Effect on Adipose Tissue of Diabetic Mice Supplemented with n-3 Fatty Acids Extracted from Microalgae

Author(s): Laura E. Gutiérrez-Pliego, Beatriz E. Martínez-Carrillo, Aldo A. Reséndiz-Albor, Roxana Valdés-Ramos*

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders

Volume 20 , Issue 5 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Type 2 Diabetes Mellitus (T2DM) is considered a chronic noncommunicable disease in which oxidative stress is expected as a result of hyperglycaemia. One of the most recent approaches is the study of microalgae fatty acids and their possible antioxidant effect.

Objective: This study aimed to analyse the effect of supplementation with n-3 fatty acids extracted from microalgae on the total antioxidant capacity (TAC) and lipid peroxidation of adipose tissue and plasma from diabetic (db/db) and healthy (CD1) mice.

Methods: Mice were supplemented with lyophilized n-3 fatty acids extracted from microalgae or added to the diet, from week 8 to 16. TAC assay and Thiobarbituric Acid Reactive Substances assay (TBARS) were performed on adipose tissue and plasma samples.

Results: The supplementation of lyophilized n-3 fatty acids from microalgae increased the total antioxidant capacity in adipose tissue of diabetic mice (615.67μM Trolox equivalents vs 405.02μM Trolox equivalents from control mice, p<0.01) and in the plasma of healthy mice (1132.97±85.75μM Trolox equivalents vs 930.64±32μM Trolox equivalents from modified diet mice, p<0.01). There was no significant effect on lipid peroxidation on both strains.

Conclusion: The use of n-3 fatty acids extracted from microalgae could be a useful strategy to improve total antioxidant capacity in T2DM.

Keywords: n-3 fatty acids, microalgae, antioxidant, lipid peroxidation, diabetes, adipose tissue.

