Medicinal Potential of Heterocyclic Compounds from Diverse Natural Sources for the Management of Cancer

Author(s): Manjinder Singh*, Pratibha Sharma, Pankaj Kumar Singh, Thakur Gurjeet Singh, Balraj Saini

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 11 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Natural products form a significant portion of medicinal agents that are currently used for the management of cancer. All these natural products have unique structures along with diverse action mechanisms with the capacity to interact with different therapeutic targets of several complex disorders. Although plants contribute as a major source of natural products with anti-cancer potential, the marine environment and microbes have also bestowed some substantial chemotherapeutic agents. A few examples of anti-cancer agents of natural origin include vincristine, vinblastine, paclitaxel, camptothecin and topotecan obtained from plants, bryostatins, sarcodictyin and cytarabine from marine organisms and bleomycin and doxorubicin from micro-organisms (dactinomycin, bleomycin and doxorubicin). The incredible diversity in the chemical structures and biological properties of compounds obtained from million species of plants, marine organisms and microorganisms present in nature has commenced a new era of potential therapeutic anti-cancer agents.

Keywords: Cancer, flavonoids, alkaloids, marine, phytosterols, chalcones, tumor.

[1]
Singh, R.K.; Kumar, S.; Prasad, D.N.; Bhardwaj, T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem., 2018, 151, 401-433.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.001] [PMID: 29649739]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[3]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[4]
Singh, P.K.; Singh, H.; Silakari, O. Kinases inhibitors in lung cancer: From benchside to bedside. Biochim. Biophys. Acta, 2016, 1866, 128-140.
[5]
(a) Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
(b) Allen, R.C. Annual Reports in Medicinal Chemistry; Bailey, D.M., Ed.; Academic Press: Orlando, 1987, Vol. 22, pp. 315-330.
(c) Ong, H.H.; Allen, R.C. Annual Reports in Medicinal Chemistry; Allen, R.C., Ed.; Academic Press: San Diego, 1989, Vol. 24, pp. 295-315.
(d) Ong, H.H.; Allen, R.C. Annual Reports in Medicinal Chemistry; Bristol, J.A., Ed.; Academic Press: San Diego, 1990, Vol. 25, pp. 309-322.
(e) Tzoupis, H.; Leonis, G.; Megariotis, G.; Supuran, C.T.; Mavromoustakos, T.; Papadopoulos, M.G. Dual inhibitors for aspartic proteases HIV-1 PR and renin: Advancements in AIDShypertension- diabetes linkage via molecular dynamics, inhibition assays, and binding free energy calculations. J. Med. Chem., 2012, 55(12), 5784-5796.
[6]
Butler, M.S.; Robertson, A.A.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep., 2014, 31(11), 1612-1661.
[http://dx.doi.org/10.1039/C4NP00064A] [PMID: 25204227]
[7]
Cragg, G.; Newman, D. Nature: A vital source of leads for anticancer drug development. Phytochem. Rev., 2009, 8, 313-331.
[http://dx.doi.org/10.1007/s11101-009-9123-y]
[8]
Grothaus, P.G.; Cragg, G.M.; Newman, D.J. Plant natural products in anticancer drug discovery. Curr. Org. Chem., 2010, 14, 1781-1791.
[http://dx.doi.org/10.2174/138527210792927708]
[9]
Saklani, A.; Kutty, S.K. Plant-derived compounds in clinical trials. Drug Discov. Today, 2008, 13(3-4), 161-171.
[http://dx.doi.org/10.1016/j.drudis.2007.10.010] [PMID: 18275914]
[10]
De Sanctis, R.; Marrari, A.; Santoro, A. Trabectedin for the treatment of soft tissue sarcomas. Expert Opin. Pharmacother., 2016, 17(11), 1569-1577.
