Review of the Syntheses and Activities of Some Sulfur-Containing Drugs

Author(s): Criscieli Taynara Barce Ferro, Beatriz Fuzinato dos Santos, Caren Daniele Galeano da Silva, George Brand, Beatriz Amaral Lopes da Silva, Nelson Luís de Campos Domingues*

Journal Name: Current Organic Synthesis

Volume 17 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Sulfur-containing compounds represent an important class of chemical compounds due to their wide range of biological and pharmaceutical properties. Moreover, sulfur-containing compounds may be applied in other fields, such as biological, organic, and materials chemistry. Several studies on the activities of sulfur compounds have already proven their anti-inflammatory properties and use to treat diseases, such as Alzheimer’s, Parkinson’s, and HIV. Moreover, examples of sulfur-containing compounds include dapsone, quetiapine, penicillin, probucol, and nelfinavir, which are important drugs with known activities.

Objective: This review will focus on the synthesis and application of some sulfur-containing compounds used to treat several diseases, as well as promising new drug candidates.

Conclusion: Due to the variety of compounds containing C-S bonds, we have reviewed the different synthetic routes used toward the synthesis of sulfur-containing drugs and other compounds.

Keywords: Sulfur, C-S bond, RN-18, quetiapine, 3-arylthioindoles, ebsulfur, dapsone.

[1]
(a) Ghaderi, A. Advances in transition-metal catalyzed thioetherification reactions of aromatic compounds. Tetrahedron, 2016, 72, 4758-4782. Available from.
[http://dx.doi.org/10.1016/j.tet.2016.06.067]
(b) Farzin, S.; Rahimi, A.; Amiri, K.; Rostami, A.; Rostami, A. Synthesis of diaryl sulfides via nickel ferrite‐catalysed C-S bond formation in green media. Appl. Organomet. Chem., 2018, 32, 1-12. Available from.
[http://dx.doi.org/10.1002/aoc.4409]
(c) Lu, X.; Yi, Q.; Pan, X.; Peifang, W.; Vessally, E. Aryl sulfonyl chlorides and sodium aryl sulfinates: non-volatile, non-stench, and non-toxic aryl thiol surrogates for direct aryl-sulfenylation of C–H bonds. J. Sulfur Chem., 2019, 1, 1-19. Available from.
[http://dx.doi.org/10.1080/17415993.2019.1683181]
(d) Zhang, L.L.; Li, Y.T.; Gao, T.; Yang, B.; Meng, Z.H.; Dai, Q.P.; Xu, Z.B.; Wu, Q.P. Efficient synthesis of diverse 5-Thio- or 5-Selenotriazoles: One-Pot multicomponent reaction from elemental sulfur or selenium. Synthesis, 2019, 51, 4170-4182. Available from.
[http://dx.doi.org/10.1055/s-0039-1690618]
[2]
(a) Oderinde, M.S.; Frenette, M.; Robbins, D.W.; Aquila, B.; Johannes, J.W. Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals. J. Am. Chem. Soc., 2016, 138(6), 1760-1763. Available from.
[http://dx.doi.org/10.1021/jacs.5b11244] [PMID: 26840123]
(b) Li, J.; Bao, W.H.; Zhang, Y.; Rao, Y.J. Metal-Free Cercosporin-Photocatalyzed C-S coupling for the selective synthesis of aryl sulfides under mild conditions. Eur. J. Org. Chem., 2019, 42, 7175-7178. Available from.
[http://dx.doi.org/10.1002/ejoc.201901444]
(c) Xu, J.; Liu, R.Y.; Yeung, C.S.; Buchwald, S.L. Monophosphine ligands promote Pd-catalyzed C-S cross-coupling reactions at room temperature with soluble bases. ACS Catal., 2019, 9(7), 6461-6466. Available from.
[http://dx.doi.org/10.1021/acscatal.9b01913] [PMID: 31929949]
(d) Tavares Junior, J.M.D.C.; da Silva, C.D.G.; Dos Santos, B.F.; Souza, N.S.; de Oliveira, A.R.; Kupfer, V.L.; Rinaldi, A.W.; Domingues, N.L.C. Cerium catalyst promoted C-S cross-coupling: synthesis of thioethers, dapsone and RN-18 precursors. Org. Biomol. Chem., 2019, 17(47), 10103-10108. Available from.
[http://dx.doi.org/10.1039/C9OB02171J] [PMID: 31755516]
[3]
Lee, C.F.; Liu, Y-C.; Badsara, S.S. Transition-metal-catalyzed C-S bond coupling reaction. Chem. Asian J., 2014, 9(3), 706-722. Available from.
[http://dx.doi.org/10.1002/asia.201301500] [PMID: 24443103]
[4]
Thankachan, A.P.; Sindhu, K.S.; Krishnan, K.K.; Anilkumar, G. A novel and efficient zinc-catalyzed thioetherification of aryl halides. RSC Advances, 2015, 5, 32675-32678. Available from.
[http://dx.doi.org/10.1039/C5RA03869C]
[5]
Nathans, R.; Cao, H.; Sharova, N.; Ali, A.; Sharkey, M.; Stranska, R.; Stevenson, M.; Rana, T.M. Small-molecule inhibition of HIV-1 Vif. Nat. Biotechnol., 2008, 26(10), 1187-1192. Available from.
[http://dx.doi.org/10.1038/nbt.1496] [PMID: 18806783]
[6]
(a) Mohammed, I.; Kummetha, I.R.; Singh, G.; Sharova, N.; Lichinchi, G.; Dang, J.; Stevenson, M.; Rana, T.M. 1,2,3-triazoles as amide bioisosteres: Discovery of a new class of potent HIV-1 Vif antagonists. J. Med. Chem., 2016, 59(16), 7677-7682. Available from.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00247] [PMID: 27509004]
(b) Zhang, R.H.; Wang, S.; Luo, R.H.; Zhou, M.; Zhang, H.; Xu, G.B.; Zhao, Y.L.; Li, Y.J.; Wang, Y.L.; Yan, G.Y.; Liao, S.G.; Zheng, Y.T.; Li, R. Design, synthesis, and biological evaluation of 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide derivatives as potent HIV-1 Vif inhibitors. Bioorg. Med. Chem. Lett., 2019, 29, 1-4. Available from.
