Interactions between Personality, Depression, Anxiety and Cognition to Understand Early Stage of Alzheimer’s Disease

Author(s): Valérie Zufferey, Armin von Gunten*, Ferath Kherif*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The multifaceted nature of Alzheimer’s disease (AD) and Mild cognitive impairment (MCI) can lead to wide inter-individual differences in disease manifestation in terms of brain pathology and cognition. The lack of understanding of phenotypic diversity in AD arises from a difficulty in understanding the integration of different levels of network organization (i.e. genes, neurons, synapses, anatomical regions, functions) and in inclusion of other information such as neuropsychiatric characteristics, personal history, information regarding general health or subjective cognitive complaints in a coherent model. Non-cognitive factors, such as personality traits and behavioral and psychiatric symptoms, can be informative markers of early disease stage. It is known that personality can affect cognition and behavioral symptoms. The aim of the paper is to review the different types of interactions existing between personality, depression/anxiety, and cognition and cognitive disorders at behavioral and brain/genetic levels.

Keywords: Personality, Non-cognitive factors, Depression, Anxiety, Cognition, Neurobiology, Alzheimer's disease.

[1]
Hebert, L.E.; Scherr, P.A.; Bienias, J.L.; Bennett, D.A.; Evans, D.A. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch. Neurol., 2003, 60(8), 1119-1122.
[http://dx.doi.org/10.1001/archneur.60.8.1119] [PMID: 12925369]
[2]
Mayeux, R.; Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(8), a006239-a006239.
[http://dx.doi.org/10.1101/cshperspect.a006239] [PMID: 22908189]
[3]
Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jönsson, B. The economic cost of brain disorders in Europe. Eur. J. Neurol., 2012, 19(1), 155-162.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03590.x] [PMID: 22175760]
[4]
Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; Arai, H.; Basun, H.; Blennow, K.; de Leon, M.; DeCarli, C.; Erkinjuntti, T.; Giacobini, E.; Graff, C.; Hardy, J.; Jack, C.; Jorm, A.; Ritchie, K.; van Duijn, C.; Visser, P.; Petersen, R.C. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med., 2004, 256(3), 240-246.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x] [PMID: 15324367]
[5]
Stojanov, D. On the molecular correlations in the pathobiochemistry of alzheimer disease. Biotechnol. Biotechnol. Equip., 2006, 20(2), 17-23.
[http://dx.doi.org/10.1080/13102818.2006.10817337]
[6]
Danev, S.I.; St Stoyanov, D. Early noninvasive diagnosis of neurodegenerative diseases. Folia Med. (Plovdiv), 2010, 52(2), 5-13.
[http://dx.doi.org/10.2478/v10153-010-0041-y] [PMID: 20836391]
[7]
Stoyanov, D.; Kandilarova, S.; Paunova, R.; Barranco Garcia, J.; Latypova, A.; Kherif, F. Cross-validation of functional MRI and paranoid-depressive scale: results from multivariate analysis. Front. Psychiatry, 2019, 10, 869.
[http://dx.doi.org/10.3389/fpsyt.2019.00869] [PMID: 31824359]
[8]
Jack, C.R., Jr; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; Lesnick, T.G.; Pankratz, V.S.; Donohue, M.C.; Trojanowski, J.Q. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol., 2013, 12(2), 207-216.
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[9]
Donati, A.; Studer, J.; Petrillo, S.; Pocnet, C.; Popp, J.; Rossier, J.; von Gunten, A. The evolution of personality in patients with mild cognitive impairment. Dement. Geriatr. Cogn. Disord., 2013, 36(5-6), 329-339.
[http://dx.doi.org/10.1159/000353895] [PMID: 24022337]
[10]
Goldberg, L.R.; Sweeney, D.; Merenda, P.F.; Hughes, J.E., Jr The Big-Five factor structure as an integrative framework: an analysis of Clarke’s AVA model. J. Pers. Assess., 1996, 66(3), 441-471.