[http://dx.doi.org/10.1080/14656566.2016.1204295] [PMID: 27328277]
[11]
Huyck, T.K.; Gradishar, W.; Manuguid, F.; Kirkpatrick, P. Eribulin mesylate. Nat. Rev. Drug Discov., 2011, 10(3), 173-174.
[http://dx.doi.org/10.1038/nrd3389] [PMID: 21358731]
[12]
Allan, E.K.; Holyoake, T.L.; Craig, A.R.; Jørgensen, H.G. Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells. Leukemia, 2011, 25(6), 985-994.
[http://dx.doi.org/10.1038/leu.2011.55] [PMID: 21468038]
[13]
Lebwohl, M.; Swanson, N.; Anderson, L.L.; Melgaard, A.; Xu, Z.; Berman, B. Ingenol mebutate gel for actinic keratosis. N. Engl. J. Med., 2012, 366(11), 1010-1019.
[http://dx.doi.org/10.1056/NEJMoa1111170] [PMID: 22417254]
[14]
Leal, M.; Sapra, P.; Hurvitz, S.A.; Senter, P.; Wahl, A.; Schutten, M.; Shah, D.K.; Haddish-Berhane, N.; Kabbarah, O. Antibody-drug conjugates: an emerging modality for the treatment of cancer. Ann. N. Y. Acad. Sci., 2014, 1321, 41-54.
[http://dx.doi.org/10.1111/nyas.12499] [PMID: 25123209]
[15]
Knekt, P.; Järvinen, R.; Seppänen, R.; Hellövaara, M.; Teppo, L.; Pukkala, E.; Aromaa, A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am. J. Epidemiol., 1997, 146(3), 223-230.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009257] [PMID: 9247006]
[16]
Clere, N.; Faure, S.; Martinez, M.C.; Andriantsitohaina, R. Anticancer properties of flavonoids: roles in various stages of carcinogenesis. Cardiovasc. Hematol. Agents Med. Chem., 2011, 9(2), 62-77.
[http://dx.doi.org/10.2174/187152511796196498] [PMID: 21644918]
[17]
Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary flavonoids and cancer risk in the Zutphen Elderly Study. Nutr. Cancer, 1994, 22(2), 175-184.
[http://dx.doi.org/10.1080/01635589409514342] [PMID: 14502846]
[18]
Shukla, S.; Gupta, S. Apigenin: a promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[19]
Nguyen, T.B.; Lozach, O.; Surpateanu, G.; Wang, Q.; Retailleau, P.; Iorga, B.I.; Meijer, L.; Guéritte, F. Synthesis, biological evaluation, and molecular modeling of natural and unnatural flavonoidal alkaloids, inhibitors of kinases. J. Med. Chem., 2012, 55(6), 2811-2819.
[http://dx.doi.org/10.1021/jm201727w] [PMID: 22352892]
[20]
Senderowicz, A.M. Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest. New Drugs, 1999, 17(3), 313-320.
[http://dx.doi.org/10.1023/A:1006353008903] [PMID: 10665481]
[21]
Raje, N.; Hideshima, T.; Mukherjee, S.; Raab, M.; Vallet, S.; Chhetri, S.; Cirstea, D.; Pozzi, S.; Mitsiades, C.; Rooney, M.; Kiziltepe, T.; Podar, K.; Okawa, Y.; Ikeda, H.; Carrasco, R.; Richardson, P.G.; Chauhan, D.; Munshi, N.C.; Sharma, S.; Parikh, H.; Chabner, B.; Scadden, D.; Anderson, K.C. Preclinical activity of P276-00, a novel small-molecule cyclin-dependent kinase inhibitor in the therapy of multiple myeloma. Leukemia, 2009, 23(5), 961-970.
[http://dx.doi.org/10.1038/leu.2008.378] [PMID: 19151776]
[22]
Park, W.H. MAPK inhibitors differentially affect gallic acid-induced human pulmonary fibroblast cell growth inhibition. Mol. Med. Rep., 2011, 4(1), 193-04.