Hernández-Ávila, M.; Gutiérrez, J.P.; Reynoso-Noverón, N. Diabetes Mellitus En México. El Estado de La Epidemia. Salud Publica Mex., 2013, 55(1), 129-136.
American Diabetes Association.Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
World Health Organization (WHO) Global Report on Diabetes., Geneva. 2016, 83.
Shamah-Levy, T.; Cuevas-Nasu, L.; Rivera-Dommarco, J.; Hernández-Ávila, M. Encuesta Nacional de Salud y Nutrición de Medio Camino, Informe Final de Resultados. Inst. Nac. Salud Pública.Secr. Salud,. 2016, 1-154.
Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I.H., Jr Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, 473(24), 4527-4550.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes, 2015, 6(3), 456-480.
[http://dx.doi.org/10.4239/wjd.v6.i3.456] [PMID: 25897356]
Mayor, O.R. Estrés Oxidativo y Sistema de Defensa Antioxidante. Rev. del Inst. Med. Trop., 2014, 5(2), 23-27.
Maiese, K. New insights for oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev., 2015, 2015875961
[http://dx.doi.org/10.1155/2015/875961] [PMID: 26064426]
Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta, 2014, 1840(9), 2709-2729.
[http://dx.doi.org/10.1016/j.bbagen.2014.05.017] [PMID: 24905298]
Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 2015, 5(1), 194-222.
[http://dx.doi.org/10.3390/biom5010194] [PMID: 25786107]
Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J. Cell. Physiol., 2019, 234(2), 1300-1312.
[http://dx.doi.org/10.1002/jcp.27164] [PMID: 30146696]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem., 2017, 86(1), 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
Osman, T.M.; Rahman, T.; Ismail, T.; Aslina, A.; Nawawi, H. Investigation of oxidative stress status in metabolic syndrome patients using lipid peroxidation biomarkers. Int. Arch. Med., 2016, 9.
Yin, H.; Xu, L.; Porter, N.A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev., 2011, 111(10), 5944-5972.
[http://dx.doi.org/10.1021/cr200084z] [PMID: 21861450]
Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. (Camb.), 2016, 7(1), 489-498.
[http://dx.doi.org/10.1039/C5SC02311D] [PMID: 28791102]
Usta, M.; Turan, E.; Aral, H.; Inal, B.B.; Gurel, M.S.; Guvenen, G. Serum paraoxonase-1 activities and oxidative status in patients with plaque-type psoriasis with/without metabolic syndrome. J. Clin. Lab. Anal., 2011, 25(4), 289-295.
[http://dx.doi.org/10.1002/jcla.20471] [PMID: 21786331]
Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem., 2017, 524, 13-30.
[http://dx.doi.org/10.1016/j.ab.2016.10.021] [PMID: 27789233]
Ghani, M.A.; Barril, C.; Bedgood, D.R., Jr; Prenzler, P.D. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem., 2017, 230, 195-207.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.127] [PMID: 28407901]
Lubrano, V.; Balzan, S. Enzymatic antioxidant system in vascular inflammation and coronary artery disease. World J. Exp. Med., 2015, 5(4), 218-224.
[http://dx.doi.org/10.5493/wjem.v5.i4.218] [PMID: 26618108]
Marques, S.S.; Magalhães, L.M.; Tóth, I.V.; Segundo, M.A. Insights on antioxidant assays for biological samples based on the reduction of copper complexes-the importance of analytical conditions. Int. J. Mol. Sci., 2014, 15(7), 11387-11402.
[http://dx.doi.org/10.3390/ijms150711387] [PMID: 24968275]
Manson, J.E.; Cook, N.R.; Lee, I-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; D’Agostino, D.; Friedenberg, G.; Ridge, C.; Bubes, V.; Giovannucci, E.L.; Willett, W.C.; Buring, J.E. VITAL Research Group. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med., 2019, 380(1), 23-32.
[http://dx.doi.org/10.1056/NEJMoa1811403] [PMID: 30415637]
Endo, J.; Arita, M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J. Cardiol., 2016, 67(1), 22-27.
