Monodentate Trialkylphosphines: Privileged Ligands in Metal-catalyzed Crosscoupling Reactions

Author(s): Kevin H. Shaughnessy*

Journal Name: Current Organic Chemistry

Volume 24 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.

Keywords: Phosphine, cross-coupling, steric parameter, electronic parameter, palladium, monodentate trialkylphosphines, palladiumphosphine, monodentate trialkyl phosphines.

[1]
(a) Fu, G.C. The development of versatile methods for palladium-catalyzed coupling reactions of aryl electrophiles through the use of P(t-Bu)3 and PCy3 as ligands. Acc. Chem. Res., 2008, 41(11), 1555-1564.
[http://dx.doi.org/10.1021/ar800148f] [PMID: 18947239]
(b) Fleckenstein, C.A.; Plenio, H. Sterically demanding trialkylphosphines for palladium-catalyzed cross coupling reactions-alternatives to PtBu3. Chem. Soc. Rev., 2010, 39(2), 694-711.
[http://dx.doi.org/10.1039/B903646F] [PMID: 20111788]
[2]
(a) Fey, N.; Orpen, A.G.; Harvey, J.N. Building ligand knowledge bases for organometallic chemistry: computational description of phosphorus(III)-donor ligands and the metal-phosphorus bond. Coord. Chem. Rev., 2009, 253, 704-722.
[http://dx.doi.org/10.1016/j.ccr.2008.04.017]
(b) Fey, N.; Tsipis, A.C.; Harris, S.E.; Harvey, J.N.; Orpen, A.G.; Mansson, R.A. Development of a ligand knowledge base, part 1: computational descriptors for phosphorus donor ligands. Chemistry, 2005, 12(1), 291-302.
[http://dx.doi.org/10.1002/chem.200500891] [PMID: 16278917]
(c) Jover, J.; Fey, N.; Harvey, J.N.; Lloyd-Jones, G.C.; Orpen, A.G.; Owen-Smith, G.J.J.; Murray, P.; Hose, D.R.J.; Osborne, R.; Purdie, M. Expansion of the ligand knowledge base for monodentate P-donor ligands (LKB-P). Organometallics, 2010, 29(23), 6245-6258.
[http://dx.doi.org/10.1021/om100648v]
[3]
Niemeyer, Z.L.; Milo, A.; Hickey, D.P.; Sigman, M.S. Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes. Nat. Chem., 2016, 8(6), 610-617.
[http://dx.doi.org/10.1038/nchem.2501] [PMID: 27219707]
[4]
Tolman, C.A. Steric effects of phosphorous ligands in organometallic chemistry and homogenous catalysis. Chem. Rev., 1977, 77, 313-348.
[http://dx.doi.org/10.1021/cr60307a002]
[5]
Bilbrey, J.A.; Kazez, A.H.; Locklin, J.; Allen, W.D. Exact ligand cone angles. J. Comput. Chem., 2013, 34(14), 1189-1197.
[http://dx.doi.org/10.1002/jcc.23217] [PMID: 23408559]
[6]
Clavier, H.; Nolan, S.P. Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. Chem. Commun. (Camb.), 2010, 46(6), 841-861.
[http://dx.doi.org/10.1039/b922984a] [PMID: 20107630]
[7]
Kendall, A.J.; Zakharov, L.N.; Tyler, D.R. Steric and electronic influences of Buchwald-type alkyl-JohnPhos ligands. Inorg. Chem., 2016, 55(6), 3079-3090.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02996] [PMID: 26913633]
[8]
Allman, T.; Goel, R.G. The basicity of phosphines. Can. J. Chem., 1982, 62, 716-722.
[http://dx.doi.org/10.1139/v82-106]
[9]
Barnett, K.L.; Vasiliu, M.; Stein, T.H.; Delahay, M.V.; Qu, F.; Gerlach, D.L.; Dixon, D.A.; Shaughnessy, K.H. Experimental and computational study of the structure, steric properties, and binding equilibria of neopentylphosphine palladium complexes. Inorg. Chem., 2020. submitted
[10]
Hill, L.L.; Crowell, J.L.; Tutwiler, S.L.; Massie, N.L.; Hines, C.C.; Griffin, S.T.; Rogers, R.D.; Shaughnessy, K.H.; Grasa, G.A.; Seechurn, C.C.C.J.; Li, H.; Colacot, T.J.; Chou, J.; Woltermann, C.J. Synthesis and X-ray structure determination of highly active Pd(II), Pd(I), and Pd(0) complexes of di(tert-butyl)neopentylphosphine (DTBNpP) in the arylation of amines and ketones. J. Org. Chem., 2010, 75(19), 6477-6488.
[http://dx.doi.org/10.1021/jo101187q] [PMID: 20806983]
[11]
Hill, L.L.; Smith, J.M.; Brown, W.S.; Moore, L.R.; Guevara, P.; Pair, E.S.; Porter, J.; Chou, J.; Woltermann, C.J.; Craciun, R.; Dixon, D.A.; Shaughnessy, K.H. Neopentylphosphines as effective ligands in palladium-catalyzed cross-couplings of aryl bromides and chlorides. Tetrahedron, 2008, 64, 6920-6934.
[http://dx.doi.org/10.1016/j.tet.2008.02.037]
[12]
Vastag, S.; Heil, B.; Markó, L. Effect of phosphine structure on catalytic activity in acetone hydrogenation. J. Mol. Catal., 1979, 5, 189-195.
[http://dx.doi.org/10.1016/0304-5102(79)80056-5]
[13]
Hillier, A.C.; Sommer, W.J.; Yong, B.S.; Peterson, J.L.; Cavallo, L.; Nolan, S.P. A combined experimental and theoretical study examining the binding of N-Heterocyclic Carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) moiety: insight into stereoelectronic differences between unsaturated and saturated NHC ligands. Organometallics, 2003, 22, 4322-4326.
[http://dx.doi.org/10.1021/om034016k]
[14]
(a) Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L. Towards the online computer-aided design of catalytic pockets. Nat. Chem., 2019, 11(10), 872-879.
[http://dx.doi.org/10.1038/s41557-019-0319-5] [PMID: 31477851]
(b) Falivene, L.; Credendino, R.; Poater, A.; Petta, A.; Serra, L.; Oliva, R.; Scarano, V.; Cavallo, L. Sambvca 2. A web tool for analyzing catalytic pockets with topographic steric maps. Organometallics, 2016, 35, 2286-2293.
[http://dx.doi.org/10.1021/acs.organomet.6b00371]
[15]
Barbeau, C.; Turcotte, J. Donor and acceptor powers of ligands from derivatives of Mo(CO)6. Can. J. Chem., 1976, 54, 1603-1611.
[http://dx.doi.org/10.1139/v76-230]
[16]
Chen, L.; Ren, P.; Carrow, B.P. Tri(1-adamantyl)phosphine: expanding the boundary of electron-releasing character available to organophosphorus compounds. J. Am. Chem. Soc., 2016, 138(20), 6392-6395.
[http://dx.doi.org/10.1021/jacs.6b03215] [PMID: 27164163]
[17]
Netherton, M.R.; Fu, G.C. Air-stable trialkylphosphonium salts: simple, practical, and versatile replacements for air-sensitive trialkylphosphines. Applications in stoichiometric and catalytic processes. Org. Lett., 2001, 3(26), 4295-4298.
[http://dx.doi.org/10.1021/ol016971g] [PMID: 11784201]
[18]
Denmark, S.E.; Werner, N.S. γ-Selective cross-coupling of allylic silanolate salts with aromatic bromides using trialkylphosphonium tetrafluoroborate salts prepared directly from phosphine•borane adducts. Org. Lett., 2011, 13(17), 4596-4599.
[http://dx.doi.org/10.1021/ol2017998] [PMID: 21830766]
[19]
(a) Hazari, N.; Melvin, P.R.; Beromi, M.M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem.,, 2017, 10025.
[http://dx.doi.org/10.1038/s41570-017-0025]
(b) Shaughnessy, K.H. Development of palladium precatalysts that efficiently generate LPd(0) active species. Isr. J. Chem, 2019, 59 published online
[http://dx.doi.org/10.1002/ijch.201900067]
[20]
(a) Littke, A.F.; Dai, C.; Fu, G.C. Versatile catalysts for the Suzuki cross-coupling of arylboronic acids with aryl and vinyl halides and triflates under mild conditions. J. Am. Chem. Soc., 2000, 122, 4020-4028.
[http://dx.doi.org/10.1021/ja0002058]
(b) Hooper, M.W.; Utsunomiya, M.; Hartwig, J.F. Scope and mechanism of palladium-catalyzed amination of five-membered heterocyclic halides. J. Org. Chem., 2003, 68(7), 2861-2873.
[http://dx.doi.org/10.1021/jo0266339] [PMID: 12662063]
[21]
Stambuli, J.P.; Kuwano, R.; Hartwig, J.F. Unparalleled rates for the activation of aryl chlorides and bromides: coupling with amines and boronic acids in minutes at room temperature. Angew. Chem. Int. Ed. Engl., 2002, 41(24), 4746-4748.
[http://dx.doi.org/10.1002/anie.200290036] [PMID: 12481346]
[22]
Barnett, K.L.; Howard, J.R.; Treager, C.J.; Shipley, A.T.; Stullich, R.M.; Qu, F.; Gerlach, D.L.; Shaughnessy, K.H. Air-stable [(R3P)PdCl2]2 complexes of neopentylphosphines as cross-coupling precatalysts: catalytic application and mechanism of catalyst activation and deactivation. Organometallics, 2018, 37, 1410-1424.
[http://dx.doi.org/10.1021/acs.organomet.8b00082]
[23]
Johansson Seechurn, C.C.C.; Parisel, S.L.; Colacot, T.J. Air-stable Pd(R-allyl)LCl (L= Q-Phos, P(t-Bu)3, etc.) systems for C-C/N couplings: insight into the structure-activity relationship and catalyst activation pathway. J. Org. Chem., 2011, 76(19), 7918-7932.
[http://dx.doi.org/10.1021/jo2013324] [PMID: 21823586]
[24]
Melvin, P.R.; Nova, A.; Balcells, D.; Dai, W.; Hazari, N.; Hruszkewycz, D.P.; Shah, H.P.; Tudge, M.T. Design of a versatile and improved precatalyst scaffold for palladium-catalyzed cross-coupling: (η3-1-t-Bu-indenyl)2(μ-Cl)2Pd2. ACS Catal., 2015, 5(6), 3680-3688.
[http://dx.doi.org/10.1021/acscatal.5b00878]
[25]
(a) Kinzel, T.; Zhang, Y.; Buchwald, S.L. A new palladium precatalyst allows for the fast Suzuki-Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acids. J. Am. Chem. Soc., 2010, 132(40), 14073-14075.
[http://dx.doi.org/10.1021/ja1073799] [PMID: 20858009]
(b) Bruno, N.C.; Tudge, M.T.; Buchwald, S.L. Design and preparation of new palladium precatalysts for C-C and C-N cross-coupling reactions. Chem. Sci. (Camb.), 2013, 4, 916-920.
[http://dx.doi.org/10.1039/C2SC20903A] [PMID: 23667737]
(c) Bruno, N.C.; Niljianskul, N.; Buchwald, S.L. N-substituted 2-aminobiphenylpalladium methanesulfonate precatalysts and their use in C-C and C-N cross-couplings. J. Org. Chem., 2014, 79(9), 4161-4166.
[http://dx.doi.org/10.1021/jo500355k] [PMID: 24724692]
[26]
Christmann, U.; Vilar, R. Monoligated palladium species as catalysts in cross-coupling reactions. Angew. Chem. Int. Ed. Engl., 2005, 44(3), 366-374.
[http://dx.doi.org/10.1002/anie.200461189] [PMID: 15624192]
[27]
(a) Roy, A.H.; Hartwig, J.F. Reductive elimination of aryl halides from palladium(II). J. Am. Chem. Soc., 2001, 123(6), 1232-1233.
[http://dx.doi.org/10.1021/ja0034592] [PMID: 11456679]
(b) Roy, A.H.; Hartwig, J.F. Directly observed reductive elimination of aryl halides from monomeric arylpalladium(II) halide complexes. J. Am. Chem. Soc., 2003, 125(46), 13944-13945.