[http://dx.doi.org/10.1207/s15327752jpa6603_1] [PMID: 8667143]
[11]
Roepke, S.; McAdams, L.A.; Lindamer, L.A.; Patterson, T.L.; Jeste, D.V. Personality profiles among normal aged individuals as measured by the NEO-PI-R. Aging Ment. Health, 2001, 5(2), 159-164.
[http://dx.doi.org/10.1080/13607860120038339] [PMID: 11511063]
[12]
Eysenck, H.J. Creativity as a product of intelligence and personality. In: International handbook of personality and intelligence; Springer US: New York, 1995, pp. 231-247.
[http://dx.doi.org/10.1007/978-1-4757-5571-8_12]
[13]
Curtis, R.G.; Windsor, T.D.; Soubelet, A. The relationship between Big-5 personality traits and cognitive ability in older adults - a review. Neuropsychol. Dev. Cogn. B. Aging Neuropsychol. Cogn., 2015, 22(1), 42-71.
[http://dx.doi.org/10.1080/13825585.2014.888392] [PMID: 24580119]
[14]
Hill, N.L.; Mogle, J.; Bhargava, S.; Bell, T.R.; Wion, R.K. The influence of personality on memory self-report among black and white older adults. PLoS One, 2019, 14(7) e0219712
[http://dx.doi.org/10.1371/journal.pone.0219712] [PMID: 31306444]
[15]
Sutin, A.R.; Stephan, Y.; Damian, R.I.; Luchetti, M.; Strickhouser, J.E.; Terracciano, A. Five-factor model personality traits and verbal fluency in 10 cohorts. Psychol. Aging, 2019, 34(3), 362-373.
[http://dx.doi.org/10.1037/pag0000351] [PMID: 31070400]
[16]
Sutin, A.R.; Stephan, Y.; Luchetti, M.; Terracciano, A. Five-factor model personality traits and cognitive function in five domains in older adulthood. BMC Geriatr., 2019, 19(1), 343.
[http://dx.doi.org/10.1186/s12877-019-1362-1] [PMID: 31805866]
[17]
Wettstein, M.; Tauber, B.; Kuźma, E.; Wahl, H-W. The interplay between personality and cognitive ability across 12 years in middle and late adulthood: Evidence for reciprocal associations. Psychol. Aging, 2017, 32(3), 259-277.
[http://dx.doi.org/10.1037/pag0000166] [PMID: 28230383]
[18]
Roberts, J.E.; Gilboa, E.; Gotlib, I.H. Ruminative response style and vulnerability to episodes of dysphoria: gender, neuroticism, and episode duration. Cognit. Ther. Res., 1998, 22(4), 401-423.
[http://dx.doi.org/10.1023/A:1018713313894]
[19]
Vermetten, Y.J.; Lodewijks, H.G.; Vermunt, J.D. The role of personality traits and goal orientations in strategy use. Contemp. Educ. Psychol., 2001, 26(2), 149-170.
[http://dx.doi.org/10.1006/ceps.1999.1042] [PMID: 11273654]
[20]
Studer-Luethi, B.; Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J. Influence of neuroticism and conscientiousness on working memory training outcome. Pers. Individ. Dif., 2012, 53(1), 44-49.
[http://dx.doi.org/10.1016/j.paid.2012.02.012]
[21]
Richards, J.M.; Gross, J.J. Personality and emotional memory: How regulating emotion impairs memory for emotional events. J. Res. Pers., 2006, 40(5), 631-651.
[http://dx.doi.org/10.1016/j.jrp.2005.07.002]
[22]
Uttl, B.; White, C.A.; Wong Gonzalez, D.; McDouall, J.; Leonard, C.A. Prospective memory, personality, and individual differences. Front. Psychol., 2013, 4, 130.