[http://dx.doi.org/10.1016/j.jjcc.2015.08.002] [PMID: 26359712]
Haghiac, M.; Yang, X-H.; Presley, L.; Smith, S.; Dettelback, S.; Minium, J.; Belury, M.A.; Catalano, P.M.; Hauguel-de Mouzon, S. Dietary Omega-3 Fatty Acid Supplementation Reduces Inflammation in Obese Pregnant Women: A Randomized Double-Blind Controlled Clinical Trial. PLoS One, 2015, 10(9)e0137309
[http://dx.doi.org/10.1371/journal.pone.0137309] [PMID: 26340264]
Madore, C.; Leyrolle, Q.; Lacabanne, C.; Benmamar-Badel, A.; Joffre, C.; Nadjar, A.; Layé, S. Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plast., 2016, 20163597209
[http://dx.doi.org/10.1155/2016/3597209] [PMID: 27840741]
Ellulu, M.S.; Khaza’ai, H.; Patimah, I.; Rahmat, A.; Abed, Y. Effect of long chain omega-3 polyunsaturated fatty acids on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Food Nutr. Res., 2016, 60(1), 29268.
[http://dx.doi.org/10.3402/fnr.v60.29268] [PMID: 26829184]
Schuchardt, J.P.; Hahn, A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot. Essent. Fatty Acids, 2013, 89(1), 1-8.
[http://dx.doi.org/10.1016/j.plefa.2013.03.010] [PMID: 23676322]
Leu, S.; Boussiba, S. Advances in the Production of High-Value Products by Microalgae. Ind. Biotechnol. (New Rochelle N.Y.), 2014, 10(3), 169-183.
Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: a review. J. Sci. Food Agric., 2016, 96(1), 32-48.
[http://dx.doi.org/10.1002/jsfa.7360] [PMID: 26238481]
Valenzuela, B. A.; Valenzuela B, R. Acidos Grasos.Omega-3 En La Nutrición ¿como Aportarlos? Rev. Chil. Nutr., 2014, 41(2), 205-211.
Robertson, R.; Guihéneuf, F.; Schmid, M.; Stengel, D.; Fitzgerald, G.; Ross, P.; Stanton, C. Algae-Derived Polyunsaturated Fatty Acids: Implications for Human Health. In: Polyunsaturated Fatty Acids: Sources,Antioxidant Properties and Health Benefits;; Catalá, A., Ed.; Nova Sciences Publishers, Inc., Hauppauge, NY 11788 USA. , 2013.
Gheysen, L.; Matton, V.; Foubert, I. Microalgae as a Source of Omega-3 Polyunsaturated Fatty Acids.Polyunsaturated Fatty Acids (PUFAs): Food sources, health effects and significance in biochemistry; Catala, A., Ed.; Nova Science Publishers, 2018, p. 280.
Hajianfar, H.; Paknahad, Z.; Bahonar, A. The effect of omega-3 supplements on antioxidant capacity in patients with type 2 diabetes. Int. J. Prev. Med., 2013, 4(2)(Suppl. 2), S234-S238.
[PMID: 23776730]
Goiris, K.; Van Colen, W.; Wilches, I.; León-Tamariz, F.; De Cooman, L.; Muylaert, K. Impact of Nutrient Stress on Antioxidant Production in Three Species of Microalgae. Algal Res., 2015, 7, 51-57.
Novelli, E.L.B.; Diniz, Y.S.; Galhardi, C.M.; Ebaid, G.M.; Rodrigues, H.G.; Mani, F.; Fernandes, A.A.; Cicogna, A.C.; Novelli Filho, J.L. Anthropometrical parameters and markers of obesity in rats. Lab. Anim., 2007, 41(1), 111-119.
[http://dx.doi.org/10.1258/002367707779399518] [PMID: 17234057]
Zhuang, P.; Wang, W.; Zhang, Y.; Jiao, J. Long-term dietary EPA or DHA supplementation do not ameliorate obesity but improve glucose homeostasis via gut-adipose axis in already obese mice. FASEB J., 2017, 31(1), 971-11.
Kalupahana, N.S.; Claycombe, K.; Newman, S.J.; Stewart, T.; Siriwardhana, N.; Matthan, N.; Lichtenstein, A.H.; Moustaid-Moussa, N. Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J. Nutr., 2010, 140(11), 1915-1922.
[http://dx.doi.org/10.3945/jn.110.125732] [PMID: 20861209]
Flachs, P.; Mohamed-Ali, V.; Horakova, O.; Rossmeisl, M.; Hosseinzadeh-Attar, M.J.; Hensler, M.; Ruzickova, J.; Kopecky, J. Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia, 2006, 49(2), 394-397.
[http://dx.doi.org/10.1007/s00125-005-0053-y] [PMID: 16397791]
Shklyaev, S.; Aslanidi, G.; Tennant, M.; Prima, V.; Kohlbrenner, E.; Kroutov, V.; Campbell-Thompson, M.; Crawford, J.; Shek, E.W.; Scarpace, P.J.; Zolotukhin, S. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 14217-14222.
