Synthesis and Biological Evaluation of New Naphthoquinones Derivatives

Author(s): El-Mahdi Ourhzif, Caroline Decombat, Isabelle Abrunhosa-Thomas, Laetitia Delort, Mostafa Khouili, Mohamed Akssira*, Florence Caldefie-Chezet, Pierre Chalard, Yves Troin*

Journal Name: Current Organic Synthesis

Volume 17 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

New substituted 1,4-naphthoquinones have been prepared in good overall yields through the naphthol route. The cytotoxicity of these compounds was tested in vitro on MCF-7 breast tumor cells. The most active compound 14 displayed an IC50 of 15μM.

Objective: To investigate the cytotoxicity of new naphthoquinones derivatives on MCF-7 cells.

Methods: Synthesis of new naphtoquinones derivatives and in vitro evaluation of their cytotoxicity on MCF-7 cells (rezasurin cell-based assay).

Results: Starting from Ethyl 4-hydroxy-6,7-dimethoxy-2-naphthoate, four naphthoquinones were prepared and exhibited substantial cytotoxicity against MCF-7 cells.

Conclusion: Preliminary studies of the structure-activity relationship have shown the influence of the structural parameters and, in particular, the nature of the naphthoquinone side chain.

Keywords: Quinones, medicinal chemistry, cytotoxicity, antitumor agents, MCF-7 cells, naphthoquinones.

