Studies on the Temperature Stability of Pure and Doped Triglycine Sulphate Crystals Using TGA/DTA

Author(s): Vijeesh Padmanabhan*, Maneesha P. Madhu, Supriya M. Hariharan

Journal Name: Current Physical Chemistry

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Aim: To study the temperature stability of TGS doped with ZnSO4, CdCl2, BaCl2, and compare it with that of pure TGS.

Objectives: Synthesizing pure and doped TGS and studying their temperature dependence using TGA, DTA, and DSC analysis.

Methods: Slow cooling solution growth was used to grow single crystals of pure and doped TGS. The TGA, DTA and DSC analysis was conducted for determining the temperature stability.

Results: The thermal analysis of pure and doped TGS shows that the doped samples show a similar dependence on temperature as pure TGS. The temperature of decomposition of pure and doped samples (BTGS, ZTGS, CdTGS) was 226.60°C, 228.38°C, 229.13°C, and 239.13°C respectively. The melting onset of these samples was 214.51°C, 216.04°C, 217.69°C and 216.04°C respectively.

Conclusion: The study shows that doping TGS with the above three described materials did not alter their temperature stability considerably. It is a good result as doping TGS, for varying its characteristics like absorbance, reflectance, bandgap energy, etc., which did not alter its temperature stability. Therefore, TGS doped with the above three dopants can be used at the same temperature ranges as of pure TGS but with much-improved efficiency.

Keywords: Differential thermal analysis, doping, slow cooling solution growth, temperature stability, thermogravimetric analysis, triglycine sulphate.