[http://dx.doi.org/10.1021/ja037959h] [PMID: 14611215]
[28]
Galardon, E.; Ramdeehul, S.; Brown, J.M.; Cowley, A.; Hii, K.K.; Jutand, A. Profound steric control of reactivity in aryl halide addition to bisphosphane palladium(0) complexes. Angew. Chem. Int. Ed. Engl., 2002, 41(10), 1760-1763.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1760:AID-ANIE1760>3.0.CO;2-3] [PMID: 19750708]
[29]
(a) Barrios-Landeros, F.; Hartwig, J.F. Distinct mechanisms for the oxidative addition of chloro-, bromo-, and iodoarenes to a bisphosphine palladium(0) complex with hindered ligands. J. Am. Chem. Soc., 2005, 127(19), 6944-6945.
[http://dx.doi.org/10.1021/ja042959i] [PMID: 15884925]
(b) Barrios-Landeros, F.; Carrow, B.P.; Hartwig, J.F. Effect of ligand steric properties and halide identity on the mechanism for oxidative addition of haloarenes to trialkylphosphine Pd(0) complexes. J. Am. Chem. Soc., 2009, 131(23), 8141-8154.
[http://dx.doi.org/10.1021/ja900798s] [PMID: 19469511]
[30]
McMullin, C.L.; Fey, N.; Harvey, J.N. Computed ligand effects on the oxidative addition of phenyl halides to phosphine supported palladium(0) catalysts. Dalton Trans., 2014, 43(36), 13545-13556.
[http://dx.doi.org/10.1039/C4DT01758G] [PMID: 25091386]
[31]
(a) Ortiz, D.; Blug, M.; Le Goff, X.F.; Le Floch, P.; Mézailles, N.; Maître, P. Mechanistic investigation of the generation of a palladium(0) catalyst from a palladium(ii) allyl complex: a combined experimental and DFT study. Organometallics, 2012, 31, 5975-5978.
[http://dx.doi.org/10.1021/om300375b]
(b) Zheng, Q.; Liu, Y.; Chen, Q.; Hu, M.; Helmy, R.; Sherer, E.C.; Welch, C.J.; Chen, H. Capture of reactive monophosphine-ligated palladium(0) intermediates by mass spectrometry. J. Am. Chem. Soc., 2015, 137(44), 14035-14038.
[http://dx.doi.org/10.1021/jacs.5b08905] [PMID: 26498505]
[32]
Gioria, E.; Del Pozo, J.; Martínez-Ilarduya, J.M.; Espinet, P. Promoting difficult carbon-carbon couplings: which ligand does best? Angew. Chem. Int. Ed. Engl., 2016, 55(42), 13276-13280.
[http://dx.doi.org/10.1002/anie.201607089] [PMID: 27634585]
[33]
Roy, A.H.; Hartwig, J.F. Reductive elimination of aryl halides upon addition of hindered alkylphosphines to dimeric arylpalladium halide complexes. Organometallics, 2004, 23, 1533-1541.
[http://dx.doi.org/10.1021/om034277u]
[34]
Yamashita, M.; Hartwig, J.F. Synthesis, structure, and reductive elimination chemistry of three-coordinate arylpalladium amido complexes. J. Am. Chem. Soc., 2004, 126(17), 5344-5345.
[http://dx.doi.org/10.1021/ja0315107] [PMID: 15113190]
[35]
Stambuli, J.P.; Weng, Z.; Incarvito, C.D.; Hartwig, J.F. Reductive elimination of ether from T-shaped, monomeric arylpalladium alkoxides. Angew. Chem. Int. Ed. Engl., 2007, 46(40), 7674-7677.
[http://dx.doi.org/10.1002/anie.200702809] [PMID: 17786903]
[36]
(a) an der Heiden, M.; Plenio, H. The effect of steric bulk in Sonogashira coupling reactions. Chem. Commun. (Camb.), 2007, (9), 972-974.
[http://dx.doi.org/10.1039/B616608C] [PMID: 17311138]
(b) an der Heiden, M.R.; Plenio, H.; Immel, S.; Burello, E.; Rothenberg, G.; Hoefsloot, H.C.J. Insights into Sonogashira cross-coupling by high-throughput kinetics and descriptor modeling. Chemistry, 2008, 14(9), 2857-2866.
[http://dx.doi.org/10.1002/chem.200701418] [PMID: 18288651]
(c) Schilz, M.; Plenio, H. A guide to Sonogashira cross-coupling reactions: the influence of substituents in aryl bromides, acetylenes, and phosphines. J. Org. Chem., 2012, 77(6), 2798-2807.
[http://dx.doi.org/10.1021/jo202644g] [PMID: 22390837]
[37]
Ehrentraut, A.; Zapf, A.; Beller, M. A new improved catalyst for the palladium catalyzed amination of aryl chlorides. J. Mol. Catal. Chem., 2002, 182-183, 515-523.
[http://dx.doi.org/10.1016/S1381-1169(01)00503-9]
[38]
(a) Stambuli, J.P.; Stauffer, S.R.; Shaughnessy, K.H.; Hartwig, J.F. Screening of homogeneous catalysts by fluorescence resonance energy transfer. Identification of catalysts for room-temperature Heck reactions. J. Am. Chem. Soc., 2001, 123(11), 2677-2678.
[http://dx.doi.org/10.1021/ja0058435] [PMID: 11456943]
(b) Stauffer, S.R.; Hartwig, J.F. Fluorescence resonance energy transfer (FRET) as a high-throughput assay for coupling reactions. Arylation of amines as a case study. J. Am. Chem. Soc., 2003, 125(23), 6977-6985.
[http://dx.doi.org/10.1021/ja034161p] [PMID: 12783551]
(c) Stauffer, S.R.; Beare, N.A.; Stambuli, J.P.; Hartwig, J.F. Palladium-catalyzed arylation of ethyl cyanoacetate. Fluorescence resonance energy transfer as a tool for reaction discovery. J. Am. Chem. Soc., 2001, 123(19), 4641-4642.
[http://dx.doi.org/10.1021/ja0157402] [PMID: 11457267]
[39]
(a) Nishiyama, M.; Yamamoto, T.; Koie, Y. Synthesis of N-arylpiperazines from aryl halides and piperazine under a palladium tri-tert-butylphosphine catalyst. Tetrahedron Lett., 1998, 39, 617-620.
[http://dx.doi.org/10.1016/S0040-4039(97)10659-1]
(b) Yamamoto, T.; Nishiyama, M.; Koie, Y. Palladium-catalyzed synthesis of triarylamines from aryl halides and diarylamines. Tetrahedron Lett., 1998, 39, 2367-2370.
[http://dx.doi.org/10.1016/S0040-4039(98)00202-0]
[40]
Hartwig, J.F.; Kawatsura, M.; Hauck, S.I.; Shaughnessy, K.H.; Alcazar-Roman, L.M. Room temperature palladium-catalyzed amination of aryl bromides and chlorides and extended scope of aromatic C-N bond formation with a commercial ligand. J. Org. Chem., 1999, 64(15), 5575-5580.
[http://dx.doi.org/10.1021/jo990408i] [PMID: 11674624]
[41]
Prashad, M.; Mak, X.Y.; Liu, Y.; Repič, O. Palladium-catalyzed amination of aryl bromides with hindered N-alkyl-substituted anilines using a palladium(I) tri-tert-butylphosphine bromide dimer. J. Org. Chem., 2003, 68(3), 1163-1164.
[http://dx.doi.org/10.1021/jo020609d] [PMID: 12558453]
[42]
Liu, X.; Barry, M.; Tsou, H-R. Palladium-catalyzed arylation of N,N-dialkylhydrazines and the subsequent conversion to anilines. Tetrahedron Lett., 2007, 48, 8409-8412.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.177]
[43]
Lebedev, A.Y.; Izmer, V.V.; Kazyul’kin, D.N.; Beletskaya, I.P.; Voskoboynikov, A.Z. Palladium-catalyzed stereocontrolled vinylation of azoles and phenothiazine. Org. Lett., 2002, 4(4), 623-626.
[http://dx.doi.org/10.1021/ol0172370] [PMID: 11843607]
[44]
Lee, S.; Jørgensen, M.; Hartwig, J.F. Palladium-catalyzed synthesis of arylamines from aryl halides and lithium bis(trimethylsilyl)amide as an ammonia equivalent. Org. Lett., 2001, 3(17), 2729-2732.
[http://dx.doi.org/10.1021/ol016333y] [PMID: 11506620]
[45]
Lee, D-Y.; Hartwig, J.F. Zinc trimethylsilylamide as a mild ammonia equivalent and base for the amination of aryl halides and triflates. Org. Lett., 2005, 7(6), 1169-1172.
[http://dx.doi.org/10.1021/ol050141b] [PMID: 15760166]
[46]
Fletcher, A.J.; Bax, M.N.; Willis, M.C. Palladium-catalysed N-annulation routes to indoles: the synthesis of indoles with sterically demanding N-substituents, including demethylasterriquinone A1. Chem. Commun. (Camb.), 2007, (45), 4764-4766.
[http://dx.doi.org/10.1039/b712227f] [PMID: 18004434]
[47]
Newman, S.G.; Lautens, M. The role of reversible oxidative addition in selective palladium(0)-catalyzed intramolecular cross-couplings of polyhalogenated substrates: synthesis of brominated indoles. J. Am. Chem. Soc., 2010, 132(33), 11416-11417.
[http://dx.doi.org/10.1021/ja1052335] [PMID: 20681622]
[48]
Goodson, F.E.; Hauck, S.I.; Hartwig, J.F. Palladium-catalyzed synthesis of pure, regiodefined polymeric triarylamines. J. Am. Chem. Soc., 1999, 121, 7527-7539.
[http://dx.doi.org/10.1021/ja990632p]
[49]
Littke, A.F.; Fu, G.C. A convenient and general method for Pd-catalyzed Suzuki cross-couplings of aryl chlorides and arylboronic acids. Angew. Chem. Int. Ed. Engl., 1998, 37(24), 3387-3388.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3387:AID-ANIE3387>3.0.CO;2-P] [PMID: 29711304]
[50]
Zou, Y.; Yue, G.; Xu, J.; Zhou, J. General Suzuki coupling of heteroaryl bromides by using tri-tert-butylphosphine as a supporting ligand. Eur. J. Org. Chem., 2014, 2014(27), 5901-5905.
[http://dx.doi.org/10.1002/ejoc.201402915]
[51]
Dolliver, D.D.; Bhattarai, B.T.; Pandey, A.; Lanier, M.L.; Bordelon, A.S.; Adhikari, S.; Dinser, J.A.; Flowers, P.F.; Wills, V.S.; Schneider, C.L.; Shaughnessy, K.H.; Moore, J.N.; Raders, S.M.; Snowden, T.S.; McKim, A.S.; Fronczek, F.R. Stereospecific Suzuki, Sonogashira, and Negishi coupling reactions of N-alkoxyimidoyl iodides and bromides. J. Org. Chem., 2013, 78(8), 3676-3687.
[http://dx.doi.org/10.1021/jo400179u] [PMID: 23534335]
[52]
Guinchard, X.; Bugaut, X.; Cook, C.; Roulland, E. Palladium(0)-catalyzed cross-coupling of potassium (Z)-2-chloroalk-1-enyl trifluoroborates: a chemo- and stereoselective access to (Z)-chloroolefins and trisubstituted alkenes. Chemistry, 2009, 15(23), 5793-5798.
[http://dx.doi.org/10.1002/chem.200900425] [PMID: 19396890]
[53]
(a) Zhang, H-H.; Xing, C-H.; Hu, Q-S. Controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization of AB-type monomers with PhPd(t-Bu3P)I or Pd2(dba)3/t-Bu3P/ArI as the initiator. J. Am. Chem. Soc., 2012, 134(32), 13156-13159.
[http://dx.doi.org/10.1021/ja302745t] [PMID: 22860802]
(b) Zhang, H-H.; Xing, C-H.; Hu, Q-S.; Hong, K. Controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization of AB-type monomers with ArPd(t-Bu3P)X or Pd2(dba)3/t-Bu3P/ArX as the initiator. Macromolecules, 2015, 48, 967-978.
[http://dx.doi.org/10.1021/ma502521u]
[54]
Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M.R. Stereospecific pd-catalyzed cross-coupling reactions of secondary alkylboron nucleophiles and aryl chlorides. J. Am. Chem. Soc., 2014, 136(40), 14027-14030.
[http://dx.doi.org/10.1021/ja508815w] [PMID: 25226092]
[55]
Endo, K.; Ohkubo, T.; Ishioka, T.; Shibata, T. Cross coupling between sp3-carbon and sp3-carbon using a diborylmethane derivative at room temperature. J. Org. Chem., 2012, 77(10), 4826-4831.