[http://dx.doi.org/10.1016/j.bmcl.2019.126638]
(c) Binning, J.M.; Smith, A.M.; Hultquist, J.F.; Craik, C.S.; Caretta Cartozo, N.; Campbell, M.G.; Burton, L.; La Greca, F.; McGregor, M.J.; Ta, H.M.; Bartholomeeusen, K.; Peterlin, B.M.; Krogan, N.J.; Sevillano, N.; Cheng, Y.; Gross, J.D. Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors. PLoS Pathog., 2018, 14(1) e1006830 Available from.
[http://dx.doi.org/10.1371/journal.ppat.1006830] [PMID: 29304101]
[7]
Ali, A.; Wang, J.; Nathans, R.S.; Cao, H.; Sharova, N.; Stevenson, M.; Rana, T.M. Synthesis and structure-activity relationship studies of HIV-1 virion infectivity factor (Vif) inhibitors that block viral replication. ChemMedChem, 2012, 7(7), 1217-1229. Available from.
[http://dx.doi.org/10.1002/cmdc.201200079] [PMID: 22555953]
[8]
Mohammed, I.; Parai, M.K.; Jiang, X.; Sharova, N.; Singh, G.; Stevenson, M.; Rana, T.M. SAR and lead optimization of an HIV-1 Vif-APOBEC3G axis inhibitor. ACS Med. Chem. Lett., 2012, 3(6), 465-469. Available from.
[http://dx.doi.org/10.1021/ml300037k] [PMID: 24533175]
[9]
Santos, B.F.; Silva, C.D.G.; Silva, B.A.L.; Katla, R.; Oliveira, A.R.; Kupfer, V.L.; Rinaldi, A.W.; Domingues, N.L.C. C-S cross-coupling reaction using a recyclable palladium prolinate catalyst under mild and green conditions. ChemistrySelect, 2017, 2, 9063-9068. Available from.
[http://dx.doi.org/10.1002/slct.201701816]
[10]
Zhou, M.; Luo, R-H.; Hou, X-Y.; Wang, R-R.; Yan, G-Y.; Chen, H.; Zhang, R-H.; Shi, J-Y.; Zheng, Y-T.; Li, R.; Wei, Y-Q. Synthesis, biological evaluation and molecular docking study of N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide derivatives as potent HIV-1 Vif antagonists. Eur. J. Med. Chem., 2017, 129, 310-324. Available from.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.010] [PMID: 28235704]
[11]
(a) Fujii, T.; Hao, W.; Yoshimura, T. New Method for the Preparation of Dibenzo[b,f][1,4]thiazepines. Heteroatom Chem., 2004, 15, 246-250. Available from.
[http://dx.doi.org/10.1002/hc.20010]
(b) Kaur, N. Synthetic routes to seven and higher membered S-heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 186-209. Available from.
[http://dx.doi.org/10.1080/10426507.2018.1539493]
[12]
Conley, R.R.; Kelly, D.L. Management of treatment resistance in schizophrenia. Biol. Psychiatry, 2001, 50(11), 898-911. Available from.
[http://dx.doi.org/10.1016/S0006-3223(01)01271-9] [PMID: 11743944]
[13]
Narasimhan, N.S.; Chandrachood, P.S. Synthetic application of lithiation reactions; X. synthesis of Dibenzo[b,f][1,4]oxazepine, Dibenzo[b,e] [1,4] thiazepine, and 5H-Dibenzo [b,e][1,4] diazepine. Synthesis, 1979, 8, 589-590. Available from.
[http://dx.doi.org/10.1055/s-1979-28767]
[14]
Gudisela, M.R.; Srinivasu, N.; Mulakayala, C.; Bommu, P.; Rao, M.V.B.; Mulakayala, N. Design, synthesis and anticancer activity of N-(1-(4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl derivatives. Bioorg. Med. Chem. Lett., 2017, 27(17), 4140-4145. Available from.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.029] [PMID: 28756024]
[15]
Kandula, V.R. Formal synthesis of quetiapine: An antipsychotic drug. Hetero. Letters., 2014, 4(3), 331-334. Available from. http://www.heteroletters.org/issue43/PDF/Paper-2.pdf
[16]
Panda, N.; Jena, A.K.; Mohapatra, S. Heterogeneous magnetic catalyst for S-arylation reactions. Appl. Catal. A Gen., 2012, 433, 258-264. Available from.
[http://dx.doi.org/10.1016/j.apcata.2012.05.026]
[17]
Guo, R-N.; Gao, K.; Ye, Z-S.; Shi, L.; Li, Y.; Zhou, Y-G. Iridium-catalyzed asymmetric hydrogenation of dibenzo[b,f][1,4]thiazepines. Pure Appl. Chem., 2013, 85, 843-849. Available from.
[http://dx.doi.org/10.1351/PAC-CON-12-07-02]
[18]
Lin, Y-C.; Li, N-C.; Cherng, Y-J. Microwave-Assisted Synthesis of Substituted Dibenzo[b,f] [1,4]thiazepines, Dibenzo[b,f][1,4]oxazepines, Benzothiazoles, and Benzimidazoles. J. Heterocycl. Chem., 2014, 51, 808-814. Available from.
[http://dx.doi.org/10.1002/jhet.2003]
[19]
Saha, D.; Wadhwa, P.; Sharma, A. A sequential synthetic strategy towards unexplored dibenzo[b,f][1,4]thiazepine carboxamides: Copper catalysed C-S cyclisation followed by Ugi type 3CC cascade. RSC Advances, 2015, 5, 33067-33076. Available from.