[PMID: 21461585]
[23]
Cavalli, A.; Bisi, A.; Bertucci, C.; Rosini, C.; Paluszcak, A.; Gobbi, S.; Giorgio, E.; Rampa, A.; Belluti, F.; Piazzi, L.; Valenti, P.; Hartmann, R.W.; Recanatini, M. Enantioselective nonsteroidal aromatase inhibitors identified through a multidisciplinary medicinal chemistry approach. J. Med. Chem., 2005, 48(23), 7282-7289.
[http://dx.doi.org/10.1021/jm058042r] [PMID: 16279787]
[24]
Yao, N.; Chen, C.Y.; Wu, C.Y.; Motonishi, K.; Kung, H.J.; Lam, K.S. Novel flavonoids with antiproliferative activities against breast cancer cells. J. Med. Chem., 2011, 54(13), 4339-4349.
[http://dx.doi.org/10.1021/jm101440r] [PMID: 21599001]
[25]
Kimura, Y.; Sumiyoshi, M. Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine, 2013, 20(3-4), 328-336.
[http://dx.doi.org/10.1016/j.phymed.2012.10.016] [PMID: 23219337]
[26]
Ferlin, M.G.; Chiarelotto, G.; Gasparotto, V.; Dalla Via, L.; Pezzi, V.; Barzon, L.; Palù, G.; Castagliuolo, I. Synthesis and in vitro and in vivo antitumor activity of 2-phenylpyrroloquinolin-4-ones. J. Med. Chem., 2005, 48(9), 3417-3427.
[http://dx.doi.org/10.1021/jm049387x] [PMID: 15857148]
[27]
Beutler, J.A.; Hamel, E.; Vlietinck, A.J.; Haemers, A.; Rajan, P.; Roitman, J.N.; Cardellina, J.H., II; Boyd, M.R. Structure-activity requirements for flavone cytotoxicity and binding to tubulin. J. Med. Chem., 1998, 41(13), 2333-2338.
[http://dx.doi.org/10.1021/jm970842h] [PMID: 9632366]
[28]
Lewin, G.; Shridhar, N.B.; Aubert, G.; Thoret, S.; Dubois, J.; Cresteil, T. Synthesis of antiproliferative flavones from calycopterin, major flavonoid of Calycopteris floribunda Lamk. Bioorg. Med. Chem., 2011, 19(1), 186-196.
[http://dx.doi.org/10.1016/j.bmc.2010.11.035] [PMID: 21146994]
[29]
Oshitari, T.; Okuyama, Y.; Miyata, Y.; Kosano, H.; Takahashi, H.; Natsugari, H. Nobiletin metabolites: synthesis and inhibitory activity against matrix metalloproteinase-9 production. Bioorg. Med. Chem. Lett., 2011, 21(15), 4540-4544.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.121] [PMID: 21723726]
[30]
Lu, H.F.; Chie, Y.J.; Yang, M.S.; Lee, C.S.; Fu, J.J.; Yang, J.S.; Tan, T.W.; Wu, S.H.; Ma, Y.S.; Ip, S.W.; Chung, J.G. Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax- and Bcl-2-triggered mitochondrial pathway. Int. J. Oncol., 2010, 36(6), 1477-1484.
[PMID: 20428772]
[31]
Cai, J.; Zhao, X.L.; Liu, A.W.; Nian, H.; Zhang, S.H. Apigenin inhibits hepatoma cell growth through alteration of gene expression patterns. Phytomedicine, 2011, 18(5), 366-373.
[http://dx.doi.org/10.1016/j.phymed.2010.08.006] [PMID: 20850954]
[32]
Liu, X.H.; Liu, H.F.; Shen, X.; Song, B.A.; Bhadury, P.S.; Zhu, H.L.; Liu, J.X.; Qi, X.B. Synthesis and molecular docking studies of novel 2-chloro-pyridine derivatives containing flavone moieties as potential antitumor agents. Bioorg. Med. Chem. Lett., 2010, 20(14), 4163-4167.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.080] [PMID: 20538457]
[33]
Takasawa, R.; Takahashi, S.; Saeki, K.; Sunaga, S.; Yoshimori, A.; Tanuma, S. Structure-activity relationship of human GLO I inhibitory natural flavonoids and their growth inhibitory effects. Bioorg. Med. Chem., 2008, 16(7), 3969-3975.