[http://dx.doi.org/10.3389/fpsyg.2013.00130] [PMID: 23525147]
[23]
Li, G.; Wang, L.Y.; Shofer, J.B.; Thompson, M.L.; Peskind, E.R.; McCormick, W.; Bowen, J.D.; Crane, P.K.; Larson, E.B. Temporal relationship between depression and dementia: findings from a large community-based 15-year follow-up study. Arch. Gen. Psychiatry, 2011, 68(9), 970-977.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.86] [PMID: 21893662]
[24]
Merema, M.R.; Speelman, C.P.; Foster, J.K.; Kaczmarek, E.A. Neuroticism (Not Depressive Symptoms) Predicts Memory Complaints in Some Community-Dwelling Older Adults. Am. J. Geriatr. Psychiatry, 2012, 1. [ePub ahead of print]
[http://dx.doi.org/10.1097/JGP.0b013e31826d6973] [PMID: 23834858]
[25]
Naghavi, H.R.; Lind, J.; Nilsson, L-G.; Adolfsson, R.; Nyberg, L. Personality traits predict response to novel and familiar stimuli in the hippocampal region. Psychiatry Res., 2009, 173(2), 94-99.
[http://dx.doi.org/10.1016/j.pscychresns.2008.09.011] [PMID: 19541459]
[26]
Vukasović, T.; Bratko, D. Heritability of personality: A meta-analysis of behavior genetic studies. Psychol. Bull., 2015, 141(4), 769-785.
[http://dx.doi.org/10.1037/bul0000017] [PMID: 25961374]
[27]
DeYoung, C.G.; Hirsh, J.B.; Shane, M.S.; Papademetris, X.; Rajeevan, N.; Gray, J.R. Testing predictions from personality neuroscience. Brain structure and the big five. Psychol. Sci., 2010, 21(6), 820-828.
[http://dx.doi.org/10.1177/0956797610370159] [PMID: 20435951]
[28]
Loehlin, J.C.; McCrae, R.R.; Costa, P.T.; John, O.P. Heritabilities of common and measure-specific components of the big five personality factors. J. Res. Pers., 1998, 32(4), 431-453.
[http://dx.doi.org/10.1006/jrpe.1998.2225]
[29]
Montag, C.; Reuter, M.; Jurkiewicz, M.; Markett, S.; Panksepp, J. Imaging the structure of the human anxious brain: a review of findings from neuroscientific personality psychology. Rev. Neurosci., 2013, 24(2), 167-190.
[http://dx.doi.org/10.1515/revneuro-2012-0085] [PMID: 23585212]
[30]
Nostro, A.D.; Müller, V.I.; Reid, A.T.; Eickhoff, S.B. Correlations between personality and brain structure: a crucial role of gender. Cereb. Cortex, 2016.
[http://dx.doi.org/10.1093/cercor/bhw191] [PMID: 27390020]
[31]
Riccelli, R.; Toschi, N.; Nigro, S.; Terracciano, A.; Passamonti, L. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality. Soc. Cogn. Affect. Neurosci., 2017, 12(4), 671-684.
[http://dx.doi.org/10.1093/scan/nsw175] [PMID: 28122961]
[32]
Servaas, M.N.; Geerligs, L.; Renken, R.J.; Marsman, J-B.C.; Ormel, J.; Riese, H.; Aleman, A. Connectomics and neuroticism: an altered functional network organization. Neuropsychopharmacology, 2015, 40(2), 296-304.
[http://dx.doi.org/10.1038/npp.2014.169] [PMID: 25005250]
[33]
Servaas, M.N.; Riese, H.; Ormel, J.; Aleman, A. The neural correlates of worry in association with individual differences in neuroticism. Hum. Brain Mapp., 2014, 35(9), 4303-4315.
[http://dx.doi.org/10.1002/hbm.22476] [PMID: 24532549]
[34]
Kapogiannis, D.; Sutin, A.; Davatzikos, C.; Costa, P., Jr; Resnick, S. The five factors of personality and regional cortical variability in the Baltimore longitudinal study of aging. Hum. Brain Mapp., 2013, 34(11), 2829-2840.
[http://dx.doi.org/10.1002/hbm.22108] [PMID: 22610513]
[35]
Coutinho, J.F.; Sampaio, A.; Ferreira, M.; Soares, J.M.; Gonçalves, O.F. Brain correlates of pro-social personality traits: a voxel-based morphometry study. Brain Imaging Behav., 2013, 7(3), 293-299.
[http://dx.doi.org/10.1007/s11682-013-9227-2] [PMID: 23512407]
[36]
Omura, K.; Todd Constable, R.; Canli, T. Amygdala gray matter concentration is associated with extraversion and neuroticism. Neuroreport, 2005, 16(17), 1905-1908.