[http://dx.doi.org/10.1021/jo3004293] [PMID: 22540212]
[56]
(a) Littke, A.F.; Fu, G.C. The first general method for Stille cross-couplings of aryl chlorides. Angew. Chem. Int. Ed. Engl., 1999, 38(16), 2411-2413.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990816)38:16<2411:AID-ANIE2411>3.0.CO;2-T] [PMID: 10458805]
(b) Littke, A.F.; Schwarz, L.; Fu, G.C. Pd/P(t-Bu)3: a mild and general catalyst for Stille reactions of aryl chlorides and aryl bromides. J. Am. Chem. Soc., 2002, 124(22), 6343-6348.
[http://dx.doi.org/10.1021/ja020012f] [PMID: 12033863]
[57]
Ferguson, D.M.; Bour, J.R.; Canty, A.J.; Kampf, J.W.; Sanford, M.S. Stoichiometric and catalytic aryl-perfluoroalkyl coupling at tri-tert-butylphosphine Palladium(II) complexes. J. Am. Chem. Soc., 2017, 139(34), 11662-11665.
[http://dx.doi.org/10.1021/jacs.7b05216] [PMID: 28800228]
[58]
Dai, C.; Fu, G.C. The first general method for palladium-catalyzed Negishi cross-coupling of aryl and vinyl chlorides: use of commercially available Pd(P(t-Bu)(3))2 as a catalyst. J. Am. Chem. Soc., 2001, 123(12), 2719-2724.
[http://dx.doi.org/10.1021/ja003954y] [PMID: 11456957]
[59]
Shu, C.; Sidhu, K.; Zhang, L.; Wang, X.J.; Krishnamurthy, D.; Senanayake, C.H. Palladium-catalyzed cross-coupling of cyclopropylmagnesium bromide with aryl bromides mediated by zinc halide additives. J. Org. Chem., 2010, 75(19), 6677-6680.
[http://dx.doi.org/10.1021/jo100983c] [PMID: 20815373]
[60]
Kalvet, I.; Magnin, G.; Schoenebeck, F. Rapid room-temperature, chemoselective Csp2 -Csp2 coupling of poly(pseudo)halogenated arenes enabled by Palladium(I) catalysis in air. Angew. Chem. Int. Ed. Engl., 2017, 56(6), 1581-1585.
[http://dx.doi.org/10.1002/anie.201609635] [PMID: 28032945]
[61]
Campos, K.R.; Klapars, A.; Waldman, J.H.; Dormer, P.G.; Chen, C.Y. Enantioselective, palladium-catalyzed α-arylation of N-Boc-pyrrolidine. J. Am. Chem. Soc., 2006, 128(11), 3538-3539.
[http://dx.doi.org/10.1021/ja0605265] [PMID: 16536525]
[62]
Coldham, I.; Leonori, D. Synthesis of 2-arylpiperidines by palladium couplings of aryl bromides with organozinc species derived from deprotonation of N-boc-piperidine. Org. Lett., 2008, 10(17), 3923-3925.
[http://dx.doi.org/10.1021/ol801579r] [PMID: 18683935]
[63]
Millet, A.; Dailler, D.; Larini, P.; Baudoin, O. Ligand-controlled α- and β-arylation of acyclic N-Boc amines. Angew. Chem. Int. Ed. Engl., 2014, 53(10), 2678-2682.
[http://dx.doi.org/10.1002/anie.201310904] [PMID: 24504659]
[64]
Hughes, M.; Boultwood, T.; Zeppetelli, G.; Bull, J.A. Palladium-catalyzed cross-coupling of aziridinylmetal species, generated by sulfinyl-magnesium exchange, with aryl bromides: reaction optimization, scope, and kinetic investigations. J. Org. Chem., 2013, 78(3), 844-854.
[http://dx.doi.org/10.1021/jo3027824] [PMID: 23311879]
[65]
Kawatsura, M.; Hartwig, J.F. Simple, highly active palladium catalysts for ketone and malonate arylation: dissecting the importance of chelation and steric hindrance. J. Am. Chem. Soc., 1999, 121, 1473-1478.
[http://dx.doi.org/10.1021/ja983378u]
[66]
Terao, Y.; Fukuoka, Y.; Satoh, T.; Miura, M.; Normura, M. Palladium-catalyzed α-arylation of aldehydes with aryl bromides. Tetrahedron Lett., 2002, 43, 101-104.
[http://dx.doi.org/10.1016/S0040-4039(01)02077-9]
[67]
Franzoni, I.; Guénée, L.; Mazet, C. Access to congested quaternary centers by Pd-catalyzed intermolecular γ-arylation of unactivated α,β-unsaturated aldehydes. Chem. Sci. (Camb.), 2013, 4, 2619-2624.
[http://dx.doi.org/10.1039/c3sc50806d]
[68]
Johnson, T.; Pultar, F.; Menke, F.; Lautens, M. Palladium-Catalyzed α-Arylation of Vinylogous Esters for the Synthesis of γ,γ-Disubstituted Cyclohexenones. Org. Lett., 2016, 18(24), 6488-6491.
[http://dx.doi.org/10.1021/acs.orglett.6b03394] [PMID: 27978660]
[69]
Lee, S.; Beare, N.A.; Hartwig, J.F. Palladium-catalyzed alpha-arylation of esters and protected amino acids. J. Am. Chem. Soc., 2001, 123(34), 8410-8411.
[http://dx.doi.org/10.1021/ja016032j] [PMID: 11516296]
[70]
Jørgensen, M.; Lee, S.; Liu, X.; Wolkowski, J.P.; Hartwig, J.F. Efficient synthesis of alpha-aryl esters by room-temperature palladium-catalyzed coupling of aryl halides with ester enolates. J. Am. Chem. Soc., 2002, 124(42), 12557-12565.
[http://dx.doi.org/10.1021/ja027643u] [PMID: 12381200]
[71]
Hama, T.; Hartwig, J.F. Palladium-catalyzed α-arylation of esters with chloroarenes. Org. Lett., 2008, 10(8), 1549-1552.
[http://dx.doi.org/10.1021/ol800258u] [PMID: 18358039]
[72]
Nambo, M.; Yar, M.; Smith, J.D.; Crudden, C.M. The concise synthesis of unsymmetric triarylacetonitriles via Pd-catalyzed sequential arylation: a new synthetic approach to tri- and tetraarylmethanes. Org. Lett., 2015, 17(1), 50-53.
[http://dx.doi.org/10.1021/ol503213z] [PMID: 25523024]
[73]
Nambo, M.; Crudden, C.M. Modular synthesis of triarylmethanes through palladium-catalyzed sequential arylation of methyl phenyl sulfone. Angew. Chem. Int. Ed. Engl., 2014, 53(3), 742-746.
[http://dx.doi.org/10.1002/anie.201307019] [PMID: 24307286]
[74]
Beare, N.A.; Hartwig, J.F. Palladium-catalyzed arylation of malonates and cyanoesters using sterically hindered trialkyl- and ferrocenyldialkylphosphine ligands. J. Org. Chem., 2002, 67(2), 541-555.
[http://dx.doi.org/10.1021/jo016226h] [PMID: 11798329]
[75]
Kondo, Y.; Inamoto, K.; Ushiyama, M.; Sakamoto, T. Palladium catalyzed arylation of malonate accompanying in situ dealkoxycarbonylation. Chem. Commun. (Camb.), 2001, (24), 2704-2705.
[http://dx.doi.org/10.1039/b109418a]
[76]
(a) Iwama, T.; Rawal, V.H. Palladium-catalyzed regiocontrolled α-arylation of trimethylsilyl enol ethers with aryl halides. Org. Lett., 2006, 8(25), 5725-5728.
[http://dx.doi.org/10.1021/ol062093g] [PMID: 17134257]
(b) Su, W.; Raders, S.; Verkade, J.G.; Liao, X.; Hartwig, J.F. Pd-catalyzed α-arylation of trimethylsilyl enol ethers with aryl bromides and chlorides: a synergistic effect of two metal fluorides as additives. Angew. Chem. Int. Ed. Engl., 2006, 45(35), 5852-5855.
[http://dx.doi.org/10.1002/anie.200601887] [PMID: 16847853]
[77]
Wagner, F.; Harms, K.; Koert, U. Hauser-Heck: efficient synthesis of γ-aryl-β-ketoesters en route to substituted naphthalenes. Org. Lett., 2015, 17(22), 5670-5673.
[http://dx.doi.org/10.1021/acs.orglett.5b02952] [PMID: 26536142]
[78]
Liu, X.; Hartwig, J.F. Palladium-catalyzed arylation of trimethylsilyl enolates of esters and imides. High functional group tolerance and stereoselective synthesis of alpha-aryl carboxylic acid derivatives. J. Am. Chem. Soc., 2004, 126(16), 5182-5191.
[http://dx.doi.org/10.1021/ja031544e] [PMID: 15099101]
[79]
He, Z-T.; Hartwig, J.F. Palladium-catalyzed α-arylation of carboxylic acids and secondary amides via a traceless protecting strategy. J. Am. Chem. Soc., 2019, 141(30), 11749-11753.
[http://dx.doi.org/10.1021/jacs.9b03291] [PMID: 31287682]
[80]
Wu, L.; Hartwig, J.F. Mild palladium-catalyzed selective monoarylation of nitriles. J. Am. Chem. Soc., 2005, 127(45), 15824-15832.
[http://dx.doi.org/10.1021/ja053027x] [PMID: 16277525]
[81]
Ramnauth, J.; Bhardwaj, N.; Renton, P.; Rakhit, S.; Maddaford, S.P. The room-temperature palladium-catalyzed cyanation of aryl bromides and iodides with tri-t-butylphosphine as ligand. Synlett, 2003, 2003(14), 2237-2239.
[82]
Ryberg, P. Development of a mild and robust method for large-scale palladium-catalysed cyanation of aryl bromides: importance of the order of addition. Org. Process Res. Dev., 2008, 12, 540-543.
[http://dx.doi.org/10.1021/op800020r]
[83]
Ushkov, A.V.; Grushin, V.V. Rational catalysis design on the basis of mechanistic understanding: highly efficient Pd-catalyzed cyanation of aryl bromides with NaCN in recyclable solvents. J. Am. Chem. Soc., 2011, 133(28), 10999-11005.
[http://dx.doi.org/10.1021/ja2042035] [PMID: 21699208]
[84]
Hundertmark, T.; Littke, A.F.; Buchwald, S.L.; Fu, G.C. Pd(PhCN)2Cl2/P(t-Bu)(3): a versatile catalyst for Sonogashira reactions of aryl bromides at room temperature. Org. Lett., 2000, 2(12), 1729-1731.
[http://dx.doi.org/10.1021/ol0058947] [PMID: 10880212]
[85]
Soheili, A.; Albaneze-Walker, J.; Murry, J.A.; Dormer, P.G.; Hughes, D.L. Efficient and general protocol for the copper-free sonogashira coupling of aryl bromides at room temperature. Org. Lett., 2003, 5(22), 4191-4194.
[http://dx.doi.org/10.1021/ol035632f] [PMID: 14572282]
[86]
Finke, A.D.; Elleby, E.C.; Boyd, M.J.; Weissman, H.; Moore, J.S. Zinc chloride-promoted aryl bromide-alkyne cross-coupling reactions at room temperature. J. Org. Chem., 2009, 74(22), 8897-8900.
[http://dx.doi.org/10.1021/jo902015w] [PMID: 19860393]
[87]
Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J.H.; Jung, H.M.; Lee, S. One-pot synthesis of diarylalkynes using palladium-catalyzed sonogashira reaction and decarboxylative coupling of sp carbon and sp2 carbon. Org. Lett., 2008, 10(5), 945-948.
[http://dx.doi.org/10.1021/ol703130y] [PMID: 18229935]
[88]
(a) Littke, A.F.; Fu, G.C. Heck reactions in the presence of P(t-Bu)3: expanded scope and milder reaction conditions for the coupling of aryl chlorides. J. Org. Chem., 1999, 64(1), 10-11.
[http://dx.doi.org/10.1021/jo9820059] [PMID: 11674076]
(b) Littke, A.F.; Fu, G.C. A versatile catalyst for Heck reactions of aryl chlorides and aryl bromides under mild conditions. J. Am. Chem. Soc., 2001, 123(29), 6989-7000.
[http://dx.doi.org/10.1021/ja010988c] [PMID: 11459477]
[89]
Iizuka, M.; Kondo, Y. Palladium-catalyzed alkynylcarbonylation of aryl iodides with the use of Mo(Co)(6) in the presence of tBu3p ligand. Eur. J. Org. Chem., 2007, 31, 5180-5182.