[http://dx.doi.org/10.1016/j.bmc.2008.01.031] [PMID: 18258440]
[34]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[35]
Winter, E.; Gozzi, G.J.; Chiaradia-Delatorre, L.D.; Daflon-Yunes, N.; Terreux, R.; Gauthier, C.; Mascarello, A.; Leal, P.C.; Cadena, S.M.; Yunes, R.A.; Nunes, R.J.; Creczynski-Pasa, T.B.; Di Pietro, A. Quinoxaline-substituted chalcones as new inhibitors of breast cancer resistance protein ABCG2: polyspecificity at B-ring position. Drug Des. Devel. Ther., 2014, 8, 609-619.
[PMID: 24920885]
[36]
Winter, E.; Devantier Neuenfeldt, P.; Chiaradia-Delatorre, L.D.; Gauthier, C.; Yunes, R.A.; Nunes, R.J.; Creczynski-Pasa, T.B.; Di Pietro, A. Symmetric bis-chalcones as a new type of breast cancer resistance protein inhibitors with a mechanism different from that of chromones. J. Med. Chem., 2014, 57(7), 2930-2941.
[http://dx.doi.org/10.1021/jm401879z] [PMID: 24611893]
[37]
Rangel, L.P.; Winter, E.; Gauthier, C.; Terreux, R.; Chiaradia-Delatorre, L.D.; Mascarello, A.; Nunes, R.J.; Yunes, R.A.; Creczynski-Pasa, T.B.; Macalou, S.; Lorendeau, D.; Baubichon-Cortay, H.; Ferreira-Pereira, A.; Di Pietro, A. New structure-activity relationships of chalcone inhibitors of breast cancer resistance protein: polyspecificity toward inhibition and critical substitutions against cytotoxicity. Drug Des. Devel. Ther., 2013, 7, 1043-1052.
[PMID: 24109177]
[38]
Juvale, K.; Pape, V.F.; Wiese, M. Investigation of chalcones and benzochalcones as inhibitors of breast cancer resistance protein. Bioorg. Med. Chem., 2012, 20(1), 346-355.
[http://dx.doi.org/10.1016/j.bmc.2011.10.074] [PMID: 22112540]
[39]
Han, Y.; Riwanto, M.; Go, M.L.; Ee, P.L.R. Modulation of breast cancer resistance protein (BCRP/ABCG2) by non-basic chalcone analogues. Eur. J. Pharm. Sci., 2008, 35(1-2), 30-41.
[http://dx.doi.org/10.1016/j.ejps.2008.06.001] [PMID: 18598762]
[40]
Liu, X.L.; Tee, H.W.; Go, M-L. Functionalized chalcones as selective inhibitors of P-glycoprotein and breast cancer resistance protein. Bioorg. Med. Chem., 2008, 16(1), 171-180.
[http://dx.doi.org/10.1016/j.bmc.2007.10.006] [PMID: 17964170]
[41]
Parveen, Z.; Brunhofer, G.; Jabeen, I.; Erker, T.; Chiba, P.; Ecker, G.F. Synthesis, biological evaluation and 3D-QSAR studies of new chalcone derivatives as inhibitors of human P-glycoprotein. Bioorg. Med. Chem., 2014, 22(7), 2311-2319.
[http://dx.doi.org/10.1016/j.bmc.2014.02.005] [PMID: 24613626]
[42]
Shimiz, K.; Kondo, R.; Sakai, K.; Buabarn, S.; Dilokkunanant, U. A geranylated chalcone with 5α-reductase inhibitory properties from Artocarpus incisus. Phytochemistry, 2000, 54(8), 737-739.