[http://dx.doi.org/10.1039/C5RA04175A]
[20]
Cheung, C.W.; Ploeger, M.L.; Hu, X. Direct amidation of esters with nitroarenes. Nat. Commun., 2017, 8, 14878. Available from.
[http://dx.doi.org/10.1038/ncomms14878] [PMID: 28345585]
[21]
Chen, Y.; Peng, Q.; Zhang, R.; Hu, J.; Zhou, Y.; Xu, L.; Pan, X. Ligand-Controlled chemoselective one-pot synthesis of dibenzothiazepinones and dibenzoxazepinones via twice copper-catalyzed cross-coupling. Synlett, 2017, 28(10), 1201-1208. Available from.
[http://dx.doi.org/10.1055/s-0036-1558959]
[22]
Ravikumar, K.; Sridhar, B. Quetiapine hemifumarate. Acta Crystallogr., 2005, E61, 3245-3248. Available from.
[http://dx.doi.org/10.1107/S1600536805028357]
[23]
Mahale, G.D.; Kolekar, Y.M.; Kumar, A.; Singh, D.; Kodam, K.M.; Waghmode, S.B. Synthesis and bacterial activities of new dibenzothiazepine derivatives. Indian J. Chem., 2011, 50B, 1196-1201.
[24]
Guo, Q.; Yang, H.; Liu, X.; Si, X.; Liang, H.; Tu, P.; Zhang, Q. New zwitterionic monoterpene indole alkaloids from Uncaria rhynchophylla. Fitoterapia, 2018, 127, 47-55. Available from.
[http://dx.doi.org/10.1016/j.fitote.2018.01.013] [PMID: 29373834]
[25]
(a) Zhou, Y.; Cao, W-B.; Zhang, L-L.; Xu, X-P.; Ji, S.J. Ag(I)-Promoted dehydroxylation and site-selective 1,7-Disulfonylation of diaryl(1 H-indol-2-yl)methanols. J. Org. Chem., 2018, 83(11), 6056-6065. Available from.
[http://dx.doi.org/10.1021/acs.joc.8b00721] [PMID: 29733643]
(b) Chen, F.; Meng, Q.; Han, S-Q.; Han, B. Tert-Butyl Hydroperoxide (TBHP)-Initiated vicinal sulfonamination of alkynes: A radical annulation toward 3-Sulfonylindoles. Org. Lett., 2016, 18(14), 3330-3333. Available from.
[http://dx.doi.org/10.1021/acs.orglett.6b01427] [PMID: 27340838]
[26]
Maeda, Y.; Koyabu, M.; Nishimura, T.; Uemura, S. Vanadium-catalyzed sulfenylation of indoles and 2-naphthols with thiols under molecular oxygen. J. Org. Chem., 2004, 69(22), 7688-7693. Available from.
[http://dx.doi.org/10.1021/jo048758e] [PMID: 15497997]
[27]
(a) Yadav, J.S.; Reddy, B.S.V.; Reddy, Y.J.; Praneeth, K. Iron(III) Chloride: A Versatile catalyst for the practical synthesis of 3-sulfenylindoles. Synthesis, 2009, 9, 1520-1524. Available from.
[http://dx.doi.org/10.1055/s-0028-1088035]
(b) Samanta, S.K.; Bera, M.K. Iodine mediated oxidative cross coupling of 2-aminopyridine and aromatic terminal alkyne: a practical route to imidazo[1,2-a]pyridine derivatives. Org. Biomol. Chem., 2019, 17(26), 6441-6449. Available from.
[http://dx.doi.org/10.1039/C9OB00812H] [PMID: 31206121]
(c) Hosseinian, A.; Ahmadi, S.; Nasab, F.A.H.; Mohammadi, R.; Vessally, E. Cross-dehydrogenative C-H/S-H coupling reactions. Top. Curr. Chem. (Cham), 2018, 376(6), 39. Available from.
[http://dx.doi.org/10.1007/s41061-018-0217-0] [PMID: 30306362]
[28]
Ragno, R.; Coluccia, A.; La Regina, G.; De Martino, G.; Piscitelli, F.; Lavecchia, A.; Novellino, E.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.; Artico, M.; Silvestri, R. Design, molecular modeling, synthesis, and anti-HIV-1 activity of new indolyl aryl sulfones. Novel derivatives of the indole-2-carboxamide. J. Med. Chem., 2006, 49(11), 3172-3184. Available from.
[http://dx.doi.org/10.1021/jm0512490] [PMID: 16722636]
[29]
Xu, H.; Lv, M. Developments of indoles as anti-HIV-1 inhibitors. Curr. Pharm. Des., 2009, 15(18), 2120-2148. Available from.
[http://dx.doi.org/10.2174/138161209788489168] [PMID: 19519449]
[30]
De Martino, G.; La Regina, G.; Coluccia, A.; Edler, M.C.; Barbera, M.C.; Brancale, A.; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. Arylthioindoles, potent inhibitors of tubulin polymerization. J. Med. Chem., 2004, 47(25), 6120-6123. Available from.
[http://dx.doi.org/10.1021/jm049360d] [PMID: 15566282]
[31]
Ramakrishna, V. S. N.; Shirsath, V. S.; Kambhampati, R. S.; Vishwakarma, S.; Kandikere, N. V.; Kota, S.; Jasti, V. Thioether derivatives as functional 5- ht6 ligands. PCT Int. Appl. WO 2007020653, 2007.
[32]
Funk, C.D. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat. Rev. Drug Discov., 2005, 4(8), 664-672. Available from.
[http://dx.doi.org/10.1038/nrd1796] [PMID: 16041318]
[33]
Armer, R. E.; Wynne, G. M. Compounds having crth2 antagonist activity. PCT Int. Appl. WO 2008012511, 2008.