[http://dx.doi.org/10.1073/pnas.2333912100] [PMID: 14617771]
D’Alessandro, M.E.; Selenscig, D.; Illesca, P.; Chicco, A.; Lombardo, Y.B. Time course of adipose tissue dysfunction associated with antioxidant defense, inflammatory cytokines and oxidative stress in dyslipemic insulin resistant rats. Food Funct., 2015, 6(4), 1299-1309.
[http://dx.doi.org/10.1039/C4FO00903G] [PMID: 25765549]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis., 2018, 9(2), 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
Sada, K.; Nishikawa, T.; Kukidome, D.; Yoshinaga, T.; Kajihara, N.; Sonoda, K.; Senokuchi, T.; Motoshima, H.; Matsumura, T.; Araki, E. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1. PLoS One, 2016, 11(7)e0158619
[http://dx.doi.org/10.1371/journal.pone.0158619] [PMID: 27383386]
Radziavicius, C. C. C.; Radziavicius, F. R. C.; Pereira, E. C.; Azzalis, L. A.; Castelo, P. M.; Junqueira, V. B. C.; Sarni, R. O. S.; Rocha, K. C.; Oliveira, R. B.; Beatriz, L. Inflammatory Markers, Tbars and Vitamin E in Class II and III Obese Patients before Undergoing Bariatric Surgery. Int. Arch. Med,, 2015, 6(LDLc), 1-7.
Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Skoumas, I.; Papademetriou, L.; Economou, M.; Stefanadis, C. The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study. Nutr. Metab. Cardiovasc. Dis., 2007, 17(8), 590-597.
[http://dx.doi.org/10.1016/j.numecd.2006.05.007] [PMID: 16901682]
De Tursi Ríspoli, L.; Vázquez Tarragón, A.; Vázquez Prado, A.; Sáez Tormo, G.; Mahmoud Ismail, A.; Gumbau Puchol, V. [Oxidative stress; a comparative study between normal and morbid obesity group population]. Nutr. Hosp., 2013, 28(3), 671-675.
[PMID: 23848087]
de Souza Bastos, A.; Graves, D.T.; de Melo Loureiro, A.P.; Júnior, C.R.; Corbi, S.C.T.; Frizzera, F.; Scarel-Caminaga, R.M.; Câmara, N.O.; Andriankaja, O.M.; Hiyane, M.I.; Orrico, S.R.P. Diabetes and increased lipid peroxidation are associated with systemic inflammation even in well-controlled patients. J. Diabetes Complications, 2016, 30(8), 1593-1599.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.07.011] [PMID: 27497685]
Miranda, M.; Gormaz, M.; Romero, F.J.; Silvestre, D. Estabilidad de la capacidad antioxidante y pH en leche humana refrigerada durante 72 horas: estudio longitudinal. Nutr. Hosp., 2011, 26(4), 722-728.
[PMID: 22470016]
Diniz, B.S.; Mendes-Silva, A.P.; Silva, L.B.; Bertola, L.; Vieira, M.C.; Ferreira, J.D.; Nicolau, M.; Bristot, G.; da Rosa, E.D.; Teixeira, A.L.; Kapczinski, F. Oxidative stress markers imbalance in late-life depression. J. Psychiatr. Res., 2018, 102, 29-33.
[http://dx.doi.org/10.1016/j.jpsychires.2018.02.023] [PMID: 29574402]
Lozano-Paniagua, D.; Parrón, T.; Alarcón, R.; Requena, M.; Gil, F.; López-Guarnido, O.; Lacasaña, M.; Hernández, A.F. Biomarkers of oxidative stress in blood of workers exposed to non-cholinesterase inhibiting pesticides. Ecotoxicol. Environ. Saf., 2018, 162, 121-128.
[http://dx.doi.org/10.1016/j.ecoenv.2018.06.074] [PMID: 29990723]
Silberstein, T.; Hamou, B.; Cervil, S.; Barak, T.; Burg, A.; Saphier, O. Colostrum of Preeclamptic Women Has a High Level of Polyphenols and Better Resistance to Oxidative Stress in Comparison to That of Healthy Women. Oxid. Med. Cell. Longev., 2019, 20191380605
[http://dx.doi.org/10.1155/2019/1380605] [PMID: 30918577]
Tóthová, L.; Kamodyová, N.; Červenka, T.; Celec, P. Salivary markers of oxidative stress in oral diseases. Front. Cell. Infect. Microbiol., 2015, 5, 73.
[http://dx.doi.org/10.3389/fcimb.2015.00073] [PMID: 26539412]
Arroyo, J.; Raez, E.; Rodríguez, M.; Chumpitaz, V.; Burga, J.; De la Cruz, W.; Valencia, J. Reducción Del Colesterol y Aumento de La Capacidad Antioxidante Por El Consumo Crónico de Maíz Morado (Zea Mays L) En Ratas Hipercolesterolémicas. Rev. Peru. Med. Exp. Salud Publica, 2007, 24(2)