[http://dx.doi.org/10.1016/S0031-9422(00)00187-4] [PMID: 11014257]
[43]
Hussein, S.A.; Hashim, A.N.; Barakat, H.H.; Jose, J.; Lindequist, U.; Nawwar, M.A. Phenolics from extracts of Brahea armata with inhibitory effect against 5α-reductase type-II. Pharmazie, 2006, 61(12), 1034-1037.
[PMID: 17283663]
[44]
Le Bail, J.C.; Pouget, C.; Fagnere, C.; Basly, J.P.; Chulia, A.J.; Habrioux, G. Chalcones are potent inhibitors of aromatase and 17β-hydroxysteroid dehydrogenase activities. Life Sci., 2001, 68(7), 751-761.
[http://dx.doi.org/10.1016/S0024-3205(00)00974-7] [PMID: 11205867]
[45]
Seidel, C.; Schnekenburger, M.; Zwergel, C.; Gaascht, F.; Mai, A.; Dicato, M.; Kirsch, G.; Valente, S.; Diederich, M. Novel inhibitors of human histone deacetylases: design, synthesis and bioactivity of 3-alkenoylcoumarines. Bioorg. Med. Chem. Lett., 2014, 24(16), 3797-3801.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.067] [PMID: 25042254]
[46]
Orlikova, B.; Schnekenburger, M.; Zloh, M.; Golais, F.; Diederich, M.; Tasdemir, D. Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncol. Rep., 2012, 28(3), 797-805.
[http://dx.doi.org/10.3892/or.2012.1870] [PMID: 22710558]
[47]
Kumar, S.K.; Hager, E.; Pettit, C.; Gurulingappa, H.; Davidson, N.E.; Khan, S.R. Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. J. Med. Chem., 2003, 46(14), 2813-2815.
[http://dx.doi.org/10.1021/jm030213+] [PMID: 12825923]
[48]
Achanta, G.; Modzelewska, A.; Feng, L.; Khan, S.R.; Huang, P. A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome. Mol. Pharmacol., 2006, 70(1), 426-433.
[http://dx.doi.org/10.1124/mol.105.021311] [PMID: 16636137]
[49]
Zhu, X.F.; Xie, B.F.; Zhou, J.M.; Feng, G.K.; Liu, Z.C.; Wei, X.Y.; Zhang, F.X.; Liu, M.F.; Zeng, Y.X. Blockade of vascular endothelial growth factor receptor signal pathway and antitumor activity of ON-III (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone), a component from Chinese herbal medicine. Mol. Pharmacol., 2005, 67(5), 1444-1450.
[http://dx.doi.org/10.1124/mol.104.009894] [PMID: 15703376]
[50]
Wang, L.; Chen, G.; Lu, X.; Wang, S.; Han, S.; Li, Y.; Ping, G.; Jiang, X.; Li, H.; Yang, J.; Wu, C. Novel chalcone derivatives as hypoxia-inducible factor (HIF)-1 inhibitor: synthesis, anti-invasive and anti-angiogenic properties. Eur. J. Med. Chem., 2015, 89, 88-97.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.036] [PMID: 25462229]
[51]
Guo, F.; Feng, L.; Huang, C.; Ding, H.; Zhang, X.; Wang, Z.; Li, Y. Prenylflavone derivatives from Broussonetia papyrifera, inhibit the growth of breast cancer cells in vitro and in vivo. Phytochem. Lett., 2013, 6, 331-336.
[http://dx.doi.org/10.1016/j.phytol.2013.03.017]
[52]
Ngameni, B.; Touaibia, M.; Patnam, R.; Belkaid, A.; Sonna, P.; Ngadjui, B.T.; Annabi, B.; Roy, R. Inhibition of MMP-2 secretion from brain tumor cells suggests chemopreventive properties of a furanocoumarin glycoside and of chalcones isolated from the twigs of Dorstenia turbinata. Phytochemistry, 2006, 67(23), 2573-2579.