[http://dx.doi.org/10.1002/ejoc.200700700]
[90]
Gøgsig, T.M.; Nielsen, D.U.; Lindhardt, A.T.; Skrydstrup, T. Palladium catalyzed carbonylative Heck reaction affording monoprotected 1,3-ketoaldehydes. Org. Lett., 2012, 14(10), 2536-2539.
[http://dx.doi.org/10.1021/ol300837d] [PMID: 22564004]
[91]
Wu, X.; Nilsson, P.; Larhed, M. Microwave-enhanced carbonylative generation of indanones and 3-acylaminoindanones. J. Org. Chem., 2005, 70(1), 346-349.
[http://dx.doi.org/10.1021/jo048375g] [PMID: 15624946]
[92]
Lagerlund, O.; Larhed, M. Microwave-promoted aminocarbonylations of aryl chlorides using Mo(CO)(6) as a solid carbon monoxide source. J. Comb. Chem., 2006, 8(1), 4-6.
[http://dx.doi.org/10.1021/cc050102r] [PMID: 16398545]
[93]
de Almeida, A.M.; Andersen, T.L.; Lindhardt, A.T.; de Almeida, M.V.; Skrydstrup, T. General method for the preparation of active esters by palladium-catalyzed alkoxycarbonylation of aryl bromides. J. Org. Chem., 2015, 80(3), 1920-1928.
[http://dx.doi.org/10.1021/jo5025464] [PMID: 25565181]
[94]
Quesnel, J.S.; Fabrikant, A.; Arndtsen, B.A. A flexible approach to Pd-catalyzed carbonylations via aroyl dimethylaminopyridinium salts. Chem. Sci. (Camb.), 2016, 7(1), 295-300.
[http://dx.doi.org/10.1039/C5SC02949J] [PMID: 29861983]
[95]
Goerlich, J.R.; Schmutzler, R. Organophosphorus compounds with tertiary alkyl substituents. VI. A convenient method for the preparation of di-1-adamantylphosphine and di-1-adamantylchlorophosphine. Phosphorus Sulfur Silicon Relat. Elem., 1995, 102, 211-215.
[http://dx.doi.org/10.1080/10426509508042559]
[96]
Hackett, M.; Whitesides, G.M. Synthesis and thermolysis of dimethylbis(trialkylphosphine)platinum(II) complexes in which the phosphine ligands contain adamantyl, adamantylmethyl, and methyl groups. Organometallics, 1987, 6, 403-410.
[http://dx.doi.org/10.1021/om00145a027]
[97]
Carrow, B.P.; Chen, L. Tri(1-adamantyl)phosphine: exceptional catalytic effects enabled by the synergy of chemical stability, donicity, and polarizability. Synlett, 2017, 28, 280-288.
[http://dx.doi.org/10.1055/s-0036-1588128]
[98]
Chen, L.; Sanchez, D.R.; Zhang, B.; Carrow, B.P. “Cationic” Suzuki-Miyaura coupling with acutely base-sensitive boronic acids. J. Am. Chem. Soc., 2017, 139(36), 12418-12421.
[http://dx.doi.org/10.1021/jacs.7b07687] [PMID: 28862445]
[99]
Chen, L.; Francis, H.; Carrow, B.P. An “on-cycle” precatalyst enables room-temperature polyfluoroarylation using sensitive boronic acids. ACS Catal., 2018, 8, 2989-2994.
[http://dx.doi.org/10.1021/acscatal.8b00341]
[100]
Zhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z.L.; Sigman, M.S.; Biscoe, M.R. Enantiodivergent Pd-catalyzed C-C bond formation enabled through ligand parameterization. Science, 2018, 362(6415), 670-674.
[http://dx.doi.org/10.1126/science.aat2299] [PMID: 30237245]
[101]
Shen, W. Palladium-catalyzed coupling of aryl chlorides with arylboronic acids. Tetrahedron Lett., 1997, 38, 5575-5578.
[http://dx.doi.org/10.1016/S0040-4039(97)01261-6]
[102]
Gøgsig, T.M.; Søbjerg, L.S.; Lindhardt, A.T.; Jensen, K.L.; Skrydstrup, T. Direct vinylation and difluorovinylation of arylboronic acids using vinyl- and 2,2-difluorovinyl tosylates via the Suzuki-Miyaura cross coupling. J. Org. Chem., 2008, 73(9), 3404-3410.
[http://dx.doi.org/10.1021/jo7027097] [PMID: 18380442]
[103]
(a) Kudo, N.; Perseghini, M.; Fu, G.C. A versatile method for Suzuki cross-coupling reactions of nitrogen heterocycles. Angew. Chem. Int. Ed. Engl., 2006, 45(8), 1282-1284.
[http://dx.doi.org/10.1002/anie.200503479] [PMID: 16425308]
(b) Clapham, K.M.; Batsanov, A.S.; Greenwood, R.D.R.; Bryce, M.R.; Smith, A.E.; Tarbit, B. Functionalized heteroarylpyridazines and pyridazin-3(2H)-one derivatives via palladium-catalyzed cross-coupling methodology. J. Org. Chem., 2008, 73(6), 2176-2181.
[http://dx.doi.org/10.1021/jo702420q] [PMID: 18294000]
[104]
(a) Li, X.; Zou, G. Palladium-catalyzed acylative cross-coupling of amides with diarylborinic acids and sodium tetraarylborates. J. Organomet. Chem., 2015, 794, 136-145.
[http://dx.doi.org/10.1016/j.jorganchem.2015.07.009]
(b) Li, X.; Zou, G. Acylative Suzuki coupling of amides: acyl-nitrogen activation via synergy of independently modifiable activating groups. Chem. Commun. (Camb.), 2015, 51(24), 5089-5092.
[http://dx.doi.org/10.1039/C5CC00430F] [PMID: 25712409]
[105]
Meng, G.; Shi, S.; Szostak, M. Palladium-catalyzed Suzuki-Miyaura cross-coupling of amides via site-selective N-C bond cleavage by cooperative catalysis. ACS Catal., 2016, 6, 7335-7339.
[http://dx.doi.org/10.1021/acscatal.6b02323]
[106]
(a) Bedford, R.B.; Butts, C.P.; Hurst, T.E.; Lidström, P. The suzuki coupling of aryl chlorides under microwave heating. Adv. Synth. Catal., 2004, 346, 1627-1630.
[http://dx.doi.org/10.1002/adsc.200404144]
(b) Bedford, R.B.; Cazin, C.S.J. Highly active catalysts for the Suzuki coupling of aryl chlorides. Chem. Commun. (Camb.), 2001, (17), 1540-1541.
[http://dx.doi.org/10.1039/b105394a] [PMID: 12240371]
(c) Bedford, R.B.; Cazin, C.S.J.; Coles, S.J.; Gelbrich, T.; Horton, P.N.; Hursthouse, M.B.; Light, M.E. High-activity catalysts for Suzuki coupling and amination reactions with deactivated aryl chloride substrates: importance of the palladium source. Organometallics, 2003, 22, 987-999.
[http://dx.doi.org/10.1021/om020841+]
(d) Bedford, R.B.; Cazin, C.S.J.; Hazelwood, S.L. Simple mixed tricyclohexylphosphane-triarylphosphite complexes as extremely high-activity catalysts for the Suzuki coupling of aryl chlorides. Angew. Chem. Int. Ed. Engl., 2002, 41(21), 4120-4122.
[http://dx.doi.org/10.1002/1521-3773(20021104)41:21<4120:AID-ANIE4120>3.0.CO;2-7] [PMID: 12412101]
(e) Bedford, R.B.; Hazelwood, S.L.; Limmert, M.E. Extremely high activity catalysts for the Suzuki coupling of aryl chlorides: the importance of catalyst longevity. Chem. Commun. (Camb.), 2002, (22), 2610-2611.
[http://dx.doi.org/10.1039/b209490h] [PMID: 12510261]
[107]
Bedford, R.B.; Cazin, C.S.J.; Hazelwood, S.L. Simple tricyclohexylphosphine-palladium complexes as efficient catalysts for the Stille coupling of deactivated aryl chlorides. Chem. Commun. (Camb.), 2002, (22), 2608-2609.
[http://dx.doi.org/10.1039/b208609n] [PMID: 12510260]
[108]
Netherton, M.R.; Dai, C.; Neuschütz, K.; Fu, G.C. Room-temperature alkyl-alkyl Suzuki cross-coupling of alkyl bromides that possess β hydrogens. J. Am. Chem. Soc., 2001, 123(41), 10099-10100.
[http://dx.doi.org/10.1021/ja011306o] [PMID: 11592890]
[109]
Kirchhoff, J.H.; Dai, C.; Fu, G.C. Method for palladium-catalyzed cross-couplings of simple alkyl chlorides: Suzuki reactions catalyzed by [Pd2(dba)3]/PCy3. Angew. Chem. Int. Ed. Engl., 2002, 41(11), 1945-1947.
[http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1945:AID-ANIE1945>3.0.CO;2-7] [PMID: 19750641]
[110]
Frisch, A.C.; Shaikh, N.; Zapf, A.; Beller, M. Palladium-catalyzed coupling of alkyl chlorides and grignard reagents. Angew. Chem. Int. Ed. Engl., 2002, 41(21), 4056-4059.
[http://dx.doi.org/10.1002/1521-3773(20021104)41:21<4056::AID-ANIE4056>3.0.CO;2-8] [PMID: 12412080]
[111]
Wu, X-F.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylative coupling of benzyl chlorides with aryl boronic acids in aqueous media. Tetrahedron Lett., 2010, 51, 6149-6149.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.078]
[112]
Malineni, J.; Jezorek, R.L.; Zhang, N.; Percec, V. an indefinitely air-stable σ-ni(ii) precatalyst for quantitative cross-coupling of unreactive aryl halides and mesylates with aryl neopentylglycolboronates. Synthesis, 2016, 48, 2795-2807.
[http://dx.doi.org/10.1055/s-0035-1562342]
[113]
Zim, D.; Lando, V.R.; Dupont, J.; Monteiro, A.L. NiCl(2)(PCy(3))(2): a simple and efficient catalyst precursor for the Suzuki cross-coupling of aryl tosylates and arylboronic acids. Org. Lett., 2001, 3(19), 3049-3051.
[http://dx.doi.org/10.1021/ol016526l] [PMID: 11554840]
[114]
Tang, Z-Y.; Hu, Q-S. Room-temperature Ni0-catalyzed cross-coupling reactions of aryl arenesulfonates with arylboronic acids. J. Am. Chem. Soc., 2004, 126(10), 3058-3059.
[http://dx.doi.org/10.1021/ja038752r] [PMID: 15012129]
[115]
Hanley, P.S.; Ober, M.S.; Krasovskiy, A.L.; Whiteker, G.T.; Kruper, W.J. Nickel- and Palladium-catalyzed coupling of aryl fluorosulfonates with aryl boronic acids enabled by sulfuryl fluoride. ACS Catal., 2015, 5, 5041-5046.
[http://dx.doi.org/10.1021/acscatal.5b01021]
[116]
(a) Xing, C-H.; Lee, J-R.; Tang, Z-Y.; Zheng, J.R.; Hu, Q-S. Room temperature Nickel(II) complexes [(4-MeOC6H4)Ni(PCy3)2OTs and Ni(PCy3)2X2]-catalyzed cross-coupling reactions of aryl/alkenyl sulfonates with arylboronic acids. Adv. Synth. Catal., 2011, 353, 2051-2059.
[http://dx.doi.org/10.1002/adsc.201100151]
(b) Malineni, J.; Jezorek, R.L.; Zhang, N.; Percec, V. NiIICl(1-Naphthyl)(PCy3)2, An air-stable σ-NiII precatalyst for quantitative cross-coupling of aryl C-O electrophiles with aryl neopentylglycolboronates. Synthesis, 2016, 48, 2808-2815.
[http://dx.doi.org/10.1055/s-0035-1562343]
[117]
Quasdorf, K.W.; Tian, X.; Garg, N.K. Cross-coupling reactions of aryl pivalates with boronic acids. J. Am. Chem. Soc., 2008, 130(44), 14422-14423.
[http://dx.doi.org/10.1021/ja806244b] [PMID: 18839946]
[118]
Tobisu, M.; Shimasaki, T.; Chatani, N. Nickel-catalyzed cross-coupling of aryl methyl ethers with aryl boronic esters. Angew. Chem. Int. Ed. Engl., 2008, 47(26), 4866-4869.
[http://dx.doi.org/10.1002/anie.200801447] [PMID: 18496808]
[119]
Dankwardt, J.W. Nickel-catalyzed cross-coupling of aryl grignard reagents with aromatic alkyl ethers: an efficient synthesis of unsymmetrical biaryls. Angew. Chem. Int. Ed. Engl., 2004, 43(18), 2428-2432.
