMID: 19708683]
[96]
Caminade, A.M.; Ouali, A.; Laurent, R.; Turrin, C.O.; Majoral, J.P. The dendritic effect illustrated with phosphorus dendrimers. Chem. Soc. Rev., 2015, 44(12), 3890-3899.
[http://dx.doi.org/10.1039/C4CS00261J] [PMID: 25297494]
[97]
Blanzat, M.; Turrin, C.O.; Aubertin, A.M.; Couturier-Vidal, C.; Caminade, A.M.; Majoral, J.P.; Rico-Lattes, I.; Lattes, A. Dendritic catanionic assemblies: in vitro anti-HIV activity of phosphorus-containing dendrimers bearing galbeta1cer analogues. ChemBioChem, 2005, 6(12), 2207-2213.
[http://dx.doi.org/10.1002/cbic.200500203] [PMID: 16317767]
[98]
Blanzat, M.; Turrin, D.O.; Perez, E.; Rico-Lattes, I.; Caminade, A.M.; Majoral, J.P. Phosphorus-containing dendrimers bearing galactosylceramide analogs: Self-assembly properties. Chem. Commun., 2002, 17, 1864-1865.
[99]
Briz, V.; Serramía, M.J.; Madrid, R.; Hameau, A.; Caminade, A.M.; Majoral, J.P.; Muñoz-Fernández, M.A. Validation of a generation 4 phosphorus-containing polycationic dendrimer for gene delivery against HIV-1. Curr. Med. Chem., 2012, 19(29), 5044-5051.
[http://dx.doi.org/10.2174/0929867311209025044] [PMID: 22963636]
[100]
Lim, Y.; Kim, S.M.; Lee, Y.; Lee, W.; Yang, T.; Lee, M.; Suh, H.; Park, J. Cationic hyperbranched poly(amino ester): a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J. Am. Chem. Soc., 2001, 123(10), 2460-2461.
[http://dx.doi.org/10.1021/ja005715g] [PMID: 11456910]
[101]
Chandrasekar, D.; Sistla, R.; Ahmad, F.J.; Khar, R.K.; Diwan, P.V. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J. Biomed. Mater. Res. A, 2007, 82(1), 92-103.
[http://dx.doi.org/10.1002/jbm.a.31122] [PMID: 17269145]
[102]
Pyreddy, S.; Kumar, P.D.; Kumar, P.V. Polyethylene glycolated PAMAM dendrimers-Efavirenz conjugates. Int. J. Pharm. Investig., 2014, 4(1), 15-18.
[http://dx.doi.org/10.4103/2230-973X.127735] [PMID: 24678457]
[103]
Roberts, J.C.; Adams, Y.E.; Tomalia, D.; Mercer-Smith, J.A.; Lavallee, D.K. Using starburst dendrimers as linker molecules to radiolabel antibodies. Bioconjug. Chem., 1990, 1(5), 305-308.
[http://dx.doi.org/10.1021/bc00005a001] [PMID: 2098106]
[104]
Walter, M.V.; Malkoch, M. Simplifying the synthesis of dendrimers: accelerated approaches. Chem. Soc. Rev., 2012, 41(13), 4593-4609.
[http://dx.doi.org/10.1039/c2cs35062a] [PMID: 22592560]
[105]
Araújo, R.V.; Santos, S.D.S.; Igne Ferreira, E.; Giarolla, J. New advances in general biomedical applications of PAMAM dendrimers. Molecules, 2018, 23(11), 2849-2910.
[http://dx.doi.org/10.3390/molecules23112849] [PMID: 30400134]
[106]
Shadrack, D.M.; Mubofu, E.B.; Nyandoro, S.S. Synthesis of polyamidoamine dendrimers for encapsulating tetramethyls-cutellarein for potential bioactivity enhancement. Int. J. Mol. Sci., 2015, 16(11), 26363-26377.
[http://dx.doi.org/10.3390/ijms161125956] [PMID: 26556337]
[107]
Kumar, P.D.; Kumar, P.V.; Selvama, P.T.; Rao, S.A. PEG conjugated PAMAM dendrimers with anti-HIV drug Stavudine for prolong release. Res. Biotechnol., 2013, 4, 10-18.