[http://dx.doi.org/10.1016/j.phytochem.2006.09.017] [PMID: 17070879]
[53]
Murakami, A.; Tanaka, S.; Ohigashi, H.; Hirota, M.; Irie, R.; Takeda, N.; Tatematsu, A.; Koshimizu, K. Chalcone tetramers, lophirachalcone and alatachalcone, from Lophira alata as possible anti-tumor promoters. Biosci. Biotechnol. Biochem., 1992, 56(5), 769-772.
[http://dx.doi.org/10.1271/bbb.56.769] [PMID: 1369383]
[54]
Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel), 2015, 2(3), 251-286.
[http://dx.doi.org/10.3390/medicines2030251] [PMID: 28930211]
[55]
Mithöfer, A.; Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol., 2012, 63, 431-450.
[http://dx.doi.org/10.1146/annurev-arplant-042110-103854] [PMID: 22404468]
[56]
Zenk, M.H.; Juenger, M. Evolution and current status of the phytochemistry of nitrogenous compounds. Phytochemistry, 2007, 68(22-24), 2757-2772.
[http://dx.doi.org/10.1016/j.phytochem.2007.07.009] [PMID: 17719615]
[57]
Mohan, K.; Jeyachandran, R.; Deepa, R. Alkaloids as anticancer agents. Ann. Phytomed., 2012, 1, 46-53.
[58]
Lou, C.; Yokoyama, S.; Saiki, I.; Hayakawa, Y. Selective anticancer activity of hirsutine against HER2‑positive breast cancer cells by inducing DNA damage. Oncol. Rep., 2015, 33(4), 2072-2076.
[http://dx.doi.org/10.3892/or.2015.3796] [PMID: 25672479]
[59]
Shih, Y.W.; Shieh, J.M.; Wu, P.F.; Lee, Y.C.; Chen, Y.Z.; Chiang, T.A. α-tomatine inactivates PI3K/Akt and ERK signaling pathways in human lung adenocarcinoma A549 cells: effect on metastasis. Food Chem. Toxicol., 2009, 47(8), 1985-1995.
[http://dx.doi.org/10.1016/j.fct.2009.05.011] [PMID: 19457446]
[60]
Liew, S.Y.; Looi, C.Y.; Paydar, M.; Cheah, F.K.; Leong, K.H.; Wong, W.F.; Mustafa, M.R.; Litaudon, M.; Awang, K. Subditine, a new monoterpenoid indole alkaloid from bark of Nauclea subdita (Korth.) Steud. induces apoptosis in human prostate cancer cells. PLoS One, 2014, 9(2)e87286
[http://dx.doi.org/10.1371/journal.pone.0087286] [PMID: 24551054]
[61]
Safia, ; Kamil, M.; Jadiya, P.; Sheikh, S.; Haque, E.; Nazir, A.; Lakshmi, V.; Mir, S.S. The chromone alkaloid, rohitukine, affords anti-cancer activity via modulating apoptosis pathways in A549 cell line and yeast Mitogen Activated Protein Kinase (MAPK) pathway. PLoS One, 2015, 10(9)e0137991
[http://dx.doi.org/10.1371/journal.pone.0137991] [PMID: 26405812]
[62]
Devriese, L.A.; Witteveen, P.E.; Mergui-Roelvink, M.; Smith, D.A.; Lewis, L.D.; Mendelson, D.S.; Bang, Y.J.; Chung, H.C.; Dar, M.M.; Huitema, A.D.; Beijnen, J.H.; Voest, E.E.; Schellens, J.H. Pharmacodynamics and pharmacokinetics of oral topotecan in patients with advanced solid tumours and impaired renal function. Br. J. Clin. Pharmacol., 2015, 80(2), 253-266.