[http://dx.doi.org/10.1002/anie.200453765] [PMID: 15114582]
[120]
Yu, D-G.; Wang, X.; Zhu, R-Y.; Luo, S.; Zhang, X-B.; Wang, B-Q.; Wang, L.; Shi, Z-J. Direct arylation/alkylation/magnesiation of benzyl alcohols in the presence of Grignard reagents via Ni-, Fe-, or Co-catalyzed sp3 C-O bond activation. J. Am. Chem. Soc., 2012, 134(36), 14638-14641.
[http://dx.doi.org/10.1021/ja307045r] [PMID: 22920831]
[121]
Zhao, F.; Zhang, Y-F.; Wen, J.; Yu, D-G.; Wei, J-B.; Xi, Z.; Shi, Z-J. Programmed selective sp2 C-O bond activation toward multiarylated benzenes. Org. Lett., 2013, 15(13), 3230-3233.
[http://dx.doi.org/10.1021/ol4011757] [PMID: 23789920]
[122]
Yi, C.; Hua, R. Efficient copper-free PdCl2(PCy3)2-catalyzed Sonogashira coupling of aryl chlorides with terminal alkynes. J. Org. Chem., 2006, 71(6), 2535-2537.
[http://dx.doi.org/10.1021/jo0525175] [PMID: 16526813]
[123]
Hartung, C.G.; Köhler, K.; Beller, M. Highly selective palladium-catalyzed Heck reactions of aryl bromides with cycloalkenes. Org. Lett., 1999, 1(5), 709-711.
[http://dx.doi.org/10.1021/ol9901063] [PMID: 16118869]
[124]
Azizollahi, H.; Mehta, V.P.; García-López, J-A. Pd-catalyzed cascade reactions involving skipped dienes: from double carbopalladation to remote C-C cleavage. Chem. Commun. (Camb.), 2019, 55(69), 10281-10284.
[http://dx.doi.org/10.1039/C9CC04817K] [PMID: 31396607]
[125]
Iwasaki, M.; Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Pd(OAc)2/P(cC6H11)3-catalyzed allylation of aryl halides with homoallyl alcohols via retro-allylation. J. Am. Chem. Soc., 2007, 129(14), 4463-4469.
[http://dx.doi.org/10.1021/ja067372d] [PMID: 17373791]
[126]
Ishiyama, T.; Ishida, K.; Miyaura, N. Synthesis of pinacol arylboronates via cross-coupling reaction of bis(pinacolato)diboron with chloroarenes catalyzed by palldium(0)-tricyclohexylphosphine complexes. Tetrahedron, 2001, 57, 9813-9816.
[http://dx.doi.org/10.1016/S0040-4020(01)00998-X]
[127]
(a) Liu, X-W.; Echavarren, J.; Zarate, C.; Martin, R. Ni-catalyzed borylation of aryl fluorides via C-F cleavage. J. Am. Chem. Soc., 2015, 137(39), 12470-12473.
[http://dx.doi.org/10.1021/jacs.5b08103] [PMID: 26397717]
(b) Niwa, T.; Ochiai, H.; Watanabe, Y.; Hosoya, T. Ni/Cu-catalyzed defluoroborylation of fluoroarenes for diverse C-F bond functionalizations. J. Am. Chem. Soc., 2015, 137(45), 14313-14318.
[http://dx.doi.org/10.1021/jacs.5b10119] [PMID: 26488683]
[128]
Malapit, C.A.; Bour, J.R.; Laursen, S.R.; Sanford, M.S. mechanism and scope of nickel-catalyzed decarbonylative borylation of carboxylic acid fluorides. J. Am. Chem. Soc., 2019, 141(43), 17322-17330.
[http://dx.doi.org/10.1021/jacs.9b08961] [PMID: 31617708]
[129]
Niwa, T.; Ochiai, H.; Hosoya, T. Copper-catalyzed ipso-borylation of fluoroarenes. ACS Catal., 2017, 7(7), 4535-4541.
[http://dx.doi.org/10.1021/acscatal.7b01448]
[130]
Campeau, L-C.; Parisien, M.; Jean, A.; Fagnou, K. Catalytic direct arylation with aryl chlorides, bromides, and iodides: intramolecular studies leading to new intermolecular reactions. J. Am. Chem. Soc., 2006, 128(2), 581-590.
[http://dx.doi.org/10.1021/ja055819x] [PMID: 16402846]
[131]
Song, J.; Li, Y.; Sun, W.; Yi, C.; Wu, H.; Wang, H.; Ding, K.; Xiao, K.; Liu, C. Efficient palladium-catalyzed C(sp2)–H activation towards the synthesis of fluorenes. New J. Chem., 2016, 40, 9030-9033.
[http://dx.doi.org/10.1039/C6NJ02033J]
[132]
Song, J.; Wei, F.; Sun, W.; Li, K.; Tian, Y.; Liu, C.; Li, Y.; Xie, L. Synthesis of fluoren-9-ones and ladder-type oligo-p-phenylene cores via Pd-catalyzed carbonylative multiple C-C bond formation. Org. Lett., 2015, 17(9), 2106-2109.
[http://dx.doi.org/10.1021/acs.orglett.5b00680] [PMID: 25895161]
[133]
Lafrance, M.; Gorelsky, S.I.; Fagnou, K. High-yielding palladium-catalyzed intramolecular alkane arylation: reaction development and mechanistic studies. J. Am. Chem. Soc., 2007, 129(47), 14570-14571.
[http://dx.doi.org/10.1021/ja076588s] [PMID: 17985911]
[134]
Rousseaux, S.; Gorelsky, S.I.; Chung, B.K.W.; Fagnou, K. Investigation of the mechanism of C(sp3)-H bond cleavage in Pd(0)-catalyzed intramolecular alkane arylation adjacent to amides and sulfonamides. J. Am. Chem. Soc., 2010, 132(31), 10692-10705.
[http://dx.doi.org/10.1021/ja103081n] [PMID: 20681702]
[135]
Sofack-Kreutzer, J.; Martin, N.; Renaudat, A.; Jazzar, R.; Baudoin, O. Synthesis of hexahydroindoles by intramolecular C(sp3)-H alkenylation: application to the synthesis of the core of aeruginosins. Angew. Chem. Int. Ed. Engl., 2012, 51(41), 10399-10402.
[http://dx.doi.org/10.1002/anie.201205403] [PMID: 22965492]
[136]
Ladd, C.L.; Charette, A.B. Access to cyclopropyl-fused azacycles via a palladium-catalyzed direct alkenylation strategy. Org. Lett., 2016, 18(23), 6046-6049.
[http://dx.doi.org/10.1021/acs.orglett.6b02982] [PMID: 27934342]
[137]
(a) Baghbanzadeh, M.; Pilger, C.; Kappe, C.O. Palladium-catalyzed direct arylation of heteroaromatic compounds: improved conditions utilizing controlled microwave heating. J. Org. Chem., 2011, 76(19), 8138-8142.
[http://dx.doi.org/10.1021/jo201516v] [PMID: 21851080]
(b) Lapointe, D.; Markiewicz, T.; Whipp, C.J.; Toderian, A.; Fagnou, K. Predictable and site-selective functionalization of poly(hetero)arene compounds by palladium catalysis. J. Org. Chem., 2011, 76(3), 749-759.
[http://dx.doi.org/10.1021/jo102081a] [PMID: 21117710]
(c) Liégault, B.; Petrov, I.; Gorelsky, S.I.; Fagnou, K. Modulating reactivity and diverting selectivity in palladium-catalyzed heteroaromatic direct arylation through the use of a chloride activating/blocking group. J. Org. Chem., 2010, 75(4), 1047-1060.
[http://dx.doi.org/10.1021/jo902515z] [PMID: 20073523]
[138]
Bien, J.; Davulcu, A.; DelMonte, A.J.; Fraunhoffer, K.J.; Gao, Z.; Hang, C.; Hsiao, Y.; Hu, W.; Katipally, K.; Littke, A.; Pedro, A.; Qiu, Y.; Sandoval, M.; Schild, R.; Soltani, M.; Tedesco, A.; Vanyo, D.; Vemishetti, P.; Waltermire, R.E. The first kilogram synthesis of beclabuvir, an HCV NS5B polymerase inhibitor. Org. Process Res. Dev., 2018, 22, 1393-1408.
[http://dx.doi.org/10.1021/acs.oprd.8b00214]
[139]
Niwa, T.; Yorimitsu, H.; Oshima, K. Palladium-catalyzed direct arylation of aryl(azaaryl)methanes with aryl halides providing triarylmethanes. Org. Lett., 2007, 9(12), 2373-2375.
[http://dx.doi.org/10.1021/ol0708119] [PMID: 17497870]
[140]
Chen, J-J.; Onogi, S.; Hsieh, Y-C.; Hsiao, C-C.; Higashibayashi, S.; Sakurai, H.; Wu, Y-T. Palladium-catalyzed arylation of methylene-bridged polyarenes: synthesis and structures of 9-arylfluorene derivatives. Adv. Synth. Catal., 2012, 354, 1551-1558.
[http://dx.doi.org/10.1002/adsc.201100931]
[141]
Niwa, T.; Yorimitsu, H.; Oshima, K. Palladium-catalyzed benzylic arylation of N-benzylxanthone imine. Org. Lett., 2008, 10(20), 4689-4691.
[http://dx.doi.org/10.1021/ol802070d] [PMID: 18808130]
[142]
(a) Guo, T. Palladium/copper-catalyzed cross-coupling reactions for the synthesis of 4-heteroaryl quinolinone. Tetrahedron Lett., 2016, 57, 5837-5840.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.056]
(b) Guo, T.; Liu, Y.; Zhao, Y-H.; Zhang, P-K.; Han, S-L.; Liu, H-M. Palladium-catalyzed coupling reactions of 4-coumarinyl triflates with indoles leading to 4-indolyl coumarins. Tetrahedron Lett., 2016, 57, 4629-4632.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.012]
[143]
Kubo, T.; Chatani, N. Dicumyl peroxide as a methylating reagent in the Ni-catalyzed methylation of ortho C-H bonds in aromatic amides. Org. Lett., 2016, 18(7), 1698-1701.
[http://dx.doi.org/10.1021/acs.orglett.6b00658] [PMID: 26991045]
[144]
Huang, L.; Weix, D.J. Ruthenium-catalyzed C-H arylation of diverse aryl carboxylic acids with aryl and heteroaryl halides. Org. Lett., 2016, 18(20), 5432-5435.
[http://dx.doi.org/10.1021/acs.orglett.6b02862] [PMID: 27736085]
[145]
Tan, K.L.; Park, S.; Ellman, J.A.; Bergman, R.G. Intermolecular coupling of alkenes to heterocycles via C-H bond activation. J. Org. Chem., 2004, 69(21), 7329-7335.
[http://dx.doi.org/10.1021/jo048666p] [PMID: 15471487]
[146]
Zhao, H.; Wei, Y.; Xu, J.; Kan, J.; Su, W.; Hong, M. Pd/PR3-catalyzed cross-coupling of aromatic carboxylic acids with electron-deficient polyfluoroarenes via combination of decarboxylation with sp2 C-H cleavage. J. Org. Chem., 2011, 76(3), 882-893.
[http://dx.doi.org/10.1021/jo102175f] [PMID: 21222475]
[147]
Hu, P.; Shang, Y.; Su, W. A general Pd-catalyzed decarboxylative cross-coupling reaction between aryl carboxylic acids: synthesis of biaryl compounds. Angew. Chem. Int. Ed. Engl., 2012, 51(24), 5945-5949.
[http://dx.doi.org/10.1002/anie.201200153] [PMID: 22492664]
[148]
Zhou, J.; Fu, G.C. Palladium-catalyzed negishi cross-coupling reactions of unactivated alkyl iodides, bromides, chlorides, and tosylates. J. Am. Chem. Soc., 2003, 125(41), 12527-12530.
[http://dx.doi.org/10.1021/ja0363258] [PMID: 14531697]
[149]
Huang, Z.; Dong, G. Catalytic direct β-arylation of simple ketones with aryl iodides. J. Am. Chem. Soc., 2013, 135(47), 17747-17750.
[http://dx.doi.org/10.1021/ja410389a] [PMID: 24237137]
[150]
Narbonne, V.; Retailleau, P.; Maestri, G.; Malacria, M. Diastereoselective synthesis of dibenzoazepines through chelation on palladium(IV) intermediates. Org. Lett., 2014, 16(2), 628-631.