[34]
Silveira, C.C.; Mendes, S.R.; Wolf, L.; Martins, G.M. The use of anhydrous CeCl3 as a catalyst for the synthesis of 3-sulfenyl indoles. Tetrahedron Lett., 2010, 51, 2014-2016. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.038]
[35]
Guo, Y.J.; Tang, R.Y.; Li, J.H.; Zhong, P.; Zhang, X.G. Palladium-Catalyzed annulation of 2-(1-alkynyl)benzenamines with disulfides: Synthesis of 3-Sulfenylindoles. Adv. Synth. Catal., 2009, 351, 2615-218. Available from.
[http://dx.doi.org/10.1002/adsc.200900055]
[36]
Marcantoni, E.; Cipolletti, R.; Marsili, L.; Menichetti, S.; Properzi, R.; Viglianisi, C. An efficient catalytic method for regioselective sulfenylation of electron-rich aza-aromatics at room temperature. Eur. J. Org. Chem., 2013, 132-140. Available from.
[http://dx.doi.org/10.1002/ejoc.201201100]
[37]
Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G.R. Development of a novel, highly efficient halide-catalyzed sulfenylation of indoles. Org. Lett., 2006, 8(4), 565-568. Available from.
[http://dx.doi.org/10.1021/ol052615c] [PMID: 16468712]
[38]
Fang, X-L.; Tang, R-Y.; Zhong, P.; Li, J-H. Iron-catalyzed sulfenylation of indoles with disulfides promoted by a catalytic amount of iodine. Synthesis, 2009, 4183-4189.
[39]
Chen, M.; Huang, Z-T.; Zheng, Q.Y. Visible light-induced 3-sulfenylation of N-methylindoles with arylsulfonyl chlorides. Chem. Commun. (Camb.), 2012, 48(95), 11686-11688. Available from.
[http://dx.doi.org/10.1039/c2cc36866h] [PMID: 23104328]
[40]
Sang, P.; Chen, Z.; Zou, J.; Zhang, Y.K. 2CO3 promoted direct sulfenylation of indoles: a facile approach towards 3-sulfenylindoles. Green Chem., 2013, 15, 2096-2100. Available from.
[http://dx.doi.org/10.1039/c3gc40724a]
[41]
Prasad, ChD.; Kumar, S.; Sattar, M.; Adhikary, A.; Kumar, S. Metal free sulfenylation and bis-sulfenylation of indoles: persulfate mediated synthesis. Org. Biomol. Chem., 2013, 11(46), 8036-8040. Available from.
[http://dx.doi.org/10.1039/c3ob41601a] [PMID: 24166084]
[42]
Li, Z.; Hong, L.; Liu, R.; Shen, J.; Zhou, X. Copper-catalyzed chalco-genoamination of 2-alkynylanilines with dichalcogenides for one-step synthesis of 3-sulfenylindoles and 3-selenylindoles. Tetrahedron Lett., 2011, 52, 1343-1347. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.052]
[43]
Montevecchi, P.C.; Navacchia, M.L.; Spagnolo, P. A Study of Vinyl Radical Cyclization onto the Azido Group by Addition of Sulfanyl, Stannyl, and Silyl Radicals to Alkynyl Azides. Eur. J. Org. Chem., 1998, 1219-1226. Available from.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199806)1998:6<1219:AID-EJOC1219>3.0.CO;2-V]
[44]
Shirani, H.; Stensland, B.; Bergman, J.; Janosik, T. New Routes to 3-(Arylthio)indoles: Application to the Synthesis of the 3,3´-Bis(indolyl) Sulfone Core of the Marine Alkaloid Echinosulfone A. Synlett, 2006, 15, 2459-2463.
[45]
Atkinson, J.G.; Hamel, P.; Girard, Y. A New Synthesis of 3-Arylthioindoles. Synthesis, 1988, 480-481 Available from.
[http://dx.doi.org/10.1055/s-1988-27615]
[46]
La Regina, G.; Edler, M.C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; De Martino, G.; Matesanz, R.; Díaz, J.F.; Scovassi, A.I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. Arylthioindole inhibitors of tubulin polymerization. 3. Biological evaluation, structure-activity relationships and molecular modeling studies. J. Med. Chem., 2007, 50(12), 2865-2874. Available from.
[http://dx.doi.org/10.1021/jm061479u] [PMID: 17497841]
[47]
Matsugi, M.; Murata, K.; Gotanda, K.; Nambu, H.; Anilkumar, G.; Matsumoto, K.; Kita, Y. Facile and efficient sulfenylation method using quinone mono-O,S-acetals under mild conditions. J. Org. Chem., 2001, 66(7), 2434-2441. Available from.
[http://dx.doi.org/10.1021/jo001710q] [PMID: 11281785]
[48]
Kumar, P.P.; Reddy, Y.D. Reddy, C. V. R.; Devi, B. R.; Dubey, P. K. Indium chloride: A versatile Lewis acid catalyst for the synthesis of 3-sulfenylindoles. J. Sulfur Chem., 2014, 35, 356-361. Available from.
[http://dx.doi.org/10.1080/17415993.2013.879870]
[49]
Campbell, J.A.; Broka, C.A.; Gong, L.; Walker, K.A.M.; Wang, J-H. A new synthesis of 3-arylthioindoles as selective COX-2 inhibitors using PIFA. Tetrahedron Lett., 2004, 45, 4073-4075. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.153]
[50]
Yang, F.L.; Tian, S.K. Iodine-catalyzed regioselective sulfenylation of indoles with sulfonyl hydrazides. Angew. Chem. Int. Ed. Engl., 2013, 52(18), 4929-4932. Available from.
[http://dx.doi.org/10.1002/anie.201301437] [PMID: 23554265]
[51]
Zhao, X.; Li, T.; Zhang, L.; Lu, K. Iodine-catalyzed thiolation of electron-rich aromatics using sulfonyl hydrazides as sulfenylation reagents. Org. Biomol. Chem., 2016, 14(3), 1131-1137. Available from.