[http://dx.doi.org/10.1111/bcp.12606] [PMID: 25677219]
[63]
Yang, X.K.; Xu, M.Y.; Xu, G.S.; Zhang, Y.L.; Xu, Z.X. In vitro and in vivo antitumor activity of scutebarbatine A on human lung carcinoma A549 cell lines. Molecules, 2014, 19(7), 8740-8751.
[http://dx.doi.org/10.3390/molecules19078740] [PMID: 24968330]
[64]
Mansoor, T.A.; Borralho, P.M.; Dewanjee, S.; Mulhovo, S.; Rodrigues, C.M.; Ferreira, M.J.U. Monoterpene bisindole alkaloids, from the African medicinal plant Tabernaemontana elegans, induce apoptosis in HCT116 human colon carcinoma cells. J. Ethnopharmacol., 2013, 149(2), 463-470.
[http://dx.doi.org/10.1016/j.jep.2013.06.051] [PMID: 23872252]
[65]
DeBono, A.; Capuano, B.; Scammells, P.J. Progress toward the development of noscapine and derivatives as anticancer agents. J. Med. Chem., 2015, 58(15), 5699-5727.
[http://dx.doi.org/10.1021/jm501180v] [PMID: 25811651]
[66]
Uche, F.I.; Drijfhout, F.P.; McCullagh, J.; Richardson, A.; Li, W.W. Cytotoxicity effects and apoptosis induction by bisbenzylisoquinoline alkaloids from Triclisia subcordata. Phytother. Res., 2016, 30(9), 1533-1539.
[http://dx.doi.org/10.1002/ptr.5660] [PMID: 27270992]
[67]
Laryea, D.; Isaksson, A.; Wright, C.W.; Larsson, R.; Nygren, P. Characterization of the cytotoxic activity of the indoloquinoline alkaloid cryptolepine in human tumour cell lines and primary cultures of tumour cells from patients. Invest. New Drugs, 2009, 27(5), 402-411.
[http://dx.doi.org/10.1007/s10637-008-9185-5] [PMID: 18853102]
[68]
Zheng, L.; Wang, X.; Luo, W.; Zhan, Y.; Zhang, Y. Brucine, an effective natural compound derived from nux-vomica, induces G1 phase arrest and apoptosis in LoVo cells. Food Chem. Toxicol., 2013, 58, 332-339.
[http://dx.doi.org/10.1016/j.fct.2013.05.011] [PMID: 23688861]
[69]
Said, R.; Tsimberidou, A.M. Pharmacokinetic evaluation of vincristine for the treatment of lymphoid malignancies. Expert Opin. Drug Metab. Toxicol., 2014, 10(3), 483-494.
[http://dx.doi.org/10.1517/17425255.2014.885016] [PMID: 24512004]
[70]
Awad, A.B.; Chen, Y.C.; Fink, C.S.; Hennessey, T. beta-Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids. Anticancer Res., 1996, 16(5A), 2797-2804.
[PMID: 8917388]
[71]
Raicht, R.F.; Cohen, B.I.; Fazzini, E.P.; Sarwal, A.N.; Takahashi, M. Protective effect of plant sterols against chemically induced colon tumors in rats. Cancer Res., 1980, 40(2), 403-405.
[PMID: 7356523]
[72]
Awad, A.B.; Garcia, M.D.; Fink, C.S. Effect of dietary phytosterols on rat tissue lipids. Nutr. Cancer, 1997, 29(3), 212-216.
[http://dx.doi.org/10.1080/01635589709514626] [PMID: 9457741]
[73]
Deschner, E.E.; Cohen, B.I.; Raicht, R.F. The kinetics of the protective effect of β-sitosterol against MNU-induced colonic neoplasia. J. Cancer Res. Clin. Oncol., 1982, 103(1), 49-54.