Xu, Y. Ferroelectric Materials and their Applications; North-Holland: New York, 1991.
Kayand, M.I.; Kleinberg, R. Ferroelectric Crystals; Pergamon Press: Oxford, 1962.
Verma, S. In situ, and real-time monitoring of process parameters during the growth of KDP crystal, an important ferroic material. Phase Transit., 2010, 83(9), 714-727.
Basu, P. Biomass Gasification, Pyrolysis and Torrefaction; Academic Press: Cambrdige, MA, 2018.
Sewell, E.C. The consequences of differential thermal analysis of assuming a reaction to be first-order. Clay Miner. Bull., 1955, 2(13), 233-241.
Araújo, A.A.S.; Bezerra, M.D.S.; Storpirtis, S.; Matos, J.D.R. Determination of the melting temperature, the heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC. Braz. J. Pharm. Sci., 2010, 46(1), 37-43.
Balasubramanian, K. Influence of amino acid on the growth, structural, optical, mechanical, and dielectric properties of TGS crystals. Int. J. Curr. Res., 2014, 6(6), 7089-7093.
Roopa, V.; Kumari, R.A. Growth and characterization of Triglycine Sulphate (TGS) crystal mixed with Ammonium, Dihydrogen Orthophosphate (ADP). Int. J. Res. Appl. Sci. Eng. Technol., 2016, 4(9), 565-572.
Khanum, F.; Podder, J. Crystallization and characterization of Triglycine Sulfate (TGS) crystal doped with NiSO4. J. Crystall. Proc. Tech., 2011, 3, 49-54.
Sesták, J. Errors of kinetic data obtained from thermogravimetric curves at increasing temperature. Talanta, 1966, 13(4), 567-579.
[ ] [PMID: 18959917]
Ashok, K.B.; Mohan, D.A.; Ravindra, B.L. Growth and characterization of doped DTGS crystals for infra-red sensing devices. Mater. Lett., 2003, 57(24), 3943-3948.
Kissinger, H.E. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand., 1956, 57(4), 217.
Aravazhi, S.; Jayavel, R.; Subramanian, C. Growth and stability of pure and amino doped TGS crystals. Mater. Chem. Phys., 1997, 50(3), 233-237.
Kumar, R.M.; Muralidharan, R.; Babu, D.R.; Rajendran, K.V. Growth and characterization of L-lysine doped TGS and TGSP single crystals. J. Cryst. Growth, 2001, 229(1), 568-573.
Novotny, J.; Prokopova, L.; Micka, Z. TGS single crystals doped by Pd(II) ions. J. Cryst. Growth, 2001, 226(2), 333-340.
Gowda, J.; Moolya, B.N.; Ravindraswami, K. Growth and characterization of barium doped triglycine sulphate (BaTGS) single crystals. AIP Conf. Proc., 2018, 1942(1)
Braun, D.; Ritzert, H.J. Formaldehyde and melamine–formaldehyde polymers. Comp. Polymer Sci. Suppl., 1989, 5, 649-665.
Yolcubal, I.; Brusseau, M.L.; Artiola, J.F.; Wierenga, P.J.; Wilson, L.G. Environmental physical properties and processes. In: Environmental Monitoring and Characterization; Elsevier: Amsterdam, Netherlands, 2004; pp. 207-239.
Agag, T.; Geiger, S.; Ishida, H. Thermal properties enhancement of polybenzoxazines: The role of additional non-benzoxazine polymerizable groups. Handbook of Benzoxazine Resins; Elsevier: Amsterdam, Netherlands, 2011, pp. 263-286.
Belardia, G.; Balliranob, P.; Ferrinic, M.; Lavecchiac, R.; Medicic, F.; Pigac, L.; Scoppettuoloc, A. Characterization of spent zinc-carbon and alkaline batteries by SEM-EDS, TGA/DTA, and XRPD analysis. Thermochim. Acta, 2011, 526(1), 169-177.
Pask, J.A.; Warner, M.F. Differential thermal analysis methods and techniques. J. Am. Ceram. Soc., 1954, 33, 168-175.
Smyth, H.T. Temperature distribution during mineral in version and its significance in differential thermal analysis. J. Am. Ceram. Soc., 1951, 3(1), 221-224.
Groenewoud, W.M. Characterization of Polymers by Thermal Analysis; Elsevier Science Direct: Amsterdam, Netherlands, 2001.
Bellotto, M.; Gualtieri, A.; Artioli, G.; Clark, S.M. Kinetic study of the kaolinite-mullite reaction sequence. Part I: Kaolinite dehydroxylation. Phys. Chem. Miner., 1995, 22(4), 207-217.
Murray, P.; White, J. Kinetics of the thermal decomposition of clay, Isothermal decomposition of clay minerals. Trans. Brittain Ceramic Soc., 1955, 5(l), 151-187.
Murray, P.; White, J. Kinetics of the thermal dehydration of clays, Trans. Brit. Ceram. Soc., 1949, pp. 187-206.
Murray, P.; White, J. Kinetics of the thermal decomposition of clay- Interpretation of the differential thermal analysis of clays. Trans. Brit. Ceram. Soc., 1955, 54, 204-237.
Widmann, G.; Scherrer, O. A new program for DSC purity analysis. J. Therm. Anal., 1991, 37(8), 1957-1964.
Oliveira, M.A.; Yoshida, M.I.; Lima Gomes, E.C. Thermal analysis applied to pharmaceuticals and pharmaceutical formulations in the pharmaceutical industry. New. Chem., 2011, 34(7), 25-29.
Giriron, D.; Goldbronn, C. Place of DSC purity analysis in pharmaceutical development. J. Therm. Anal., 1995, 44(1), 217-251.
Krishnakumar, V.; Sivakumar, S.; Nagalakshmi, R.; Bhuvaneswari, S.; Rajaboopathi, M. Effect of doping an organic molecule ligand on TGS single crystals. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 71(2), 480-485.
[] [PMID: 18339577]
Parimaladevi, R.; Sekar, C.; Krishnakumar, V. The effect of nitric acid (HNO3) on growth, spectral, thermal and dielectric properties of triglycine sulphate (TGS) crystal. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 75(2), 617-623.
[ ] [PMID: 20004141]
Aravazhi, S.; Jayavel, R.; Subramanian, C. Growth and characterization of benzophenone and urea doped triglycine sulphate crystals. Ferroelectrics, 1997, 200(1), 1-4.
Berbacaru, C.; Alexandru, H.V.; Pintle, L.; Dutu, A.; Logofatu, B.; Radulescu, R.C. Doped versus Pure TGS Crystals. Mater. Sci. Eng., 2005, 118(1), 141-146.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 04 November, 2020
Page: [206 - 212]
Pages: 7
DOI: 10.2174/1877946810666200212094533
Price: $25

Article Metrics

PDF: 18