[http://dx.doi.org/10.1039/C5OB02193F] [PMID: 26645483]
[52]
Liu, C.R.; Ding, L.H. Byproduct promoted regioselective sulfenylation of indoles with sulfinic acids. Org. Biomol. Chem., 2015, 13(8), 2251-2254. Available from.
[http://dx.doi.org/10.1039/C4OB02575J] [PMID: 25588212]
[53]
Rahaman, R.; Devi, N.; Bhagawati, J.R.; Barman, P. Microwave-assisted regioselective sulfenylation of indoles under solvent- and metal-free conditions. RSC Advances, 2013, 6, 18929-18935. Available from.
[http://dx.doi.org/10.1039/C5RA26425A]
[54]
Wu, Q.; Zhao, D.; Qin, X.; Lan, J.; You, J. Synthesis of di(hetero)aryl sulfides by directly using arylsulfonyl chlorides as a sulfur source. Chem. Commun. (Camb.), 2011, 47(32), 9188-9190. Available from.
[http://dx.doi.org/10.1039/c1cc13633j] [PMID: 21750836]
[55]
Kumaraswamy, G.; Rajua, R.; Narayanaraoa, V. Metal- and base-free syntheses of aryl/alkylthioindoles by the iodine-induced reductive coupling of aryl/alkyl sulfonyl chlorides with indoles. RSC Advances, 2015, 5, 22718-22723. Available from.
[http://dx.doi.org/10.1039/C5RA00646E]
[56]
Rao, H.; Wang, P.; Wang, J.; Li, Z.; Sun, X.; Cao, S.K. 2S2O8/arenesulfinate: an unprecedented thiolating system enabling selective sulfenylation of indoles under metal-free conditions. RSC Advances, 2014, 4, 49165-49169. Available from.
[http://dx.doi.org/10.1039/C4RA08669D]
[57]
Viglianisi, C.; Marcantoni, X.; Carapacchi, V.; Menichetti, S.; Marsili, L. A Base-Mediated Mild Sulfenylation of Indoles and Pyrrole with α-Acylthiones. Eur. J. Org. Chem., 2014, 6405-6410. Available from.
[http://dx.doi.org/10.1002/ejoc.201402894]
[58]
Golzar, N.; Nowrouzi, N.; Abbasia, M.; Mehranpoura, M.A. Cu-Catalyzed First Direct Access towards 3-Sulfenylindoles from Aryl Halides. New J. Chem., 2017, 41, 11921-11925. Available from.
[http://dx.doi.org/10.1039/C7NJ01783A]
[59]
Zhiani, R.; Sadeghzadeh, S.M.; Emrani, S.; Abasian, M. Synthesis of 3-sulfenylindoles by Pd (II) nanoclusters confined within metal−organic framework fibers in aqueous solution. J. Organomet. Chem., 2018, 855, 1-6. Available from.
[http://dx.doi.org/10.1016/j.jorganchem.2017.11.027]
[60]
Devi, N.; Sarma, K.; Rahaman, R.; Barman, P. Synthesis of a new series of Ni(ii), Cu(ii), Co(ii) and Pd(ii) complexes with an ONS donor Schiff base: crystal structure, DFT study and catalytic investigation of palladium and nickel complexes towards deacylative sulfenylation of active methylenes and regioselective 3-sulfenylation of indoles via thiouronium salt formation. Dalton Trans., 2018, 47(13), 4583-4595. Available from.
[http://dx.doi.org/10.1039/C7DT04635A] [PMID: 29517777]
[61]
Ge, X.; Sun, F.; Liu, X.; Chen, X.; Qian, C.; Zhou, S. Combined experimental/theoretical study on D-glucosamine promoted regioselective sulfenylation of indoles catalyzed by copper. New J. Chem., 2017, 41, 13175-13180. Available from.
[http://dx.doi.org/10.1039/C7NJ02784B]
[62]
Li, J.; Li, C.; Yang, S.; An, Y.; Wu, W.; Jiang, H. Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur. J. Org. Chem., 2016, 81(17), 7771-7783. Available from.
[http://dx.doi.org/10.1021/acs.joc.6b01428] [PMID: 27500941]
[63]
Williams, T.M.; Ciccarone, T.M.; MacTough, S.C.; Rooney, C.S.; Balani, S.K.; Condra, J.H.; Emini, E.A.; Goldman, M.E.; Greenlee, W.J.; Kauffman, L.R.; Brien, J.A.; Sardana, V.V.; Schleif, W.A.; Theoharides, A.D.; Anderson, P.S. 5-chloro-3-(phenylsulfonyl)indole-2-carboxamide: a novel, non-nucleoside inhibitor of HIV-1 reverse transcriptase. J. Med. Chem., 1993, 36(9), 1291-1294. Available from.
[http://dx.doi.org/10.1021/jm00061a022] [PMID: 7683725]
[64]
Silvestri, R.; Artico, M.; De Martino, G.; La Regina, G.; Loddo, R.; La Colla, M.; Mura, M.; La Colla, P. Simple, short peptide derivatives of a sulfonylindolecarboxamide (L-737,126) active in vitro against HIV-1 wild type and variants carrying non-nucleoside reverse transcriptase inhibitor resistance mutations. J. Med. Chem., 2004, 47(15), 3892-3896. Available from.
[http://dx.doi.org/10.1021/jm031147e] [PMID: 15239667]
[65]
Piscitelli, F.; Coluccia, A.; Brancale, A.; La Regina, G.; Sansone, A.; Giordano, C.; Balzarini, J.; Maga, G.; Zanoli, S.; Samuele, A.; Cirilli, R.; La Torre, F.; Lavecchia, A.; Novellino, E.; Silvestri, R. Indolylarylsulfones bearing natural and unnatural amino acids. Discovery of potent inhibitors of HIV-1 non-nucleoside wild type and resistant mutant strains reverse transcriptase and coxsackie B4 virus. J. Med. Chem., 2009, 52(7), 1922-1934. Available from.