Freund-Levi, Y.; Vedin, I.; Hjorth, E.; Basun, H.; Faxén Irving, G.; Schultzberg, M.; Eriksdotter, M.; Palmblad, J.; Vessby, B.; Wahlund, L-O.; Cederholm, T.; Basu, S. Effects of supplementation with omega-3 fatty acids on oxidative stress and inflammation in patients with Alzheimer’s disease: the OmegAD study. J. Alzheimers Dis., 2014, 42(3), 823-831.
[http://dx.doi.org/10.3233/JAD-132042] [PMID: 24934544]
Smesny, S.; Milleit, B.; Schaefer, M.R.; Hipler, U-C.; Milleit, C.; Wiegand, C.; Hesse, J.; Klier, C.M.; Holub, M.; Holzer, I.; Berk, M.; McGorry, P.D.; Sauer, H.; Amminger, G.P. Effects of omega-3 PUFA on the vitamin E and glutathione antioxidant defense system in individuals at ultra-high risk of psychosis. Prostaglandins Leukot. Essent. Fatty Acids, 2015, 101, 15-21.
[http://dx.doi.org/10.1016/j.plefa.2015.07.001] [PMID: 26260538]
Di Nunzio, M.; Valli, V.; Bordoni, A. PUFA and oxidative stress. Differential modulation of the cell response by DHA. Int. J. Food Sci. Nutr., 2016, 67(7), 834-843.
[http://dx.doi.org/10.1080/09637486.2016.1201790] [PMID: 27353954]
Dasilva, G.; Pazos, M.; García-Egido, E.; Gallardo, J.M.; Rodríguez, I.; Cela, R.; Medina, I. Healthy effect of different proportions of marine ω-3 PUFAs EPA and DHA supplementation in Wistar rats: Lipidomic biomarkers of oxidative stress and inflammation. J. Nutr. Biochem., 2015, 26(11), 1385-1392.
[http://dx.doi.org/10.1016/j.jnutbio.2015.07.007] [PMID: 26320676]
Widowati, I.; Zainuri, M.; Kusumaningrum, H.P.; Susilowati, R.; Hardivillier, Y.; Leignel, V.; Bourgougnon, N.; Mouget, J-L. Antioxidant Activity of Three Microalgae Dunaliella Salina, Tetraselmis Chuii and Isochrysis Galbana Clone Tahiti. IOP Conf. Ser. Earth Environ. Sci, 2017, 55(1), p. 012067.
Ali, H.E.A.; Shanab, S.M.M.; Abo-State, M.A.M.; Shalaby, E.A.A.; Eldmerdash, U.; Abdullah, M.A. Screening of Microalgae for Antioxidant Activities, Carotenoids and Phenolic Contents. Appl. Mech. Mater., 2014, 625, 156-159.
Maadane, A.; Merghoub, N.; Ainane, T.; El Arroussi, H.; Benhima, R.; Amzazi, S.; Bakri, Y.; Wahby, I. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. J. Biotechnol., 2015, 215, 13-19.
[http://dx.doi.org/10.1016/j.jbiotec.2015.06.400] [PMID: 26113214]
Haimeur, A.; Mimouni, V.; Ulmann, L.; Martineau, A-S.; Messaouri, H.; Pineau-Vincent, F.; Tremblin, G.; Meskini, N. Fish Oil and Microalga Omega-3 as Dietary Supplements: A Comparative Study on Cardiovascular Risk Factors in High-Fat Fed Rats. Lipids, 2016, 51(9), 1037-1049.
[http://dx.doi.org/10.1007/s11745-016-4177-2] [PMID: 27503614]
Gatrell, S.K.; Kim, J.; Derksen, T.J.; O’Neil, E.V.; Lei, X.G. Creating ω-3 Fatty-Acid-Enriched Chicken Using Defatted Green Microalgal Biomass. J. Agric. Food Chem., 2015, 63(42), 9315-9322.
[http://dx.doi.org/10.1021/acs.jafc.5b03137] [PMID: 26395320]
Narayanankutty, A.; Mukesh, R.K.; Ayoob, S.K.; Ramavarma, S.K.; Suseela, I.M.; Manalil, J.J.; Kuzhivelil, B.T.; Raghavamenon, A.C. Virgin coconut oil maintains redox status and improves glycemic conditions in high fructose fed rats. J. Food Sci. Technol., 2016, 53(1), 895-901.
[http://dx.doi.org/10.1007/s13197-015-2040-8] [PMID: 26788013]
Alves, N.F.B.; Porpino, S.K.P.; Monteiro, M.M.O.; Gomes, E.R.M.; Braga, V.A. Coconut oil supplementation and physical exercise improves baroreflex sensitivity and oxidative stress in hypertensive rats. Appl. Physiol. Nutr. Metab., 2015, 40(4), 393-400.
[http://dx.doi.org/10.1139/apnm-2014-0351] [PMID: 25659569]

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 01 June, 2020
Page: [728 - 735]
Pages: 8
DOI: 10.2174/1871530320666200213111452

Article Metrics

PDF: 22