Neuro-Clinical Signatures of Language Impairments after Acute Stroke: A VBQ Analysis of Quantitative Native CT Scans

Author(s): Sandrine Muller, Kaisar Dauyey, Anne Ruef, Sara Lorio, Ashraf Eskandari, Laurence Schneider, Valérie Beaud, Elisabeth Roggenhofer, Bogdan Draganski, Patrik Michel, Ferath Kherif*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objectives: Ischemic stroke affects language production and/or comprehension and leads to devastating long-term consequences for patients and their families. Previous studies have shown that neuroimaging can increase our knowledge of the basic mechanisms of language recovery. Currently, models for predicting patients’ outcomes have limited use in the clinic for the evaluation and optimization of rehabilitative strategies mostly because that are often based on high-resolution magnetic resonance imaging (MRI) data, which are not always possible to carry out in the clinical routine. Here, we investigate the use of Voxel-Based Morphometry (VBM), multivariate modelling and native Computed Tomography (nCT) scans routinely acquired in the acute stage of stroke for identifying biological signatures that explicate the relationships between brain anatomy and types of impairments.

Methods: 80 stroke patients and 30 controls were included. nCT-scans were acquired in the acute ischemia stage and bedside clinical assessment from board-certified neurologist based on the NIH stroke scale. We use a multivariate Principal Component Analyses (PCA) to identify the brain signatures group the patients according to the presence or absence of impairment and identify the association between local Grey Matter (GM) and White Matter (WM) nCT values with the presence or absence of the impairment.

Results: Individual patient’s nCT scans were compared to a group of controls’ with no radiological signs of stroke to provide an automated delineation of the lesion. Consistently across the whole group the regions that presented significant difference GM and WM values overlap with known areas that support language processing.

Conclusion: In summary, the method applied to nCT scans performed in the acute stage of stroke provided robust and accurate information about brain lesions’ location and size, as well as quantitative values. We found that nCT and VBQ analyses are effective for identifying neural signatures of concomitant language impairments at the individual level, and neuroanatomical maps of aphasia at the population level. The signatures explicate the neurophysiological mechanisms underlying aetiology of the stroke. Ultimately, similar analyses with larger cohorts could lead to a more integrated multimodal model of behaviour and brain anatomy in the early stage of ischemic stroke.

Keywords: Neuro-Clinical Signatures, Function-to-structure Mapping, Language impairments, Functional neuroimaging, Stroke, Theoretical framework, Brain biological signature stroke recovery.