[http://dx.doi.org/10.1097/01.wnr.0000186596.64458.76] [PMID: 16272876]
[37]
Cremers, H.; van Tol, M-J.; Roelofs, K.; Aleman, A.; Zitman, F.G.; van Buchem, M.A.; Veltman, D.J.; van der Wee, N.J.A. Extraversion is linked to volume of the orbitofrontal cortex and amygdala. PLoS One, 2011, 6(12) e28421
[http://dx.doi.org/10.1371/journal.pone.0028421] [PMID: 22174802]
[38]
Cremers, H.R.; Demenescu, L.R.; Aleman, A.; Renken, R.; van Tol, M-J.; van der Wee, N.J.A.; Veltman, D.J.; Roelofs, K. Neuroticism modulates amygdala-prefrontal connectivity in response to negative emotional facial expressions. Neuroimage, 2010, 49(1), 963-970.
[http://dx.doi.org/10.1016/j.neuroimage.2009.08.023] [PMID: 19683585]
[39]
Dima, D.; Friston, K.J.; Stephan, K.E.; Frangou, S. Neuroticism and conscientiousness respectively constrain and facilitate short-term plasticity within the working memory neural network. Hum. Brain Mapp., 2015, 36(10), 4158-4163.
[http://dx.doi.org/10.1002/hbm.22906] [PMID: 26189566]
[40]
Rodrigo, A.H.; Di Domenico, S.I.; Graves, B.; Lam, J.; Ayaz, H.; Bagby, R.M.; Ruocco, A.C. Linking trait-based phenotypes to prefrontal cortex activation during inhibitory control. Soc. Cogn. Affect. Neurosci., 2016, 11(1), 55-65.
[http://dx.doi.org/10.1093/scan/nsv091] [PMID: 26163672]
[41]
Taki, Y.; Thyreau, B.; Kinomura, S.; Sato, K.; Goto, R.; Wu, K.; Kawashima, R.; Fukuda, H. A longitudinal study of the relationship between personality traits and the annual rate of volume changes in regional gray matter in healthy adults. Hum. Brain Mapp., 2013, 34(12), 3347-3353.
[http://dx.doi.org/10.1002/hbm.22145] [PMID: 22807062]
[42]
Wright, C.I.; Williams, D.; Feczko, E.; Barrett, L.F.; Dickerson, B.C.; Schwartz, C.E.; Wedig, M.M. Neuroanatomical correlates of extraversion and neuroticism. Cereb. Cortex, 2006, 16(12), 1809-1819.
[http://dx.doi.org/10.1093/cercor/bhj118] [PMID: 16421327]
[43]
Zufferey, V.; Donati, A.; Popp, J.; Meuli, R.; Rossier, J.; Frackowiak, R.; Draganski, B.; von Gunten, A.; Kherif, F. Neuroticism, depression, and anxiety traits exacerbate the state of cognitive impairment and hippocampal vulnerability to Alzheimer’s disease. Alzheimers Dement. (Amst.), 2017, 7, 107-114.
[http://dx.doi.org/10.1016/j.dadm.2017.05.002] [PMID: 28653033]
[44]
Berger-Sieczkowski, E.; Gruber, B.; Stögmann, E.; Lehrner, J. Differences regarding the five-factor personality model in patients with subjective cognitive decline and mild cognitive impairment. Neuropsychiatr, 2019, 33(1), 35-45.
[http://dx.doi.org/10.1007/s40211-018-0292-z] [PMID: 30328583]
[45]
Rodriguez, C.; Jagadish, A.K.; Meskaldji, D.E.; Haller, S.; Herrmann, F.; Van De Ville, D.; Giannakopoulos, P. Structural Correlates of Personality Dimensions in Healthy Aging and MCI. Front. Psychol., 2019, 9, 2652.
[http://dx.doi.org/10.3389/fpsyg.2018.02652] [PMID: 30670999]
[46]
Silverman, M.H.; Wilson, S.; Ramsay, I.S.; Hunt, R.H.; Thomas, K.M.; Krueger, R.F.; Iacono, W.G. Trait neuroticism and emotion neurocircuitry: Functional magnetic resonance imaging evidence for a failure in emotion regulation. Dev. Psychopathol., 2019, 31(3), 1085-1099.