[http://dx.doi.org/10.1021/ol403525c] [PMID: 24380587]
[151]
King, R.B.; Cloyd, J.C., Jr; Reimann, R.H. Poly(tertiary phosphines and arsines). XIII. Some neopentyl poly(tertiary phosphines). J. Org. Chem., 1976, 41, 972-977.
[http://dx.doi.org/10.1021/jo00868a016]
[152]
Hill, L.L.; Moore, L.R.; Huang, R.; Craciun, R.; Vincent, A.J.; Dixon, D.A.; Chou, J.; Woltermann, C.J.; Shaughnessy, K.H. Bulky alkylphosphines with neopentyl substituents as ligands in the amination of aryl bromides and chlorides. J. Org. Chem., 2006, 71(14), 5117-5125.
[http://dx.doi.org/10.1021/jo060303x] [PMID: 16808497]
[153]
(a) Raders, S.M.; Moore, J.N.; Parks, J.K.; Miller, A.D.; Leißing, T.M.; Kelley, S.P.; Rogers, R.D.; Shaughnessy, K.H. Trineopentylphosphine: a conformationally flexible ligand for the coupling of sterically demanding substrates in the Buchwald-Hartwig amination and Suzuki-Miyaura reaction. J. Org. Chem., 2013, 78(10), 4649-4664.
[http://dx.doi.org/10.1021/jo400435z] [PMID: 23638733]
(b) Raders, S.M.; Jones, J.M.; Semmes, J.G.; Kelley, S.P.; Rogers, R.D.; Di Shaughnessy, K.H. -tert-butylneopentylphosphine (DTBNpP): an efficient ligand in the palladium-catalyzed α-arylation of ketones. Eur. J. Org. Chem., 2014, 33, 7395-7404.
[http://dx.doi.org/10.1002/ejoc.201402474]
(c) Lauer, M.G.; Thompson, M.K.; Shaughnessy, K.H. Controlling olefin isomerization in the heck reaction with neopentyl phosphine ligands. J. Org. Chem., 2014, 79(22), 10837-10848.
[http://dx.doi.org/10.1021/jo501840u] [PMID: 25333873]
[154]
Hu, H.; Qu, F.; Gerlach, D.L.; Shaughnessy, K.H. Mechanistic study of the role of substrate steric effects and aniline inhibition on the bis(trineopentylphosphine)palladium(0)-catalyzed arylation of aniline derivatives. ACS Catal., 2017, 7, 2516-2527.
[http://dx.doi.org/10.1021/acscatal.7b00024]
[155]
Goerlich, J.R.; Schmutzler, R. Di-1-adamantylphosphine, a highly sterically hindered phosphine. Preparation and reactions. Phosphorus Sulfur Silicon Relat. Elem., 1993, 81, 141-148.
[http://dx.doi.org/10.1080/10426509308034383]
[156]
(a) Ehrentraut, A.; Zapf, A.; Beller, M. A new efficient palladium catalyst for Heck reactions of deactivated aryl chlorides. Synlett, 2000, 2000(11), 1589-1592.
(b) Tewari, A.; Hein, M.; Zapf, A.; Beller, M. General synthesis and catalytic applications of di(1-adamantyl)alkylphosphines and their phosphonium salts. Synthesis, 2004, 2004(6), 935-941.
[157]
Agnew-Francis, K.A.; Williams, C.M. Catalysts containing the adamantane Scaffold. Adv. Synth. Catal., 2016, 358, 675-700.
[http://dx.doi.org/10.1002/adsc.201500949]
[158]
Köllhofer, A.; Pullmann, T.; Plenio, H. A versatile catalyst for the Sonogashira coupling of aryl chlorides. Angew. Chem. Int. Ed. Engl., 2003, 42(9), 1056-1058.
[http://dx.doi.org/10.1002/anie.200390273] [PMID: 12616567]
[159]
Li, H.; Zhong, Y-L.; Chen, C.Y.; Ferraro, A.E.; Wang, D. A concise and atom-economical Suzuki-Miyaura coupling reaction using unactivated trialkyl- and triarylboranes with aryl halides. Org. Lett., 2015, 17(14), 3616-3619.
[http://dx.doi.org/10.1021/acs.orglett.5b01720] [PMID: 26125106]
[160]
Molander, G.A.; Gormisky, P.E. Cross-coupling of cyclopropyl- and cyclobutyltrifluoroborates with aryl and heteroaryl chlorides. J. Org. Chem., 2008, 73(19), 7481-7485.
[http://dx.doi.org/10.1021/jo801269m] [PMID: 18759480]
[161]
Molander, G.A.; Wisniewski, S.R. Stereospecific cross-coupling of secondary organotrifluoroborates: potassium 1-(benzyloxy)alkyltrifluoroborates. J. Am. Chem. Soc., 2012, 134(40), 16856-16868.
[http://dx.doi.org/10.1021/ja307861n] [PMID: 23025482]
[162]
Molander, G.A.; Trice, S.L.J.; Kennedy, S.M.; Dreher, S.D.; Tudge, M.T. Scope of the palladium-catalyzed aryl borylation utilizing bis-boronic acid. J. Am. Chem. Soc., 2012, 134(28), 11667-11673.
[http://dx.doi.org/10.1021/ja303181m] [PMID: 22769742]
[163]
Tasch, B.O.A.; Bensch, L.; Antovic, D.; Müller, T.J.J. Masuda borylation-Suzuki coupling (MBSC) sequence of vinylhalides and its application in a one-pot synthesis of 3,4-biarylpyrazoles. Org. Biomol. Chem., 2013, 11(36), 6113-6118.
[http://dx.doi.org/10.1039/c3ob41249k] [PMID: 23925542]
[164]
Tewari, A.; Hein, M.; Zapf, A.; Beller, M. Efficient palladium catalysts for the amination of aryl chlorides: a comparitive study on the use of phosphonium salts as precursors to bulky, electron-rich phosphines. Tetrahedron, 2005, 61, 9705-9709.
[http://dx.doi.org/10.1016/j.tet.2005.06.067]
[165]
(a) Ehrentraut, A.; Zapf, A.; Beller, M. Progress in the palladium-catalyzed α-arylation of ketones with chloroarenes. Adv. Synth. Catal., 2002, 344, 209-217.
[http://dx.doi.org/10.1002/1615-4169(200202)344:2<209:AID-ADSC209>3.0.CO;2-5]
(b) Montel, S.; Raffier, L.; He, Y.; Walsh, P.J. Palladium-catalyzed α-arylation of benzylic phosphonates. Org. Lett., 2014, 16(5), 1446-1449.
[http://dx.doi.org/10.1021/ol5002413] [PMID: 24520897]
[166]
Schareina, T.; Zapf, A.; Mägerlein, W.; Müller, N.; Beller, M. A new palladium catalyst system for the cyanation of aryl chlorides with K4. Tetrahedron Lett., 2007, 48, 1087-1090. [Fe(CN)6].
[http://dx.doi.org/10.1016/j.tetlet.2006.12.087]
[167]
Klaus, S.; Neumann, H.; Zapf, A.; Strübing, D.; Hübner, S.; Almena, J.; Riermeier, T.; Gross, P.; Sarich, M.; Krahnert, W-R.; Rossen, K.; Beller, M. A general and efficient method for the formylation of aryl and heteroaryl bromides. Angew. Chem. Int. Ed. Engl., 2005, 45(1), 154-158.
[http://dx.doi.org/10.1002/anie.200502697] [PMID: 16304648]
[168]
Neumann, H.; Brennführer, A.; Groß, P.; Riermeier, T.; Almena, J.; Beller, M. Efficient carbonylation of aryl and heteroaryl bromides using a palladium/diadamantylbutylphosphine catalyst. Adv. Synth. Catal., 2006, 348, 1255-1263.
[http://dx.doi.org/10.1002/adsc.200606044]
[169]
Wu, X-F.; Neumann, H.; Beller, M. Convenient carbonylation of aryl bromides with phenols to form aryl esters by applying a palladium/di-1-adamantyl-n-butylphosphine catalyst. ChemCatChem, 2010, 2, 509-513.
[http://dx.doi.org/10.1002/cctc.201000016]
[170]
Schareina, T.; Zapf, A.; Cotté, A.; Gotta, M.; Beller, M. An improved protocol for palladium-catalyzed alkoxycarbonylations of aryl chlorides with alkyl formates. Adv. Synth. Catal., 2010, 352, 1205-1209.
[http://dx.doi.org/10.1002/adsc.201000047]
[171]
Wu, X-F.; Schranck, J.; Neumann, H.; Beller, M. A convenient and general palladium-catalyzed carbonylative coupling for the synthesis of 2-arylbenzoxazinones. Chemistry, 2011, 17(44), 12246-12249.
[http://dx.doi.org/10.1002/chem.201102254] [PMID: 21956858]
[172]
Wu, X-F.; Neumann, H.; Beller, M. A general palladium-catalyzed carbonylative synthesis of 2-alkylbenzoxazinones from 2-bromoanilines and acid anhydrides. Chemistry, 2012, 18(40), 12599-12602.
[http://dx.doi.org/10.1002/chem.201202142] [PMID: 22945892]
[173]
Wu, X-F.; Neumann, H.; Beller, M. Selective palladium-catalyzed aminocarbonylation of aryl halides with CO and ammonia. Chemistry, 2010, 16(32), 9750-9753.
[http://dx.doi.org/10.1002/chem.201000090] [PMID: 20486104]
[174]
Bjerglund, K.; Lindhardt, A.T.; Skrydstrup, T. Palladium-catalyzed N-acylation of monosubstituted ureas using near-stoichiometric carbon monoxide. J. Org. Chem., 2012, 77(8), 3793-3799.
[http://dx.doi.org/10.1021/jo3000767] [PMID: 22458554]
[175]
Wu, X-F.; Neumann, H.; Neumann, S.; Beller, M. A general and efficient palladium-catalyzed carbonylative synthesis of 2-aryloxazolines and 2-aryloxazines from aryl bromides. Chemistry, 2012, 18(43), 13619-13623.
[http://dx.doi.org/10.1002/chem.201202652] [PMID: 22968974]
[176]
Neumann, K.T.; Lindhardt, A.T.; Bang-Andersen, B.; Skrydstrup, T. Access to 2-(het)aryl and 2-styryl benzoxazoles via palladium-catalyzed aminocarbonylation of aryl and vinyl bromides. Org. Lett., 2015, 17(9), 2094-2097.
[http://dx.doi.org/10.1021/acs.orglett.5b00642] [PMID: 25879769]
[177]
Guo, S.; Tao, L.; Wang, F.; Fan, X. Pd-Catalyzed Cyclocarbonylation of 2-(2-Bromoaryl)indoles with CO as a C1 Source: Selective Access to 6 H-Isoindolo[2,1-a]indol-6-ones and Indeno[1,2-b]indol-10(5 H)-ones. Chem. Asian J., 2016, 11(21), 3090-3096.
[http://dx.doi.org/10.1002/asia.201601067] [PMID: 27582359]
[178]
Neumann, H.; Brennführer, A.; Beller, M. A general synthesis of diarylketones by means of a three-component cross-coupling of aryl and heteroaryl bromides, carbon monoxide, and boronic acids. Chemistry, 2008, 14(12), 3645-3652.
[http://dx.doi.org/10.1002/chem.200800001] [PMID: 18297669]
[179]
Bjerglund, K.M.; Skrydstrup, T.; Molander, G.A. Carbonylative Suzuki couplings of aryl bromides with boronic acid derivatives under base-free conditions. Org. Lett., 2014, 16(7), 1888-1891.
[http://dx.doi.org/10.1021/ol5003362] [PMID: 24635142]
[180]
Zhang, S.; Neumann, H.; Beller, M. Pd-catalyzed synthesis of α,β-unsaturated ketones by carbonylation of vinyl triflates and nonaflates. Chem. Commun. (Camb.), 2019, 55(42), 5938-5941.
[http://dx.doi.org/10.1039/C9CC02210D] [PMID: 31049526]
[181]
Hermange, P.; Gøgsig, T.M.; Lindhardt, A.T.; Taaning, R.H.; Skrydstrup, T. Carbonylative Heck reactions using CO generated ex situ in a two-chamber system. Org. Lett., 2011, 13(9), 2444-2447.
[http://dx.doi.org/10.1021/ol200686h] [PMID: 21469723]
[182]
Schranck, J.; Tlili, A.; Alsabeh, P.G.; Neumann, H.; Stradiotto, M.; Beller, M. Palladium-catalysed carbonylative α-arylation of acetone and acetophenones to 1,3-diketones. Chemistry, 2013, 19(38), 12624-12628.