[1]
Sacks, D.; Black, C.M.; Cognard, C.; Connors, J.J., III; Frei, D.; Gupta, R.; Jovin, T.G.; Kluck, B.; Meyers, P.M.; Murphy, K.J.; Ramee, S.; Rüfenacht, D.A.; Stallmeyer, M.J.B.; Vorwerk, D. American Society of Acute Ischemic Stroke; Canadian Interventional Radiology Society; Cardiovascular and Interventional Radiological Society of Europe; Society for Cardiovascular Angiography and Interventions; Society of Interventional Radiology; Society of NeuroInterventional Surgery; European Society of Minimally Invasive Neurological Therapy; Society of Vascular and Interventional Neurology. Multisociety consensus quality improvement guidelines for intraarterial catheter-directed treatment of acute ischemic stroke, from the American Society of Neuroradiology, Canadian Interventional Radiology Association, Cardiovascular and Interventional Rad. Catheter. Cardiovasc. Interv., 2013, 82(2), E52-E68.
[http://dx.doi.org/10.1002/ccd.24862] [PMID: 23640740]
[2]
Feigin, V.L.; Lawes, C.M.M.; Bennett, D.A.; Barker-Collo, S.L.; Parag, V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol., 2009, 8(4), 355-369.
[http://dx.doi.org/10.1016/S1474-4422(09)70025-0] [PMID: 19233729]
[3]
Kherif, F.; Muller, S. Early prognosis models in aphasia. Brain mapping an encyclopedic reference; Elsevier: Amsterdam, 2015, pp. 807-811.
[http://dx.doi.org/10.1016/B978-0-12-397025-1.00093-2]
[4]
Hope, T.M.H.; Seghier, M.L.; Leff, A.P.; Price, C.J. Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clin., 2013, 2, 424-433.
[http://dx.doi.org/10.1016/j.nicl.2013.03.005] [PMID: 24179796]
[5]
Noppeney, U.; Friston, K.J.; Price, C.J. Degenerate neuronal systems sustaining cognitive functions. J. Anat., 2004, 205(6), 433-442.
[http://dx.doi.org/10.1111/j.0021-8782.2004.00343.x] [PMID: 15610392]
[6]
Phillips, J.A.; Humphreys, G.W.; Noppeney, U.; Price, C.J. The neural substrates of action retrieval: An examination of semantic and visual routes to action. Vis. Cogn., 2002, 9(4-5), 662-685.
[http://dx.doi.org/10.1080/13506280143000610]
[7]
Price, C.J. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann. N. Y. Acad. Sci., 2010, 1191(1), 62-88.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05444.x] [PMID: 20392276]
[8]
Price, C.J. The evolution of cognitive models: From neuropsychology to neuroimaging and back. Cortex, 2018, 107, 37-49.
[http://dx.doi.org/10.1016/j.cortex.2017.12.020] [PMID: 29373117]
[9]
Price, C.J.; Crinion, J. The latest on functional imaging studies of aphasic stroke. Curr. Opin. Neurol., 2005, 18(4), 429-434.
[http://dx.doi.org/10.1097/01.wco.0000168081.76859.c1] [PMID: 16003120]
[10]
Price, C.J.; Seghier, M.L.; Leff, A.P. Predicting language outcome and recovery after stroke: the PLORAS system. Nat. Rev. Neurol., 2010, 6(4), 202-210.
[http://dx.doi.org/10.1038/nrneurol.2010.15] [PMID: 20212513]
[11]
Warburton, E.; Price, C.J.; Swinburn, K.; Wise, R.J.S. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 155-161.
[http://dx.doi.org/10.1136/jnnp.66.2.155] [PMID: 10071093]
[12]
Dell, G.S.; Schwartz, M.F.; Nozari, N.; Faseyitan, O.; Branch Coslett, H. Voxel-based lesion-parameter mapping: Identifying the neural correlates of a computational model of word production. Cognition, 2013, 128(3), 380-396.
[http://dx.doi.org/10.1016/j.cognition.2013.05.007] [PMID: 23765000]
[13]
Heim, S.; Opitz, B.; Müller, K.; Friederici, A.D. Phonological processing during language production: fMRI evidence for a shared production-comprehension network. Brain Res. Cogn. Brain Res., 2003, 16(2), 285-296.