[http://dx.doi.org/10.1021/jm801470b] [PMID: 19281225]
[66]
Silvestri, R.; De Martino, G.; La Regina, G.; Artico, M.; Massa, S.; Vargiu, L.; Mura, M.; Loi, A.G.; Marceddu, T.; La Colla, P. Novel indolyl aryl sulfones active against HIV-1 carrying NNRTI resistance mutations: synthesis and SAR studies. J. Med. Chem., 2003, 46(12), 2482-2493. Available from.
[http://dx.doi.org/10.1021/jm0211063] [PMID: 12773052]
[67]
La Regina, G.; Bai, R.; Rensen, W.; Coluccia, A.; Piscitelli, F.; Gatti, V.; Bolognesi, A.; Lavecchia, A.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M.L.; Mariani, M.; Santoni, A.; Brancale, A.; Ferlini, C.; Dondio, G.; Varasi, M.; Mercurio, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. Design and synthesis of 2-heterocyclyl-3-arylthio-1H-indoles as potent tubulin polymerization and cell growth inhibitors with improved metabolic stability. J. Med. Chem., 2011, 54(24), 8394-8406. Available from.
[http://dx.doi.org/10.1021/jm2012886] [PMID: 22044164]
[68]
La Regina, G.; Bai, R.; Rensen, W.M.; Di Cesare, E.; Coluccia, A.; Piscitelli, F.; Famiglini, V.; Reggio, A.; Nalli, M.; Pelliccia, S.; Da Pozzo, E.; Costa, B.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M.L.; Santoni, A.; Li, J.; Miranda Cona, M.; Chen, F.; Ni, Y.; Brancale, A.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Martini, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors. J. Med. Chem., 2013, 56(1), 123-149. Available from.
[http://dx.doi.org/10.1021/jm3013097] [PMID: 23214452]
[69]
La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Passacantilli, S.; Mazzoccoli, C.; Ruggieri, V.; Verrico, A.; Miele, A.; Monti, L.; Nalli, M.; Alfonsi, R.; Di Marcotullio, L.; Gulino, A.; Ricci, B.; Soriani, A.; Santoni, A.; Caraglia, M.; Porto, S.; Da Pozzo, E.; Martini, C.; Brancale, A.; Marinelli, L.; Novellino, E.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Bigogno, C.; Dondio, G.; Hamel, E.; Lavia, P.; Silvestri, R. New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer. J. Med. Chem., 2015, 58(15), 5789-5807. Available from.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00310] [PMID: 26132075]
[70]
Coluccia, A.; Passacantilli, S.; Famiglini, V.; Sabatino, M.; Patsilinakos, A.; Ragno, R.; Mazzoccoli, C.; Sisinni, L.; Okuno, A.; Takikawa, O.; Silvestri, R.; La Regina, G. New Inhibitors of Indoleamine 2,3-Dioxygenase 1: Molecular Modeling Studies, Synthesis, and Biological Evaluation. J. Med. Chem., 2016, 59(21), 9760-9773. Available from.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00718] [PMID: 27690429]
[71]
Goins, C.M.; Dajnowicz, S.; Thanna, S.; Sucheck, S.J.; Parks, J.M.; Ronning, D.R. Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives. ACS Infect. Dis., 2017, 3(5), 378-387. Available from.
[http://dx.doi.org/10.1021/acsinfecdis.7b00003] [PMID: 28285521]
[72]
(a) Terentis, A.C.; Freewan, M.; Sempértegui Plaza, T.S.; Raftery, M.J.; Stocker, R.; Thomas, S.R. The selenazal drug ebselen potently inhibits indoleamine 2,3-dioxygenase by targeting enzyme cysteine residues. Biochemistry, 2010, 49(3), 591-600. Available from.
[http://dx.doi.org/10.1021/bi901546e] [PMID: 20000778]
(b) Venturini, T.P.; Chassot, F.; Loreto, E.S.; Keller, J.T.; Azevedo, M.I.; Zeni, G.; Santurio, J.M.; Alves, S.H. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp. Med. Mycol., 2016, 54(5), 550-555. Available from.
[http://dx.doi.org/10.1093/mmy/myv120] [PMID: 26773133]
[73]
Iwasaki, M.; Miki, N.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Synthesis of Benzoisoselenazolone Derivatives by Nickel-Catalyzed Dehydrogenative Direct Selenation of C(sp2)-H Bonds with Elemental Selenium in Air. Org. Lett., 2017, 19(5), 1092-1095. Available from.
[http://dx.doi.org/10.1021/acs.orglett.7b00116] [PMID: 28211695]
[74]
Balkrishna, S.J.; Bhakuni, B.S.; Chopra, D.; Kumar, S. Cu-catalyzed efficient synthetic methodology for ebselen and related Se-N heterocycles. Org. Lett., 2010, 12(23), 5394-5397. Available from.
[http://dx.doi.org/10.1021/ol102027j] [PMID: 21053969]
[75]
Parnham, M.J.; Sies, H. The early research and development of ebselen. Biochem. Pharmacol., 2013, 86(9), 1248-1253. Available from.
[http://dx.doi.org/10.1016/j.bcp.2013.08.028] [PMID: 24012716]
[76]
Ngo, H.X.; Shrestha, S.K.; Green, K.D.; Garneau-Tsodikova, S. Development of ebsulfur analogues as potent antibacterials against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem., 2016, 24(24), 6298-6306. Available from.