[http://dx.doi.org/10.1002/chem.201302590] [PMID: 24175338]
[183]
Schranck, J.; Tlili, A.; Neumann, H.; Alsabeh, P.G.; Stradiotto, M.; Beller, M. A selective palladium-catalyzed carbonylative arylation of aryl ketones to give vinylbenzoate compounds. Chemistry, 2012, 18(49), 15592-15597.
[http://dx.doi.org/10.1002/chem.201202895] [PMID: 23143936]
[184]
Chiong, H.A.; Daugulis, O. Palladium-catalyzed arylation of electron-rich heterocycles with aryl chlorides. Org. Lett., 2007, 9(8), 1449-1451.
[http://dx.doi.org/10.1021/ol0702324] [PMID: 17358073]
[185]
Mahindra, A.; Jain, R. Regiocontrolled palladium-catalyzed and copper-mediated C-H bond functionalization of protected L-histidine. Org. Biomol. Chem., 2014, 12(23), 3792-3796.
[http://dx.doi.org/10.1039/C4OB00430B] [PMID: 24781708]
[186]
Strotman, N.A.; Chobanian, H.R.; Guo, Y.; He, J.; Wilson, J.E. Highly regioselective palladium-catalyzed direct arylation of oxazole at C-2 or C-5 with aryl bromides, chlorides, and triflates. Org. Lett., 2010, 12(16), 3578-3581.
[http://dx.doi.org/10.1021/ol1011778] [PMID: 20704397]
[187]
(a) Tsukano, C.; Okuno, M.; Takemoto, Y. Palladium-catalyzed amidation by chemoselective C(sp3)-H activation: concise route to oxindoles using a carbamoyl chloride precursor. Angew. Chem. Int. Ed. Engl., 2012, 51(11), 2763-2766.
[http://dx.doi.org/10.1002/anie.201108889] [PMID: 22302600]
(b) Tsukano, C.; Okuno, M.; Takemoto, Y. Synthesis of spirooxindoles from carbamoyl chlorides via cyclopropyl methine C(sp3)H activation using palladium catalyst. Chem. Lett., 2013, 42(7), 753-755.
[http://dx.doi.org/10.1246/cl.130228]
[188]
Dailler, D.; Rocaboy, R.; Baudoin, O. Synthesis of β-lactams by palladium(0)-catalyzed C(sp3)-H carbamoylation. Angew. Chem. Int. Ed. Engl., 2017, 56(25), 7218-7222.
[http://dx.doi.org/10.1002/anie.201703109] [PMID: 28508420]
[189]
Čarný, T.; Markovič, M.; Gracza, T.; Koóš, P. One-step synthesis of isoindolo[2,1-a]indol-6-ones via tandem Pd-catalyzed aminocarbonylation and C-H activation. J. Org. Chem., 2019, 84(19), 12499-12507.
[http://dx.doi.org/10.1021/acs.joc.9b02008] [PMID: 31507186]
[190]
Johnston, A.J.S.; Ling, K.B.; Sale, D.; Lebrasseur, N.; Larrosa, I. Direct ortho-arylation of pyridinecarboxylic acids: overcoming the deactivating effect of sp2-nitrogen. Org. Lett., 2016, 18(23), 6094-6097.
[http://dx.doi.org/10.1021/acs.orglett.6b03085] [PMID: 27934340]
[191]
Natte, K.; Jagadeesh, R.V.; He, L.; Rabeah, J.; Chen, J.; Taeschler, C.; Ellinger, S.; Zaragoza, F.; Neumann, H.; Brückner, A.; Beller, M. Palladium-catalyzed trifluoromethylation of (hetero)arenes with CF3Br. Angew. Chem. Int. Ed. Engl., 2016, 55(8), 2782-2786.
[http://dx.doi.org/10.1002/anie.201511131] [PMID: 26804330]
[192]
Liu, X.; Hartwig, J.F. Palladium-catalyzed α-arylation of azlactones to form quaternary amino acid derivatives. Org. Lett., 2003, 5(11), 1915-1918.
[http://dx.doi.org/10.1021/ol034570q] [PMID: 12762685]
[193]
Proutiere, F.; Lyngvi, E.; Aufiero, M.; Sanhueza, I.A.; Schoenebeck, F. Combining the reactivity properties of PCy3 and PtBu3 into a single ligand, P(iPr)(tBu)2. Reaction via mono- or bisphosphine palladium(0) centers and palladium(I) dimer formation. Organometallics, 2014, 33, 6879-6884.
[http://dx.doi.org/10.1021/om5009605]
[194]
Semmes, J.G.; Bevans, S.L.; Mullins, H.C.; Shaughnessy, K.H. Arylation of diethyl malonate and ethyl cyanoacetate catalyzed by palladium/di-tert-butylneopentylphosphine. Tetrahedron Lett., 2015, 56, 3447-3450.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.072]
[195]
Lauer, M.G.; Headford, B.R.; Gobble, O.M.; Weyhaupt, M.B.; Gerlach, D.L.; Zeller, M.; Shaughnessy, K.H. A trialkylphosphine-derived palladacycle as a catalyst in the selective cross-dimerization of terminal arylacetylenes with terminal propargyl alcohols and amides. ACS Catal., 2016, 6, 5834-5842.
[http://dx.doi.org/10.1021/acscatal.6b01541]
[196]
Netherton, M.R.; Fu, G.C. Suzuki cross-couplings of alkyl tosylates that possess β hydrogen atoms: synthetic and mechanistic studies. Angew. Chem. Int. Ed. Engl., 2002, 41(20), 3910-3912.
[http://dx.doi.org/10.1002/1521-3773(20021018)41:20<3910:AID-ANIE3910>3.0.CO;2-W] [PMID: 12386889]
[197]
Lee, J-Y.; Fu, G.C. Room-temperature Hiyama cross-couplings of arylsilanes with alkyl bromides and iodides. J. Am. Chem. Soc., 2003, 125(19), 5616-5617.
[http://dx.doi.org/10.1021/ja0349352] [PMID: 12733884]
[198]
Menzel, K.; Fu, G.C. Room-temperature Stille cross-couplings of alkenyltin reagents and functionalized alkyl bromides that possess beta hydrogens. J. Am. Chem. Soc., 2003, 125(13), 3718-3719.
[http://dx.doi.org/10.1021/ja0344563] [PMID: 12656600]
[199]
Wang, J-X.; McCubbin, J.A.; Jin, M.; Laufer, R.S.; Mao, Y.; Crew, A.P.; Mulvihill, M.J.; Snieckus, V. Palladium-catalyzed direct heck arylation of dual π-deficient/π-excessive heteroaromatics. Synthesis of C-5 arylated imidazo[1,5-a]pyrazines. Org. Lett., 2008, 10(14), 2923-2926.
[http://dx.doi.org/10.1021/ol800761r] [PMID: 18576663]
[200]
McAtee, J.R.; Martin, S.E.S.; Cinderella, A.P.; Reid, W.B.; Johnson, K.A.; Watson, D.A. The first example of nickel-catalyzed silyl-Heck reactions: direct activation of silyl triflates without iodide additives. Tetrahedron, 2014, 70(27-28), 4250-4256.
[http://dx.doi.org/10.1016/j.tet.2014.03.021] [PMID: 24914247]
[201]
Peacock, D.M.; Roos, C.B.; Hartwig, J.F. Palladium-catalyzed cross coupling of secondary and tertiary alkyl bromides with a nitrogen nucleophile. ACS Cent. Sci., 2016, 2(9), 647-652.
[http://dx.doi.org/10.1021/acscentsci.6b00187] [PMID: 27725963]
[202]
Ge, S.; Chaładaj, W.; Hartwig, J.F. Pd-catalyzed α-arylation of α,α-difluoroketones with aryl bromides and chlorides. A route to difluoromethylarenes. J. Am. Chem. Soc., 2014, 136(11), 4149-4152.
[http://dx.doi.org/10.1021/ja501117v] [PMID: 24588379]
[203]
Wasa, M.; Worrell, B.T.; Yu, J-Q. Pd0/PR3-catalyzed arylation of nicotinic and isonicotinic acid derivatives. Angew. Chem. Int. Ed. Engl., 2010, 49(7), 1275-1277.
[http://dx.doi.org/10.1002/anie.200906104] [PMID: 20082399]
[204]
Fleckenstein, C.A.; Plenio, H. 9-fluorenylphosphines for the Pd-catalyzed sonogashira, suzuki, and Buchwald-Hartwig coupling reactions in organic solvents and water. Chemistry, 2007, 13(9), 2701-2716.
[http://dx.doi.org/10.1002/chem.200601142] [PMID: 17200923]
[205]
Fleckenstein, C.A.; Kadyrov, R.; Plenio, H. Efficient large-scale synthesis of 9-alkylfluorenyl phosphines for Pd-catalyzed cross-coupling reactions. Org. Process Res. Dev., 2008, 12, 475-479.
[http://dx.doi.org/10.1021/op7001479]
[206]
Fleckenstein, C.A.; Plenio, H. Efficient Suzuki-Miyaura coupling of (hetero)aryl chlorides with thiophene- and furanboronic acids in aqueous n-butanol. J. Org. Chem., 2008, 73(8), 3236-3244.
[http://dx.doi.org/10.1021/jo8001886] [PMID: 18355081]
[207]
(a) Surry, D.S.; Buchwald, S.L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. Engl., 2008, 47(34), 6338-6361.
[http://dx.doi.org/10.1002/anie.200800497] [PMID: 18663711]
(b) Surry, D.S.; Buchwald, S.L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. (Camb.), 2011, 2(1), 27-50.
[http://dx.doi.org/10.1039/C0SC00331J] [PMID: 22432049]
[208]
(a) Suzuki, K.; Hori, Y.; Kobayashi, T. A new hybrid phosphine ligand for palladium-catalyzed amination of aryl halides. Adv. Synth. Catal., 2008, 350, 652-656.
[http://dx.doi.org/10.1002/adsc.200700543]
(b) Suzuki, K.; Sawaki, T.; Hori, Y.; Kobayashi, T. Practical and convenient Suzuki-Miyaura coupling reaction and α-arylation using diphenylcyclopropylphosphine ligands. Synlett, 2008, 2008(12), 1809-1812.
[http://dx.doi.org/10.1055/s-2008-1078525]
[209]
Nakayama, Y.; Yokoyama, N.; Nara, H.; Kobayashi, T.; Fujiwhara, M. An efficient synthesis of N-(hetero)arylcarbazoles: palladium-catalyzed coupling reaction between (hetero)aryl chlorides and N-carbazolylmagnesium chloride. Adv. Synth. Catal., 2015, 357, 2322-2330.
[http://dx.doi.org/10.1002/adsc.201500301]
[210]
(a) Lipshutz, B.H.; Chung, D.W.; Rich, B. Sonogashira couplings of aryl bromides: room temperature, water only, no copper. Org. Lett., 2008, 10(17), 3793-3796.
[http://dx.doi.org/10.1021/ol801471f] [PMID: 18683937]
(b) Lipshutz, B.H.; Chung, D.W.; Rich, B. Aminations of aryl bromides in water at room temperature. Adv. Synth. Catal., 2009, 351(11-12), 1717-1721.
[http://dx.doi.org/10.1002/adsc.200900323] [PMID: 21804786]
(c) Lipshutz, B.H.; Ghorai, S.; Abela, A.R.; Moser, R.; Nishikata, T.; Duplais, C.; Krasovskiy, A.; Gaston, R.D.; Gadwood, R.C. TPGS-750-M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature. J. Org. Chem., 2011, 76(11), 4379-4391.
[http://dx.doi.org/10.1021/jo101974u] [PMID: 21548658]
(d) Salomé, C.; Wagner, P.; Bollenbach, M.; Bihel, F.; Bourguignon, J-J.; Schmitt, M. Buchwald-Hartwig reactions in water using surfactants. Tetrahedron, 2014, 70, 3413-3421.
[http://dx.doi.org/10.1016/j.tet.2014.03.083]
[211]
Ullah, E.; McNulty, J.; Kennedy, C.; Robertson, A. One step entry to P,O- and P,N-type heterocyclic tertiary phosphine ligands and application in Suzuki-Miyaura cross-coupling reactions. Org. Biomol. Chem., 2011, 9(12), 4421-4424.
[http://dx.doi.org/10.1039/c1ob05426k] [PMID: 21556393]
[212]
(a) Brenstrum, T.; Clattenburg, J.; Britten, J.; Zavorine, S.; Dyck, J.; Robertson, A.J.; McNulty, J.; Capretta, A. Phosphorinanes as ligands for palladium-catalyzed cross-coupling chemistry. Org. Lett., 2006, 8(1), 103-105.