[http://dx.doi.org/10.1016/S0926-6410(02)00284-7] [PMID: 12668238]
[14]
Hickok, G. Functional anatomy of speech perception and speech production: psycholinguistic implications. J. Psycholinguist. Res., 2001, 30(3), 225-235.
[http://dx.doi.org/10.1023/A:1010486816667] [PMID: 11523272]
[15]
Cramer, S.C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann. Neurol., 2008, 63(3), 272-287.
[http://dx.doi.org/10.1002/ana.21393] [PMID: 18383072]
[16]
Douiri, A.; Rudd, A.G.; Wolfe, C.D.A. Prevalence of poststroke cognitive impairment: South London Stroke Register 1995-2010. Stroke, 2013, 44(1), 138-145.
[http://dx.doi.org/10.1161/STROKEAHA.112.670844] [PMID: 23150656]
[17]
Wolfe, C.; McKevitt, C.; Rudd, T. Stroke Services; CRC Press: Boca Raton, 2018.
[http://dx.doi.org/10.1201/9781315385242]
[18]
Seghier, M. L.; Patel, E.; Prejawa, S.; Ramsden, S.; Selmer, A.; Lim, L.; Browne, R.; Rae, J.; Haigh, Z.; Ezekiel, D.; Hope, T. M. H.; Leff, A. P.; Price, C. J. The PLORAS database: a data repository for predicting language outcome and recovery after stroke., Neuroimage, 2016, 124(Pt B), 1208-1212.
[http://dx.doi.org/10.1016/j.neuroimage.2015.03.083]
[19]
Reid, J.M.; Gubitz, G.J.; Dai, D.; Kydd, D.; Eskes, G.; Reidy, Y.; Christian, C.; Counsell, C.E.; Dennis, M.; Phillips, S.J. Predicting functional outcome after stroke by modelling baseline clinical and CT variables. Age Ageing, 2010, 39(3), 360-366.
[http://dx.doi.org/10.1093/ageing/afq027] [PMID: 20233732]
[20]
Saur, D.; Lange, R.; Baumgaertner, A.; Schraknepper, V.; Willmes, K.; Rijntjes, M.; Weiller, C. Dynamics of language reorganization after stroke. Brain, 2006, 129(Pt 6), 1371-1384.
[http://dx.doi.org/10.1093/brain/awl090] [PMID: 16638796]
[21]
Thijs, V.N.; Lansberg, M.G.; Beaulieu, C.; Marks, M.P.; Moseley, M.E.; Albers, G.W. Is early ischemic lesion volume on diffusion-weighted imaging an independent predictor of stroke outcome? A multivariable analysis. Stroke, 2000, 31(11), 2597-2602.
[http://dx.doi.org/10.1161/01.STR.31.11.2597] [PMID: 11062281]
[22]
Draganski, B.; Kherif, F. In vivo assessment of use-dependent brain plasticity--beyond the “one trick pony” imaging strategy. Neuroimage, 2013, 73, 255-259.
[http://dx.doi.org/10.1016/j.neuroimage.2012.08.058] [PMID: 22960085]
[23]
Barber, P.A.; Demchuk, A.M.; Zhang, J.; Buchan, A.M. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet, 2000, 355(9216), 1670-1674.
[http://dx.doi.org/10.1016/S0140-6736(00)02237-6] [PMID: 10905241]
[24]
Latchaw, R.E.; Alberts, M.J.; Lev, M.H.; Connors, J.J.; Harbaugh, R.E.; Higashida, R.T.; Hobson, R.; Kidwell, C.S.; Koroshetz, W.J.; Mathews, V.; Villablanca, P.; Warach, S.; Walters, B. American Heart Association Council on Cardiovascular Radiology and Intervention, Stroke Council, and the Interdisciplinary Council on Peripheral Vascular Disease. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke, 2009, 40(11), 3646-3678.
[http://dx.doi.org/10.1161/STROKEAHA.108.192616] [PMID: 19797189]
[25]
Imabayashi, E.; Matsuda, H.; Tabira, T.; Arima, K.; Araki, N.; Ishii, K.; Yamashita, F.; Iwatsubo, T. Japanese alzheimer’s disease neuroimaging initiative. comparison between brain ct and mri for voxel-based morphometry of alzheimer’s disease. Brain Behav., 2013, 3(4), 487-493.
[http://dx.doi.org/10.1002/brb3.146] [PMID: 24381817]
[26]