[1]
Aziz, M.H.; Dreckschmidt, N.E.; Verma, A.K. Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res., 2008, 68(21), 9024-9032.Available from.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2494] [PMID: 18974148]
[2]
Sandur, S.K.; Ichikawa, H.; Sethi, G.; Ahn, K.S.; Aggarwal, B.B. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J. Biol. Chem., 2006, 281(25), 17023-17033. Available from.
[http://dx.doi.org/10.1074/jbc.M601595200] [PMID: 16624823]
[3]
Hussain, H.; Krohan, K.; Ahmed, V.U.; Miana, G.A.; Green, I.R. Lapachol: An overview. ARKIVOC, 2007, (ii), 145-171.Available from.
[http://dx.doi.org/10.3998/ark.5550190.0008.204]
[4]
Joshi, K.C.; Singh, P.; Parsadani, R.T.; Singh, G. Quinones and other constituents from Haplophragma adenophyllum. Planta Med., 1979, 37(9), 60-63.Available from.
[http://dx.doi.org/10.1055/s-0028-1097296]
[5]
de Sousa, J.R.; Silva, G.D.F.; Miyakoshi, T.; Chen, C.L. Constituents of the root wood of Austroplenckia populnea var. ovata. J. Nat. Prod., 2006, 69(8), 1225-1227.Available from.
[http://dx.doi.org/10.1021/np068004q] [PMID: 16933883]
[6]
Andújar, I.; Recio, M.C.; Giner, R.M.; Ríos, J.L. Traditional chinese medicine remedy to jury: the pharmacological basis for the use of shikonin as an anticancer therapy. Curr. Med. Chem., 2013, 20(23), 2892-2898.Available from.
[http://dx.doi.org/10.2174/09298673113209990008] [PMID: 23651309]
[7]
Huyen, L.T.; Hang, D.T.T.; Nhiem, N.X.; Yen, P.H.; Anh, H.L.T.; Quang, T.H.; Tai, B.H.; Dau, N.V.; Kiem, P.V. Naphtoquinones and sesquiterpene cyclopentenones from the sponge Smenospongia cerebriformis with their cytotoxic activity. Chem. Pharm. Bull. (Tokyo), 2017, 65(6), 589-592.Available from.
[http://dx.doi.org/10.1248/cpb.c17-00123] [PMID: 28367873]
[8]
Ravichandiran, P.; Subramaniyan, S.A.; Kim, S-Y.; Kim, J-S.; Park, B-H.; Shim, K.S.; Yoo, D.J. Synthesis and anticancer evaluation of 1,4‐naphthoquinone derivatives containing a Phenylaminosulfanyl Moiety. Chem. Med. Chem., 2019, 14(5), 532-544.Available from.
[http://dx.doi.org/10.1002/cmdc.201800749] [PMID: 30600915]
[9]
Bao, N.; Ou, J.; Shi, W.; Li, N.; Chen, L.; Sun, J. Highly efficient synthesis and structure-activity relationships of a small library of substituted 1,4‐naphthoquinones. Eur. J. Org. Chem., 2018, (19), 2254-2258.Available from.
[http://dx.doi.org/10.1002/ejoc.201800207]
[10]
Huang, G.; Zhao, H-R.; Meng, Q-Q.; Zhang, Q-J.; Dong, J-Y.; Zhu, B-Q.; Li, S-S. Synthesis and biological evaluation of sulfur-containing shikonin oxime derivatives as potential antineoplastic agents. Eur. J. Med. Chem., 2018, 143(1), 166-181.Available from.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.031] [PMID: 29174813]
[11]
Kumar, B.S.; Ravi, K.; Verma, A.K.; Fatima, K.; Hasanain, M.; Singh, A.; Sarkar, J.; Luqman, S.; Chanda, D.; Negi, A.S. Synthesis of pharmacologically important naphthoquinones and anticancer activity of 2-benzyllawsone through DNA topoisomerase-II inhibition. Bioorg. Med. Chem., 2017, 25(4), 1364-1373.Available from.
[http://dx.doi.org/10.1016/j.bmc.2016.12.043] [PMID: 28094224]
[12]
Rodo, E.C.; Feng, L.; Jida, M.; Ehrhardt, K.; Bielitza, M.; Boilevin, J.; Lanzer, M.; Williams, D.L.; Lanfranchi, D.A.; Davioud-Charvet, E. A platform of regioselective methodologies to access polysubstituted 2‐methyl‐1,4‐naphthoquinone derivatives: Scope and limitations. Eur. J. Org. Chem., 2016, (11), 1982-1993.Available from.
[http://dx.doi.org/10.1002/ejoc.201600144]
[13]
Mal, D.; Ghosh, K.; Jana, S. Synthesis of Vitamin K and related naphthoquinones via demethoxycarbonylative annulations and a retro-Wittig rearrangement. Org. Lett., 2015, 17(23), 5800-5803.Available from.
[http://dx.doi.org/10.1021/acs.orglett.5b02920] [PMID: 26572315]
[14]
Johnson, W.S.; Daub, G.H. The Stobbe condensation in Organic Reactions. Wiley New York, 1951, 6(1), 1-73.
[15]
Mmutlane, E.M.; Michael, J.P.; Green, I.R.; De Koning, C.B. The synthesis of ventiloquinone L, the monomer of cardinalin 3. Org. Biomol. Chem., 2004, 2(17), 2461-2470.Available from.
[http://dx.doi.org/10.1039/b407208a] [PMID: 15326526]
[16]