[http://dx.doi.org/10.1021/ol052579h] [PMID: 16381578]
(b) Ullah, E.; McNulty, J.; Robertson, A. A novel P,O-type phosphorinane ligand for the Suzuki-Miyaura cross-coupling of aryl chlorides. Tetrahedron Lett., 2009, 50, 5599-5601.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.088]
[213]
Handa, S.; Mathota Arachchige, Y.L.; Slaughter, L.M. Access to 2′-substituted binaphthyl monoalcohols via complementary nickel-catalyzed Kumada coupling reactions under mild conditions: key role of a P,O ligand. J. Org. Chem., 2013, 78(11), 5694-5699.
[http://dx.doi.org/10.1021/jo400349r] [PMID: 23672533]
[214]
Burk, M.J. Modular phospholane ligands in asymmetric catalysis. Acc. Chem. Res., 2000, 33(6), 363-372.
[http://dx.doi.org/10.1021/ar990085c] [PMID: 10891054]
[215]
Donets, P.A.; Saget, T.; Cramer, N. Chiral monodentate trialkylphosphines based on the phospholane architecture. Organometallics, 2012, 31, 8040-8046.
[http://dx.doi.org/10.1021/om3008772]
[216]
Daigle, D.J.; Pepperman, A.B., Jr; Vail, S.L. Synthesis of a monophosphorus analog of hexamethylene tetramine. J. Heterocycl. Chem., 1974, 11, 407-408.
[http://dx.doi.org/10.1002/jhet.5570110326]
[217]
Ruiz, J.; Cutillas, N.; López, F.; López, G.; Bautista, D. A copper- and amine-free Sonogashira reaction of aryl halides catalyzed by 1,3,5-triaza-7-phosphaadamantane palladium systems. Organometallics, 2006, 25, 5768-5773.
[http://dx.doi.org/10.1021/om060636k]
[218]
Ardhapure, A.V.; Sanghvi, Y.S.; Kapdi, A.R.; García, J.; Sanchez, G.; Lozano, P.; Serrano, J.L. Pd–imidate complexes as recyclable catalysts for the synthesis of C5-alkenylated pyrimidine nucleosides via Heck cross-coupling reaction. RSC Advances, 2015, 5, 24558-24563.
[http://dx.doi.org/10.1039/C5RA01461A]
[219]
(a) Epstein, M.; Buckler, S.A. a novel phosphorus heterocyclic system from the reactions of phosphine and primary phosphines with 2,4-pentanedione. J. Am. Chem. Soc., 1961, 83, 3279-3282.
[http://dx.doi.org/10.1021/ja01476a024]
(b) Adjabeng, G.; Brenstrum, T.; Wilson, J.; Frampton, C.; Robertson, A.; Hillhouse, J.; McNulty, J.; Capretta, A. Novel class of tertiary phosphine ligands based on a phospha-adamantane framework and use in the Suzuki cross-coupling reactions of aryl halides under mild conditions. Org. Lett., 2003, 5(6), 953-955.
[http://dx.doi.org/10.1021/ol0341647] [PMID: 12633114]
(c) Downing, J.H.; Floure, J.; Heslop, K.; Haddow, M.F.; Hopewell, J.; Lusi, M.; Phetmung, H.; Orpen, A.G.; Pringle, P.G.; Pugh, R.I.; Zambrano-Williams, D. General routes to alkyl phosphatrioxaadamantane ligands. Organometallics, 2008, 27, 3216-3224.
[http://dx.doi.org/10.1021/om800141y]
[220]
(a) Adjabeng, G.; Brenstrum, T.; Frampton, C.S.; Robertson, A.J.; Hillhouse, J.; McNulty, J.; Capretta, A. Palladium complexes of 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6-phosphaadamantane: synthesis, crystal structure and use in the Suzuki and Sonogashira reactions and the alpha-arylation of ketones. J. Org. Chem., 2004, 69(15), 5082-5086.
[http://dx.doi.org/10.1021/jo049474x] [PMID: 15255740]
(b) Gerristma, D.; Brenstrum, T.; McNulty, J.; Capretta, A. Phospha-adamantanes as ligands for organopalladium chemistry: aminations of aryl halides. Tetrahedron Lett., 2004, 45, 8319-8321.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.067]
[221]
Garrett, C.E.; Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal., 2004, 346, 889-900.
[http://dx.doi.org/10.1002/adsc.200404071]
[222]
(a) Li, C-J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem. Rev., 2005, 105(8), 3095-3165.
[http://dx.doi.org/10.1021/cr030009u] [PMID: 16092827]
(b) Shaughnessy, K.H. Hydrophilic ligands and their application in aqueous-phase metal-catalyzed reactions. Chem. Rev., 2009, 109(2), 643-710.
[http://dx.doi.org/10.1021/cr800403r] [PMID: 19152291]
(c) Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. Suzuki-Miyaura cross-coupling reactions in aqueous media: green and sustainable syntheses of biaryls. ChemSusChem, 2010, 3(5), 502-522.
[http://dx.doi.org/10.1002/cssc.200900221] [PMID: 20191633]
(d) Fischmeister, C.; Doucet, H. Greener solvents for ruthenium and palladium-catalysed aromatic C-H bond functionalisation. Green Chem., 2011, 13, 741-753.
[http://dx.doi.org/10.1039/c0gc00885k]
Shaughnessy, K.H. Greener approaches to cross-coupling.New Trends in Cross-Coupling: Theory and Application; Colacot, T.J., Ed.; Royal Society of Chemistry: Cambridge, UK, 2015, pp. 645-696.
[223]
(a) Shaughnessy, K.H.; Booth, R.S. Sterically demanding, water-soluble alkylphosphines as ligands for high activity Suzuki coupling of aryl bromides in aqueous solvents. Org. Lett., 2001, 3(17), 2757-2759.
[http://dx.doi.org/10.1021/ol0163629] [PMID: 11506627]
(b) DeVasher, R.B.; Moore, L.R.; Shaughnessy, K.H. Aqueous-phase, palladium-catalyzed cross-coupling of aryl bromides under mild conditions, using water-soluble, sterically demanding alkylphosphines. J. Org. Chem., 2004, 69(23), 7919-7927.
[http://dx.doi.org/10.1021/jo048910c] [PMID: 15527271]
[224]
DeVasher, R.B.; Spruell, J.M.; Dixon, D.A.; Broker, G.A.; Griffin, S.T.; Rogers, R.D.; Shaughnessy, K.H. Experimental and computational study of steric and electronic effects on the coordination of bulky, water-soluble alkylphosphines to palladium under reducing conditions: correlation to catalytic activity. Organometallics, 2005, 24, 962-971.
[http://dx.doi.org/10.1021/om049241w]
[225]
Huang, R.; Shaughnessy, K.H. Water-soluble palladacycles as precursors to highly recyclable catalysts for the Suzuki coupling of aryl bromides in aqueous solvents. Organometallics, 2006, 25, 4105-4112.
[http://dx.doi.org/10.1021/om050940y]
[226]
Cho, S.Y.; Kang, S.K.; Ahn, J.H.; Ha, J.D.; Choi, J-K. Suzuki reaction of cyclopenta[d][1,2]oxazine in aqueous solvent with water-soluble phosphine ligand. Tetrahedron Lett., 2006, 47(30), 5237-5240.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.147]
[227]
Brown, W.S.; Boykin, D.D.; Sonnier, M.Q., Jr; Clark, W.D.; Brown, F.V.; Shaughnessy, K.H. Sterically-demanding, Zwitterionic trialkylphosphonium sulfonates as air-stable ligand precursors for efficient palladium-catalyzed cross-couplings of aryl bromides and chlorides. Synthesis, 2008, 777, 1965-1970.
[228]
Moore, J.N.; Laskay, N.M.; Duque, K.S.; Kelley, S.P.; Rogers, R.D.; Shaughnessy, K.H. Synthesis of 4-sulfonatobenzylphosphines and their application in aqueous-phase palladium-catalyzed cross-coupling. J. Organomet. Chem., 2015, 777, 16-24.
[http://dx.doi.org/10.1016/j.jorganchem.2014.11.011]
[229]
Fleckenstein, C.; Plenio, H. Aqueous cross-coupling: highly efficient Suzuki-Miyaura coupling of N-heteroaryl halides and N-heteroaryl boronic acids. Green Chem., 2007, 9, 1287-1291.
[http://dx.doi.org/10.1039/b711965h]
[230]
(a) Fleckenstein, C.A.; Plenio, H. Highly efficient Suzuki-Miyaura coupling of heterocyclic substrates through rational reaction design. Chemistry, 2008, 14(14), 4267-4279.
[http://dx.doi.org/10.1002/chem.200701877] [PMID: 18366046]
(b) Fleckenstein, C.; Plenio, H. Aqueous/organic cross coupling: sustainable protocol for Sonogashira reations of heterocycles. Green Chem., 2008, 10, 563-570.
[http://dx.doi.org/10.1039/b800154e]
[231]
(a) Kapdi, A.; Gayakhe, V.; Sanghvi, Y.S.; García, J.; Lozano, P.; da Silva, I.; Pérez, J.; Serrano, J.L. New water soluble Pd-imidate complexes as highly efficient catalysts for the synthesis of C5-arylated pyrimidine nucleosides. RSC Advances, 2014, 4, 17567-17572.
[http://dx.doi.org/10.1039/C4RA01326C]
(b) Gayakhe, V.; Ardhapure, A.; Kapdi, A.R.; Sanghvi, Y.S.; Serrano, J.L.; García, L.; Pérez, J.; García, J.; Sánchez, G.; Fischer, C.; Schulzke, C. Water-soluble Pd-imidate complexes: broadly applicable catalysts for the synthesis of chemically modified nucleosides via Pd-catalyzed cross-coupling. J. Org. Chem., 2016, 81(7), 2713-2729.
[http://dx.doi.org/10.1021/acs.joc.5b02475] [PMID: 26924820]
[232]
Remmele, H.; Köllhofer, A.; Plenio, H. Recyclable catalyst with cationic phase tags for the Sonogashira coupling of aryl bromides and aryl chlorides. Organometallics, 2003, 22, 4098-4103.
[http://dx.doi.org/10.1021/om030450a]
[233]
Dumrath, A.; Wu, X-F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M. Recyclable catalysts for palladium-catalyzed C-O coupling reactions, Buchwald-Hartwig aminations, and Sonogashira reactions. Angew. Chem. Int. Ed. Engl., 2010, 49(47), 8988-8992.
[http://dx.doi.org/10.1002/anie.201001787] [PMID: 20954222]
[234]
Dumrath, A.; Lübbe, C.; Neumann, H.; Jackstell, R.; Beller, M. Recyclable catalysts for palladium-catalyzed aminations of aryl halides. Chemistry, 2011, 17(35), 9599-9604.
[http://dx.doi.org/10.1002/chem.201100984] [PMID: 21805512]
[235]
Köllhofer, A.; Plenio, H. Homogeneous catalysts supported on soluble polymers: biphasic Sonogashira coupling of aryl halides and acetylenes using MeOPEG-bound phosphine-palladium catalysts for efficient catalyst recycling. Chemistry, 2003, 9(6), 1416-1425.
[http://dx.doi.org/10.1002/chem.200390161] [PMID: 12645031]
[236]
Guinó, M.; Hii, K.K. Recyclable polymer-supported Pd catalysts for aryl amination reactions. Tetrahedron Lett., 2005, 46, 7363-7366.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.122]
[237]
Ullah, E.; McNulty, J.; Sliwinski, M.; Robertson, A. One-step synthesis of reusable, polymer-supported tri-alkyl phosphine ligands. Application in Suzuki-Miyaura and alkoxycarbonylation reactions. Tetrahedron Lett., 2012, 53, 3990-3993.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.091]
[238]
(a) Hirai, Y.; Uozumi, Y. Heterogeneous aromatic amination of aryl halides with arylamines in water with PS-PEG resin-supported palladium complexes. Chem. Asian J., 2010, 5(8), 1788-1795.
[http://dx.doi.org/10.1002/asia.201000192] [PMID: 20572283]
(b) Hirai, Y.; Uozumi, Y. C-N and C-S bond forming cross coupling in water with amphiphilic resin-supported palladium complexes. Chem. Lett., 2011, 40, 934-935.
[http://dx.doi.org/10.1246/cl.2011.934]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 3
Year: 2020
Published on: 03 May, 2020
Page: [231 - 264]
Pages: 34
DOI: 10.2174/1385272824666200211114540
Price: $65

Article Metrics

PDF: 31
HTML: 4