[http://dx.doi.org/10.1017/S0954579419000610] [PMID: 31156078]
[47]
Wang, R.W.Y.; Chang, W.L.; Chuang, S.W.; Liu, I.N. Posterior cingulate cortex can be a regulatory modulator of the default mode network in task-negative state. Sci. Rep., 2019, 9(1), 7565.
[http://dx.doi.org/10.1038/s41598-019-43885-1] [PMID: 31110251]
[48]
Wang, S.; Zhao, Y.; Li, J.; Wang, X.; Luo, K.; Gong, Q. Brain structure links trait conscientiousness to academic performance. Sci. Rep., 2019, 9(1), 12168.
[http://dx.doi.org/10.1038/s41598-019-48704-1] [PMID: 31434943]
[49]
Deckersbach, T.; Miller, K.K.; Klibanski, A.; Fischman, A.; Dougherty, D.D.; Blais, M.A.; Herzog, D.B.; Rauch, S.L. Regional cerebral brain metabolism correlates of neuroticism and extraversion. Depress. Anxiety, 2006, 23(3), 133-138.
[http://dx.doi.org/10.1002/da.20152] [PMID: 16470804]
[50]
Rauch, S.L.; Milad, M.R.; Orr, S.P.; Quinn, B.T.; Fischl, B.; Pitman, R.K. Orbitofrontal thickness, retention of fear extinction, and extraversion. Neuroreport, 2005, 16(17), 1909-1912.
[http://dx.doi.org/10.1097/01.wnr.0000186599.66243.50] [PMID: 16272877]
[51]
Toschi, N.; Passamonti, L. Intra-cortical myelin mediates personality differences. J. Pers., 2019, 87(4), 889-902.
[http://dx.doi.org/10.1111/jopy.12442] [PMID: 30317636]
[52]
Ikeda, S.; Mizuno-Matsumoto, Y.; Canuet, L.; Ishii, R.; Aoki, Y.; Hata, M.; Katsimichas, T.; Pascual-Marqui, R.D.; Hayashi, T.; Okamoto, E.; Asakawa, T.; Iwase, M.; Takeda, M. Emotion regulation of neuroticism: emotional information processing related to psychosomatic state evaluated by electroencephalography and exact low-resolution brain electromagnetic tomography. Neuropsychobiology, 2015, 71(1), 34-41.
[http://dx.doi.org/10.1159/000368119] [PMID: 25765015]
[53]
Lu, F.; Huo, Y.; Li, M.; Chen, H.; Liu, F.; Wang, Y.; Long, Z.; Duan, X.; Zhang, J.; Zeng, L.; Chen, H. Relationship between personality and gray matter volume in healthy young adults: a voxel-based morphometric study. PLoS One, 2014, 9(2) e88763
[http://dx.doi.org/10.1371/journal.pone.0088763] [PMID: 24551159]
[54]
Ueda, I.; Kakeda, S.; Watanabe, K.; Sugimoto, K.; Igata, N.; Moriya, J.; Takemoto, K.; Katsuki, A.; Yoshimura, R.; Abe, O.; Korogi, Y. Brain structural connectivity and neuroticism in healthy adults. Sci. Rep., 2018, 8(1), 16491.
[http://dx.doi.org/10.1038/s41598-018-34846-1] [PMID: 30405187]
[55]
Ochsner, K.N.; Ray, R.R.; Hughes, B.; McRae, K.; Cooper, J.C.; Weber, J.; Gabrieli, J.D.E.; Gross, J.J. Bottom-up and top-down processes in emotion generation: common and distinct neural mechanisms. Psychol. Sci., 2009, 20(11), 1322-1331.
[http://dx.doi.org/10.1111/j.1467-9280.2009.02459.x] [PMID: 19883494]
[56]
Zuurbier, L.A.; Nikolova, Y.S.; Åhs, F.; Hariri, A.R. Uncinate fasciculus fractional anisotropy correlates with typical use of reappraisal in women but not men. Emotion, 2013, 13(3), 385-390.