de Koning, C.B.; Manzini, S.S.; Michael, J.P.; Mmutlane, E.M.; Tshabidi, T.R.; van Otterlo, W.A.L. Base- and light-assisted synthesis of anthracenes from 3-allylnaphthalene-2-carbaldehydes. Tetrahedron, 2005, 61(3), 555-564.Available from.
[http://dx.doi.org/10.1016/j.tet.2004.11.010]
[17]
Lowell, A.N.; Fennie, M.W.; Kozlowski, M.C. A concise synthesis of the naphthalene portion of purpuromycin. J. Org. Chem., 2008, 73(5), 1911-1918.Available from.
[http://dx.doi.org/10.1021/jo7024114] [PMID: 18257585]
[18]
Giles, R.G.F.; Green, I.R.; Van Eeden, N. The synthesis of Ventiloquinone F and Isoventiloquinone F as racemates. Eur. J. Org. Chem., 2004, (21), 4416-4423.Available from.
[http://dx.doi.org/10.1002/ejoc.200400489]
[19]
Nelson, C.M.; Chopra, A.; Knowles, D.; Van Gemert, B.; Kumar, A. Novel photochromic naphtopyrans; PCT Int. Appl, 2001, p. 019812.
[20]
Pouységu, L.; Deffieux, D.; Quideau, S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron, 2010, 66(13), 2235-2261.Available from.
[http://dx.doi.org/10.1016/j.tet.2009.12.046]
[21]
Moriarty, R.; Prakash, O. Oxidation of phenolic compounds with organohypervalent iodine reagents in Organic Reactions. Wiley New York, 2001, 57(2), 327-415.
[22]
Ladziata, U.; Zhdankin, V.V. Hypervalent iodine(V) reagents in organic synthesis. ARKIVOC, 2006, (ix), 26-58.Available from.
[http://dx.doi.org/10.3998/ark.5550190.0007.903]
[23]
Magdziak, D.; Meek, S.J.; Pettus, T.R.R. Cyclohexadienone ketals and quinols: four building blocks potentially useful for enantioselective synthesis. Chem. Rev., 2004, 104(3), 1383-1430.Available from.
[http://dx.doi.org/10.1021/cr0306900] [PMID: 15008626]
[24]
Using one equivalent of PIFA led to a mixture of starting material and quinone monoacetal 3.. 2004.
[25]
Chiva Rodriguez, A.; Pico Ramos, A.; Hawkes, G.E.; Berti, F.; Resmini, M. Stereoselective synthesis of a novel pseudopeptide hapten for the generation of hydrolytic catalytic antibodies. Tetrahedron Asymmetry, 2004, 15(12), 1847-1855.Available from.
[http://dx.doi.org/10.1016/j.tetasy.2004.05.005]
[26]
Naboko, D.; Okano, Y.; Kandori, N.; Satahira, T.; Kataoka, N.; Akamatsu, J.; Okada, Y. Convenient synthesis and physiological activities of flavonoids in Coreopsis lanceolata L. Petals and their related compounds. Molecules, 2018, 23 1671/1-1671/25 Available from.
[http://dx.doi.org/10.3390/molecules23071671]
[27]
Abrunhosa-Thomas, I.; Plas, A.; Kandepedu, N.; Chalard, P.; Troin, Y. Efficient synthesis of β′-amino-α,β-unsaturated ketones. Beilstein J. Org. Chem., 2013, 9, 486-495.Available from.
[http://dx.doi.org/10.3762/bjoc.9.52] [PMID: 23504648]
[28]
Wilsdorf, M.; Reissig, H.U. Towards γ‐Rubromycin: model studies, development of a C3 building block, and synthesis of 4′‐silyl‐γ‐rubromycin. Eur. J. Org. Chem., 2016, (34), 5747-5756.Available from.
[http://dx.doi.org/10.1002/ejoc.201601224]
[29]
Naysmith, B.J.; Hume, P.A.; Sperry, J.; Brimble, M.A. Pyranonaphthoquinones - isolation, biology and synthesis: An update. Nat. Prod. Rep., 2017, 34(1), 25-61.Available from.
[http://dx.doi.org/10.1039/C6NP00080K] [PMID: 27759131]
[30]
Guang, H.; Zhao, H.R.; Meng, Q.Q.; Zhou, W.; Zhang, Q.J.; Dong, J.Y.; Cui, J.H.; Li, S.S. Cerium (IV) Ammonium Nitrate (CAN)-mediated regioselective synthesis and anticancer activity of 6-substituted 5,8-dimethoxy-1,4-naphthoquinone. Chin. Chem. Lett., 2017, 28(7), 1553-1558.Available from.
[http://dx.doi.org/10.1016/j.cclet.2016.10.034]
[31]
Huang, M.; Liu, C.; Meng, Q.Q.; Liu, S.S. 6-substituted 1,4-naphthoquinone oxime derivatives (III): Synthesis and cytotoxic evaluation. Russ. J. Gen. Chem., 2018, 88(5), 1025-1036.Available from.
[http://dx.doi.org/10.1134/S1070363218050316]
[32]
Nair, V.; Deepthi, A. Cerium(IV) ammonium nitrate-A versatile single-electron oxidant. Chem. Rev., 2007, 107(5), 1862-1891.Available from.
[http://dx.doi.org/10.1021/cr068408n] [PMID: 17432919]
[33]
Bachu, P.; Sperry, J.; Brimble, M.A. Synthesis of a C8 oxygenated pyranonaphthoquinone: A useful precursor to dimeric pyranonaphtho-quinones. Tetrahedron, 2008, 64(15), 3343-3350.Available from.
[http://dx.doi.org/10.1016/j.tet.2008.01.135]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2020
Page: [224 - 229]
Pages: 6
DOI: 10.2174/1570179417666200212111956
Price: $65

Article Metrics

PDF: 12
HTML: 1