[http://dx.doi.org/10.1007/BF00410305] [PMID: 7076717]
[74]
Awad, A.B.; Downie, A.C.; Fink, C.S. Inhibition of growth and stimulation of apoptosis by beta-sitosterol treatment of MDA-MB-231 human breast cancer cells in culture. Int. J. Mol. Med., 2000, 5(5), 541-545.
[http://dx.doi.org/10.3892/ijmm.5.5.541] [PMID: 10762659]
[75]
Awad, A.B.; Hernandez, A.Y.; Fink, C.S.; Mendel, S.L. Effect of dietary phytosterols on cell proliferation and protein kinase C activity in rat colonic mucosa. Nutr. Cancer, 1997, 27(2), 210-215.
[http://dx.doi.org/10.1080/01635589709514527] [PMID: 9121952]
[76]
Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; De Mol, B.; Escobar, E.; German, C.R.; Levin, L.A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeoscience, 2010, 7, 2851-2899.
[http://dx.doi.org/10.5194/bg-7-2851-2010]
[77]
Newman, D.J.; Cragg, G.M. Drugs and drug candidates from marine sources: An assessment of the current “state of play”. Planta Med., 2016, 82(9-10), 775-789.
[http://dx.doi.org/10.1055/s-0042-101353] [PMID: 26891002]
[78]
McGregor, B.A.; Brown, A.W.; Osswald, M.B.; Savona, M.R. The use of higher dose clofarabine in adults with relapsed acute lymphoblastic leukemia. Am. J. Hematol., 2009, 84(4), 228-230.
[http://dx.doi.org/10.1002/ajh.21365] [PMID: 19260120]
[79]
Kantarjian, H.; Faderl, S.; Garcia-Manero, G.; Luger, S.; Venugopal, P.; Maness, L.; Wetzler, M.; Coutre, S.; Stock, W.; Claxton, D.; Goldberg, S.L.; Arellano, M.; Strickland, S.A.; Seiter, K.; Schiller, G.; Jabbour, E.; Chiao, J.; Plunkett, W. Oral sapacitabine for the treatment of acute myeloid leukaemia in elderly patients: a randomised phase 2 study. Lancet Oncol., 2012, 13(11), 1096-1104.
[http://dx.doi.org/10.1016/S1470-2045(12)70436-9] [PMID: 23075701]
[80]
Cuevas, C.; Francesch, A.; Galmarini, C.M.; Avilés, P.; Munt, S. Ecteinascidin-743 (Yondelis®), Aplidin®, and Irvalec®. Anticancer Nat. Prod., 2012, 2, 291-316.
[81]
Melvin, J.Y.; Bruce, A.; Yoshito, K. Discovery of E7389, a fully synthetic macrocyclic ketone analog of halichondrin B; Taylor & Francis Group: Boca Raton, FL, 2005, pp. 241-265.
[82]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. New horizons for old drugs and drug leads. J. Nat. Prod., 2014, 77, 703-723.
[http://dx.doi.org/10.1021/np5000796]
[83]
Kim, K.B.; Crews, C.M. From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes. Nat. Prod. Rep., 2013, 30(5), 600-604.
[http://dx.doi.org/10.1039/c3np20126k] [PMID: 23575525]
[84]
Fischer, T.; Stone, R.M.; Deangelo, D.J.; Galinsky, I.; Estey, E.; Lanza, C.; Fox, E.; Ehninger, G.; Feldman, E.J.; Schiller, G.J.; Klimek, V.M.; Nimer, S.D.; Gilliland, D.G.; Dutreix, C.; Huntsman-Labed, A.; Virkus, J.; Giles, F.J. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J. Clin. Oncol., 2010, 28(28), 4339-4345.
[http://dx.doi.org/10.1200/JCO.2010.28.9678] [PMID: 20733134]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 11
Year: 2020
Published on: 17 July, 2020
Page: [942 - 957]
Pages: 16
DOI: 10.2174/1389557520666200212104742
Price: $65

Article Metrics

PDF: 22
HTML: 1