[http://dx.doi.org/10.1037/a0031163] [PMID: 23398586]
[57]
Ouanes, S.; Popp, J. High cortisol and the risk of dementia and alzheimer’s disease: a review of the literature. Front. Aging Neurosci., 2019, 11, 43.
[http://dx.doi.org/10.3389/fnagi.2019.00043] [PMID: 30881301]
[58]
Lewis, G.J.; Dickie, D.A.; Cox, S.R.; Karama, S.; Evans, A.C.; Starr, J.M.; Bastin, M.E.; Wardlaw, J.M.; Deary, I.J. Widespread associations between trait conscientiousness and thickness of brain cortical regions. Neuroimage, 2018, 176, 22-28.
[http://dx.doi.org/10.1016/j.neuroimage.2018.04.033] [PMID: 29665419]
[59]
Hornboll, B.; Macoveanu, J.; Nejad, A.; Rowe, J.; Elliott, R.; Knudsen, G.M.; Siebner, H.R.; Paulson, O.B. Neuroticism predicts the impact of serotonin challenges on fear processing in subgenual anterior cingulate cortex. Sci. Rep., 2018, 8(1), 17889.
[http://dx.doi.org/10.1038/s41598-018-36350-y] [PMID: 30559408]
[60]
Sen, S.; Burmeister, M.; Ghosh, D. Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2004, 127B(1), 85-89.
[http://dx.doi.org/10.1002/ajmg.b.20158] [PMID: 15108187]
[61]
Chang, C.C.; Chang, H.A.; Fang, W.H.; Chang, T.C.; Huang, S.Y. Gender-specific association between serotonin transporter polymorphisms (5-HTTLPR and rs25531) and neuroticism, anxiety and depression in well-defined healthy Han Chinese. J. Affect. Disord., 2017, 207, 422-428.
[http://dx.doi.org/10.1016/j.jad.2016.08.055] [PMID: 27788383]
[62]
Gottschalk, M.G.; Domschke, K. Genetics of generalized anxiety disorder and related traits. Dialogues Clin. Neurosci., 2017, 19(2), 159-168.
[PMID: 28867940]
[63]
Hirvonen, J.; Tuominen, L.; Någren, K.; Hietala, J. Neuroticism and serotonin 5-HT1A receptors in healthy subjects. Psychiatry Res., 2015, 234(1), 1-6.
[http://dx.doi.org/10.1016/j.pscychresns.2015.04.007] [PMID: 26337006]
[64]
Kao, W.T.; Chang, C.L.; Lung, F.W. 5-HTT mRNA level as a potential biomarker of treatment response in patients with major depression in a clinical trial. J. Affect. Disord., 2018, 238, 597-608.
[http://dx.doi.org/10.1016/j.jad.2018.06.035] [PMID: 29957477]
[65]
Servaas, M.N.; Geerligs, L.; Bastiaansen, J.A.; Renken, R.J.; Marsman, J.C.; Nolte, I.M.; Ormel, J.; Aleman, A.; Riese, H. Associations between genetic risk, functional brain network organization and neuroticism. Brain Imaging Behav., 2017, 11(6), 1581-1591.
[http://dx.doi.org/10.1007/s11682-016-9626-2] [PMID: 27743374]
[66]
Terracciano, A.; Tanaka, T.; Sutin, A.R.; Deiana, B.; Balaci, L.; Sanna, S.; Olla, N.; Maschio, A.; Uda, M.; Ferrucci, L.; Schlessinger, D.; Costa, P.T., Jr BDNF Val66Met is associated with introversion and interacts with 5-HTTLPR to influence neuroticism. Neuropsychopharmacology, 2010, 35(5), 1083-1089.
[http://dx.doi.org/10.1038/npp.2009.213] [PMID: 20042999]
[67]
Lesch, K.P.; Bengel, D.; Heils, A.; Sabol, S.Z.; Greenberg, B.D.; Petri, S.; Benjamin, J.; Müller, C.R.; Hamer, D.H.; Murphy, D.L. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 1996, 274(5292), 1527-1531.
