Microwave-assisted Cobalt-copper Dual Catalyzed Ligand Free C-Se Cross-coupling

Author(s): Debasish Kundu*, Anup Roy, Subir Panja, Raj K. Singh

Journal Name: Current Microwave Chemistry

Volume 7 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Organoselenides are important building blocks of several biologically important molecules and natural products. Several protocols have been developed by chemists for their synthesis. Transition metal-catalyzed cross-coupling is a powerful tool for this purpose in the last two decades. Various transition metal catalysts e.g. Pd, Ni, Cu, In etc. have been used for performing C-Se cross-coupling in the presence or absence of ligands.

Objective: Development of a sustainable protocol for transition metal-catalyzed C-Se cross-coupling is the main objective of this research. Recently, Cobalt has been applied as a cheap and sustainable transition metal catalyst in several organic reactions. This protocol is focused on applying cobalt salt as a catalyst for performing C-Se cross-coupling for the first time.

Methods: Co(acac)2 has been successfully employed for performing Se-arylations in the presence of CuI, which acts as a co-catalyst under microwave irradiation. NMP was used as solvent and KOH as a reductant in this reaction.

Results: Both iodo-and bromoarenes have been used to perform C-Se cross-coupling with diaryl diselenide under this Co/Cu dual catalytic system. The reaction was successful with both electrondonating and withdrawing groups in ortho-, meta-, and para-positions in the aromatic ring of Bromo and iodoarenes.

Conclusion: This is an effective protocol for the preparation of organoselenides, catalyzed by cobalt in the presence of copper. The mechanism has been established by several experimental techniques.

Keywords: Cobalt, copper, cross-coupling, organoselenides, green chemistry, dual catalysis.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 2
Year: 2020
Page: [157 - 163]
Pages: 7
DOI: 10.2174/2213335607666200212101502
Price: $25

Article Metrics

PDF: 8