[108]
Zhao, H.; Li, J.; Xi, F.; Jiang, L. Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS Lett., 2004, 563(1-3), 241-245.
[http://dx.doi.org/10.1016/S0014-5793(04)00284-4] [PMID: 15063756]
[109]
Wan, L.; Zhang, X.; Gunaseelan, S.; Pooyan, S.; Debrah, O.; Leibowitz, M.J.; Rabson, A.B.; Stein, S.; Sinko, P.J. Novel multi-component nanopharmaceuticals derived from poly(ethylene) glycol, retro-inverso-Tat nonapeptide and saquinavir demonstrate combined anti-HIV effects. AIDS Res. Ther., 2006, 3, 12.
[http://dx.doi.org/10.1186/1742-6405-3-12] [PMID: 16635263]
[110]
Shcharbin, D.; Shakhbazau, A.; Bryszewska, M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin. Drug Deliv., 2013, 10(12), 1687-1698.
[http://dx.doi.org/10.1517/17425247.2013.853661] [PMID: 24168461]
[111]
Kesharwani, P.; Banerjee, S.; Gupta, U.; Mohd-Amin, M.C.I.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater. Today, 2015, 18, 565-572.
[http://dx.doi.org/10.1016/j.mattod.2015.06.003]
[112]
Wiwattanapatapee, R.; Carreño-Gómez, B.; Malik, N.; Duncan, R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res., 2000, 17(8), 991-998.
[http://dx.doi.org/10.1023/A:1007587523543] [PMID: 11028947]
[113]
Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; McKeown, N.B.; D’Emanuele, A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm., 2003, 252(1-2), 263-266.
[http://dx.doi.org/10.1016/S0378-5173(02)00623-3] [PMID: 12550802]
[114]
Cheng, Y.; Qu, H.; Ma, M.; Xu, Z.; Xu, P.; Fang, Y.; Xu, T. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur. J. Med. Chem., 2007, 42(7), 1032-1038.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.035] [PMID: 17336426]
[115]
Labieniec-Watala, M.; Watala, C. PAMAM dendrimers: destined for success or doomed to fail? Plain and modified PAMAM dendrimers in the context of biomedical applications. J. Pharm. Sci., 2015, 104(1), 2-14.
[http://dx.doi.org/10.1002/jps.24222] [PMID: 25363074]
[116]
Sikwal, D.R.; Kalhapure, R.S.; Govender, T. An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: Janus amphiphilic dendrimers. Eur. J. Pharm. Sci., 2017, 97, 113-134.
[http://dx.doi.org/10.1016/j.ejps.2016.11.013] [PMID: 27864064]
[117]
Asaftei, S.; De Clercq, E. “Viologen” dendrimers as antiviral agents: the effect of charge number and distance. J. Med. Chem., 2010, 53(9), 3480-3488.
[http://dx.doi.org/10.1021/jm100093p] [PMID: 20377249]
[118]
Asaftei, S.; Huskens, D.; Schols, D. HIV-1 X4 activities of polycationic “viologen” based dendrimers by interaction with the chemokine receptor CXCR4: study of structure-activity relationship. J. Med. Chem., 2012, 55(23), 10405-10413.
[http://dx.doi.org/10.1021/jm301337y] [PMID: 23157587]
[119]
Bird, C.L.; Kuhn, A.T. Electrochemistry of the viologens. Chem. Soc. Rev., 1981, 10, 49-82.
[http://dx.doi.org/10.1039/cs9811000049]
[120]
Sliwa, W.; Bachowska, B.; Girek, T. Viologens as components of supramolecular structures. Curr. Org. Chem., 2007, 11, 497-513.
[http://dx.doi.org/10.2174/138527207780368238]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 05 October, 2020
Page: [708 - 722]
Pages: 15
DOI: 10.2174/1573413716666200213114836
Price: $65

Article Metrics

PDF: 14
HTML: 1