[http://dx.doi.org/10.1126/science.274.5292.1527] [PMID: 8929413]
[68]
Lewis, G.J.; Cox, S.R.; Booth, T.; Muñoz Maniega, S.; Royle, N.A.; Valdés Hernández, M.; Wardlaw, J.M.; Bastin, M.E.; Deary, I.J. Trait conscientiousness and the personality meta-trait stability are associated with regional white matter microstructure. Soc. Cogn. Affect. Neurosci., 2016, 11(8), 1255-1261.
[http://dx.doi.org/10.1093/scan/nsw037] [PMID: 27013101]
[69]
Passamonti, L.; Terracciano, A.; Riccelli, R.; Donzuso, G.; Cerasa, A.; Vaccaro, M.; Novellino, F.; Fera, F.; Quattrone, A. Increased functional connectivity within mesocortical networks in open people. Neuroimage, 2015, 104, 301-309.
[http://dx.doi.org/10.1016/j.neuroimage.2014.09.017] [PMID: 25234120]
[70]
Yasuno, F.; Kudo, T.; Yamamoto, A.; Matsuoka, K.; Takahashi, M.; Iida, H.; Ihara, M.; Nagatsuka, K.; Kishimoto, T. Significant correlation between openness personality in normal subjects and brain myelin mapping with T1/T2-weighted MR imaging. Heliyon, 2017, 3(9)e00411
[http://dx.doi.org/10.1016/j.heliyon.2017.e00411] [PMID: 28971152]
[71]
Gray, J.A. The psychophysiological basis of introversion-extraversion. Behav. Res. Ther., 1970, 8(3), 249-266.
[http://dx.doi.org/10.1016/0005-7967(70)90069-0] [PMID: 5470377]
[72]
Kumari, V.; ffytche, D.H.; Williams, S.C.; Gray, J.A. Personality predicts brain responses to cognitive demands. J. Neurosci., 2004, 24(47), 10636-10641.
[http://dx.doi.org/10.1523/JNEUROSCI.3206-04.2004] [PMID: 15564579]
[73]
Ghaziri, J.; Tucholka, A.; Girard, G.; Boucher, O.; Houde, J.C.; Descoteaux, M.; Obaid, S.; Gilbert, G.; Rouleau, I.; Nguyen, D.K. Subcortical structural connectivity of insular subregions. Sci. Rep., 2018, 8(1), 8596.
[http://dx.doi.org/10.1038/s41598-018-26995-0] [PMID: 29872212]
[74]
Sawe, N.; Knutson, B. Neural valuation of environmental resources. Neuroimage, 2015, 122, 87-95.
[http://dx.doi.org/10.1016/j.neuroimage.2015.08.010] [PMID: 26265156]
[75]
Wager, T.D.; Davidson, M.L.; Hughes, B.L.; Lindquist, M.A.; Ochsner, K.N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 2008, 59(6), 1037-1050.
[http://dx.doi.org/10.1016/j.neuron.2008.09.006] [PMID: 18817740]
[76]
Young, C.B.; Nusslock, R. Positive mood enhances reward-related neural activity. Soc. Cogn. Affect. Neurosci., 2016, 11(6), 934-944.
[http://dx.doi.org/10.1093/scan/nsw012] [PMID: 26833919]
[77]
Depue, R.A.; Collins, P.F. Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behav. Brain Sci., 1999, 22(3), 491-517.
[http://dx.doi.org/10.1017/S0140525X99002046] [PMID: 11301519]
[78]
Cohen, M.X.; Young, J.; Baek, J-M.; Kessler, C.; Ranganath, C. Individual differences in extraversion and dopamine genetics predict neural reward responses. Brain Res. Cogn. Brain Res., 2005, 25(3), 851-861.
[http://dx.doi.org/10.1016/j.cogbrainres.2005.09.018] [PMID: 16289773]
[79]
Gillespie, N.A.; Cloninger, C.R.; Heath, A.C.; Martin, N.G. The genetic and environmental relationship between Cloninger’s dimensions of temperament and character. Pers. Individ. Dif., 2003, 35(8), 1931-1946.