Bates, E.; Wilson, S.M.; Saygin, A.P.; Dick, F.; Sereno, M.I.; Knight, R.T.; Dronkers, N.F. Voxel-based lesion-symptom mapping. Nat. Neurosci., 2003, 6(5), 448-450.
[http://dx.doi.org/10.1038/nn1050] [PMID: 12704393]
[27]
Draganski, B.; Ashburner, J.; Hutton, C.; Kherif, F.; Frackowiak, R.S.; Helms, G.; Weiskopf, N. Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). Neuroimage, 2011, 55(4), 1423-1434.
[http://dx.doi.org/10.1016/j.neuroimage.2011.01.052] [PMID: 21277375]
[28]
Kherif, F.; Poline, J.B.; Flandin, G.; Benali, H.; Simon, O.; Dehaene, S.; Worsley, K.J. Multivariate model specification for fMRI data. Neuroimage, 2002, 16(4), 1068-1083.
[http://dx.doi.org/10.1006/nimg.2002.1094] [PMID: 12202094]
[29]
Kherif, F.; Poline, J.B.; Mériaux, S.; Benali, H.; Flandin, G.; Brett, M. Group analysis in functional neuroimaging: selecting subjects using similarity measures. Neuroimage, 2003, 20(4), 2197-2208.
[http://dx.doi.org/10.1016/j.neuroimage.2003.08.018] [PMID: 14683722]
[30]
Kherif, F.; Josse, G.; Seghier, M.L.; Price, C.J. The main sources of intersubject variability in neuronal activation for reading aloud. J. Cogn. Neurosci., 2009, 21(4), 654-668.
[http://dx.doi.org/10.1162/jocn.2009.21084] [PMID: 18702580]
[31]
Lau, J.K.L.; Humphreys, G.W.; Douis, H.; Balani, A.; Bickerton, W.L.; Rotshtein, P. The relation of object naming and other visual speech production tasks: a large scale voxel-based morphometric study. Neuroimage Clin., 2015, 7, 463-475.
[http://dx.doi.org/10.1016/j.nicl.2015.01.015] [PMID: 25685713]
[32]
Rorden, C.; Bonilha, L.; Fridriksson, J.; Bender, B.; Karnath, H.O. Age-specific CT and MRI templates for spatial normalization. Neuroimage, 2012, 61(4), 957-965.
[http://dx.doi.org/10.1016/j.neuroimage.2012.03.020] [PMID: 22440645]
[33]
Corbetta, M.; Ramsey, L.; Callejas, A.; Baldassarre, A.; Hacker, C.D.; Siegel, J.S.; Astafiev, S.V.; Rengachary, J.; Zinn, K.; Lang, C.E.; Connor, L.T.; Fucetola, R.; Strube, M.; Carter, A.R.; Shulman, G.L. Common behavioral clusters and subcortical anatomy in stroke. Neuron, 2015, 85(5), 927-941.
[http://dx.doi.org/10.1016/j.neuron.2015.02.027] [PMID: 25741721]
[34]
Carreiras, M.; Seghier, M.L.; Baquero, S.; Estévez, A.; Lozano, A.; Devlin, J.T.; Price, C.J. An anatomical signature for literacy. Nature, 2009, 461(7266), 983-986.
[http://dx.doi.org/10.1038/nature08461] [PMID: 19829380]
[35]
Josse, G.; Kherif, F.; Flandin, G.; Seghier, M.L.; Price, C.J. Predicting language lateralization from gray matter. J. Neurosci., 2009, 29(43), 13516-13523.
[http://dx.doi.org/10.1523/JNEUROSCI.1680-09.2009] [PMID: 19864564]
[36]
Price, C.J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 2012, 62(2), 816-847.
[http://dx.doi.org/10.1016/j.neuroimage.2012.04.062] [PMID: 22584224]
[37]
Seghier, M.L.; Kherif, F.; Josse, G.; Price, C.J. Regional and hemispheric determinants of language laterality: implications for preoperative fMRI. Hum. Brain Mapp., 2011, 32(10), 1602-1614.
[http://dx.doi.org/10.1002/hbm.21130] [PMID: 20814960]
[38]
Fridriksson, J.; den Ouden, D.B.; Hillis, A.E.; Hickok, G.; Rorden, C.; Basilakos, A.; Yourganov, G.; Bonilha, L. Anatomy of aphasia revisited. Brain, 2018, 141(3), 848-862.
[http://dx.doi.org/10.1093/brain/awx363] [PMID: 29360947]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2020
Page: [792 - 799]
Pages: 8
DOI: 10.2174/1568026620666200211113824
Price: $65

Article Metrics

PDF: 23
HTML: 3