[http://dx.doi.org/10.1016/j.bmc.2016.03.060] [PMID: 27073054]
[77]
Bhakuni, B.S.; Balkrishna, S.J.; Kumar, A.; Kumar, S. An Efficient Copper Mediated Synthetic Methodology for Benzo[d]isothiazol-3-(2H)-ones and Related Sulfur-Nitrogen Heterocycles. Tetrahedron Lett., 2012, 53, 1354-1357. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.003]
[78]
Wang, F.; Chen, C.; Deng, G.; Xi, C. Concise approach to benzisothiazol-3(2H)-one via copper-catalyzed tandem reaction of o-bromobenzamide and potassium thiocyanate in water. J. Org. Chem., 2012, 77(8), 4148-4151. Available from.
[http://dx.doi.org/10.1021/jo300250x] [PMID: 22443210]
[79]
Chen, F-J.; Liao, G.; Li, X.; Wu, J.; Shi, B-F. Cu(II)-mediated C-S/N-S bond formation via C-H activation: access to benzoisothiazolones using elemental sulfur. Org. Lett., 2014, 16(21), 5644-5647. Available from.
[http://dx.doi.org/10.1021/ol5027156] [PMID: 25325568]
[80]
Li, T.; Yang, L.; Ni, K.; Shi, Z.; Li, F.; Chen, D. An efficient approach to construct benzisothiazol-3(2H)-ones via copper-catalyzed consecutive reaction of 2-halobenzamides and carbon disulfide. Org. Biomol. Chem., 2016, 14(26), 6297-6303. Available from.
[http://dx.doi.org/10.1039/C6OB00819D] [PMID: 27273742]
[81]
Yu, T-Q.; Hou, Y-S.; Jiang, Y.; Xu, W-X.; Shi, T.; Wu, X.; Zhang, J-C.; He, D.; Wang, Z. Potassium Bromide Catalyzed N-S Bond Formation via Oxidative Dehydrogenation. Tetrahedron Lett., 2017, 58, 2084-2087. Available from.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.065]
[82]
Gordhan, H.M.; Patrick, S.L.; Swasy, M.I.; Hackler, A.L.; Anayee, M.; Golden, J.E.; Morris, J.C.; Whitehead, D.C. Evaluation of substituted ebselen derivatives as potential trypanocidal agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 537-541. Available from.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.021] [PMID: 28043795]
[83]
Szabó, J.; Szucs, E.; Fodor, L.; Katócs, A.; Bernath, G. Ring Transformations of 1,3-Benzothiazines, 5′ Synthesis of Benzothiazoles by the Oxidative Ring Contraction of 2-aryl-4lj- and 4-aryl-2g-1m3-benzothiazines. Tetrahedron, 1988, 44, 2985-2992.
[84]
Lu, J.; Ren, X.; Zou, L.; Holmgren, A. Ebselen and Thioredoxin Systems in Human Health, Disease and Therapeutic Potential. Organoselenium Compd. Biol. Med., 2018, 11, 310-313.
[85]
Joice, A.C.; Harris, M.T.; Kahney, E.W.; Dodson, H.C.; Maselli, A.G.; Whitehead, D.C.; Morris, J.C. Exploring the mode of action of ebselen in Trypanosoma brucei hexokinase inhibition. Int. J. Parasitol. Drugs Drug Resist., 2013, 3, 154-160. Available from.
[http://dx.doi.org/10.1016/j.ijpddr.2013.08.002] [PMID: 24533305]
[86]
Lu, J.; Vodnala, S.K.; Gustavsson, A.L.; Gustafsson, T.N.; Sjöberg, B.; Johansson, H.A.; Kumar, S.; Tjernberg, A.; Engman, L.; Rottenberg, M.E.; Holmgren, A. Ebsulfur is a benzisothiazolone cytocidal inhibitor targeting the trypanothione reductase of Trypanosoma brucei. J. Biol. Chem., 2013, 288(38), 27456-27468. Available from.
[http://dx.doi.org/10.1074/jbc.M113.495101] [PMID: 23900839]
[87]
Gopinath, P.; Yadav, R.K.; Shukla, P.K.; Srivastava, K.; Puri, S.K.; Muraleedharan, K.M. Broad spectrum anti-infective properties of benzisothiazolones and the parallels in their anti-bacterial and anti-fungal effects. Bioorg. Med. Chem. Lett., 2017, 27(5), 1291-1295. Available from.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.027] [PMID: 28159413]
[88]
Arendrup, M.C. Epidemiology of invasive candidiasis. Curr. Opin. Crit. Care, 2010, 16(5), 445-452. Available from.
[http://dx.doi.org/10.1097/MCC.0b013e32833e84d2] [PMID: 20711075]
[89]
(a) Azad, G.K.; Tomar, R.S. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol. Biol. Rep., 2014, 41(8), 4865-4879. Available from.
[http://dx.doi.org/10.1007/s11033-014-3417-x] [PMID: 24867080]
(b) Sharestha, S.K.; Fosso, M.Y. Garneau-Tsodikova, S. A combination approach to treatiog fungal infections. Antimicrob. Agents Chemother., 2015, 59, 4861-4869.
[90]
Ngo, H.X.; Shrestha, S.K.G.; Garneau-Tsodikova, S. Identification of Ebsulfur Analogues with Broad-Spectrum Antifungal Activity. ChemMedChem, 2016, 11(14), 1507-1516. Available from.
[http://dx.doi.org/10.1002/cmdc.201600236] [PMID: 27334363]
[91]
Oliveira, G.S.S.; Nicodemo, A.C.; Carvalho, V.C.; Zambrini, H.; Siqueira, A.M.; Amato, V.S.; Mendes-Correa, M.C. [Severe hepatitis and jaundice during the evolution of dengue virus infection: case report]. Rev. Soc. Bras. Med. Trop., 2010, 43(3), 339-341. Available from.
[http://dx.doi.org/10.1590/S0037-86822010000300026] [PMID: 20563509]
[92]
Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martínez, E.; Nathan, M.B.; Pelegrino, J.L.; Simmons, C.; Yoksan, S.; Peeling, R.W. Dengue: a continuing global threat. Nat. Rev. Microbiol., 2010, 8(12)(Suppl.), S7-S16. Available from.
[http://dx.doi.org/10.1038/nrmicro2460] [PMID: 21079655]
[93]
Gulati, S.; Maheshwari, A. Atypical manifestations of dengue. Trop. Med. Int. Health, 2007, 12(9), 1087-1095. Available from.
[http://dx.doi.org/10.1111/j.1365-3156.2007.01891.x] [PMID: 17875019]
[94]
Morini, G.; Poli, E.; Comini, M.; Menozzi, A.; Pozzoli, C. Benzisothiazoles and beta-adrenoceptors: synthesis and pharmacological investigation of novel propanolamine and oxypropanolamine derivatives in isolated rat tissues. Arch. Pharm. Res., 2005, 28(12), 1317-1323. Available from.
[http://dx.doi.org/10.1007/BF02977894] [PMID: 16392661]
[95]
Lai, H.; Dou, D.; Aravapalli, S.; Teramoto, T.; Lushington, G.H.; Mwania, T.M.; Alliston, K.R.; Eichhorn, D.M.; Padmanabhan, R.; Groutas, W.C. Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: potent inhibitors of Dengue and West Nile virus NS2B/NS3 proteases. Bioorg. Med. Chem., 2013, 21(1), 102-113. Available from.
[http://dx.doi.org/10.1016/j.bmc.2012.10.058] [PMID: 23211969]
[96]
Yang, Y.; Chen, Z.; Rao, Y. The synthesis of diarylsulfones with simple arenes and K2S2O8 through double C-S bond formation. Chem. Commun. (Camb.), 2014, 50(95), 15037-15040. Available from.
[http://dx.doi.org/10.1039/C4CC05964F] [PMID: 25327213]
[97]
Salahifar, E.; Nematollahi, D. Electrochemical generation of a Michael acceptor: A green method for the synthesis of 4-amino-3-(phenylsulfonyl)di-phenylamine derivative. New J. Chem., 2015, 39, 3852-3858. Available from.
[http://dx.doi.org/10.1039/C5NJ00087D]
[98]
Lorenz, M.; Wozel, G.; Schmitt, J. Hypersensitivity reactions to dapsone: a systematic review. Acta Derm. Venereol., 2012, 92(2), 194-199. Available from.
[http://dx.doi.org/10.2340/00015555-1268] [PMID: 22307940]
[99]
Fromm, E. Wittmann. Derivate des p-nitro-phenols. Ber. Dtsch. Chem. Ges., 1908, 41, 2264-2273. Available from.
[http://dx.doi.org/10.1002/cber.190804102131]
[100]
Villa, M.; Faveri, C.; Zanotti, R.; Ciardella, F.; Borin, F. Process dor synthesis of 4,4’-diamino-diphenyl-sulfone. US 7531694 B2, 2009.
[101]
Allegrini, P.; Mantegazza, S. Process for the preparation of sulfonamide compouds. US2014/0303402 A1, 2014.
[102]
Frenzel, R.; Sathicq, A.G.; Blanco, M.N.; Romanelli, G.P.; Pizzio, L.R. Carbon-supported metal-modified lacunary tungstosilicic polyoxometallates used as catalysts in the selective oxidation of sulfides. J. Mol. Catal. Chem., 2015, 403, 27-3. Available from.
[http://dx.doi.org/10.1016/j.molcata.2015.02.021]
[103]
Wolf, R.; Orni-Wasserlauf, R. A century of the synthesis of dapsone: its anti-infective capacity now and then. Int. J. Dermatol., 2000, 39(10), 779-783. Available from.
[http://dx.doi.org/10.1046/j.1365-4362.2000.00739.x] [PMID: 11095201]
[104]
Buttle, G.A.H. Camb, Stephenson D.; Smith, S.; Dewing, K. T.; Foster, G. E. The treatment of streptococcal infections in mice with 4:4’diaminodi-phenylsulphone. Lancet, 1937, 1, 1331-1334. Available from.
[http://dx.doi.org/10.1016/S0140-6736(00)75868-5]
[105]
Lowe, J. Treatment of leprosy with diamino-diphenyl sulphone by mouth. Lancet, 1950, 1(6596), 145-150. Available from.
[http://dx.doi.org/10.1016/S0140-6736(50)90257-1] [PMID: 15401496]
[106]
Zhu, Y.I.; Stiller, M.J. Dapsone and sulfones in dermatology: overview and update. J. Am. Acad. Dermatol., 2001, 45(3), 420-434. Available from.
[http://dx.doi.org/10.1067/mjd.2001.114733] [PMID: 11511841]
[107]
Wozel, G.; Barth, J. Current aspects of modes of action of dapsone. Int. J. Dermatol., 1988, 27(8), 547-552. Available from.
[http://dx.doi.org/10.1111/j.1365-4362.1988.tb02401.x] [PMID: 3061946]
[108]
Debol, S.M.; Herron, M.J.; Nelson, R.D. Anti-inflammatory action of dapsone: inhibition of neutrophil adherence is associated with inhibition of chemoattractant-induced signal transduction. J. Leukoc. Biol., 1997, 62(6), 827-836. Available from.
[http://dx.doi.org/10.1002/jlb.62.6.827] [PMID: 9400824]
[109]
Powell, R.D.; DeGowin, R.L.; Eppes, R.B.; McNamara, J.V.; Carson, P.E. The antimalarial and hemolytic properties of 4,4-diaminodiphenyl sulfone (DDS). Int. J. Lepr. Other Mycobact. Dis., 1967, 35(4), 590-604.
[PMID: 4869693]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2020
Page: [192 - 210]
Pages: 19
DOI: 10.2174/1570179417666200212113412
Price: $65

Article Metrics

PDF: 20
HTML: 2