[http://dx.doi.org/10.1016/S0191-8869(03)00042-4] [PMID: 26028794]
[80]
Hammar, A.; Strand, M.; Årdal, G.; Schmid, M.; Lund, A.; Elliott, R. Testing the cognitive effort hypothesis of cognitive impairment in major depression. Nord. J. Psychiatry, 2011, 65(1), 74-80.
[http://dx.doi.org/10.3109/08039488.2010.494311] [PMID: 20560870]
[81]
Weingartner, H.; Cohen, R.M.; Murphy, D.L.; Martello, J.; Gerdt, C. Cognitive processes in depression. Arch. Gen. Psychiatry, 1981, 38(1), 42-47.
[http://dx.doi.org/10.1001/archpsyc.1981.01780260044004] [PMID: 7458568]
[82]
Simon, S.S.; Cordás, T.A.; Bottino, C.M.C. Cognitive Behavioral Therapies in older adults with depression and cognitive deficits: a systematic review. Int. J. Geriatr. Psychiatry, 2015, 30(3), 223-233.
[http://dx.doi.org/10.1002/gps.4239] [PMID: 25521935]
[83]
Dillon, D.G.; Pizzagalli, D.A. Mechanisms of memory disruption in depression. Trends Neurosci., 2018, 41(3), 137-149.
[http://dx.doi.org/10.1016/j.tins.2017.12.006] [PMID: 29331265]
[84]
Brand, A.N.; Jolles, J.; Gispen-de Wied, C. Recall and recognition memory deficits in depression. J. Affect. Disord., 1992, 25(1), 77-86.
[http://dx.doi.org/10.1016/0165-0327(92)90095-N] [PMID: 1624647]
[85]
Calev, A. Affect and memory in depression: evidence of better delayed recall of positive than negative affect words. Psychopathology, 1996, 29(2), 71-76.
[http://dx.doi.org/10.1159/000284974] [PMID: 8861510]
[86]
Callahan, B.L.; Simard, M.; Mouiha, A.; Rousseau, F.; Laforce, R.; Hudon, C. Impact of depressive symptoms on memory for emotional words in mild cognitive impairment and late-life depression. J. Alzheimers Dis., 2016, 52(2), 451-462.
[http://dx.doi.org/10.3233/JAD-150585] [PMID: 27031467]
[87]
Ilsley, J.E.; Moffoot, A.P.; O’Carroll, R.E. An analysis of memory dysfunction in major depression. J. Affect. Disord., 1995, 35(1-2), 1-9.
[http://dx.doi.org/10.1016/0165-0327(95)00032-I] [PMID: 8557882]
[88]
King, M.J.; MacDougall, A.G.; Ferris, S.; Herdman, K.A.; Bielak, T.; Smith, J.R.; Abid, M.A.; McKinnon, M.C. Impaired episodic memory for events encoded during mania in patients with bipolar disorder. Psychiatry Res., 2013, 205(3), 213-219.
[http://dx.doi.org/10.1016/j.psychres.2012.08.005] [PMID: 23237861]
[89]
Miskowiak, K.W.; Macoveanu, J.; Jorgensen, M.B.; Ott, C.V.; Stottrup, M.M.; Jensen, H.M.; Jorgensen, A.; Harmer, C.J.; Paulson, O.B.; Siebner, H.R.; Kessing, L.V. Effect of electroconvulsive therapy on neural response to affective pictures: A randomized, sham-controlled fMRI study. Eur. Neuropsychopharmacol., 2018, 28(8), 915-924.
[http://dx.doi.org/10.1016/j.euroneuro.2018.05.013]
[90]
Cohen, R.; Lohr, I.; Paul, R.; Boland, R. Impairments of attention and effort among patients with major affective disorders. J. Neuropsychiatry Clin. Neurosci., 2001, 13(3), 385-395.
[http://dx.doi.org/10.1176/jnp.13.3.385] [PMID: 11514646]
[91]
Dalgleish, T.; Werner-Seidler, A. Disruptions in autobiographical memory processing in depression and the emergence of memory therapeutics. Trends Cogn. Sci. (Regul. Ed.), 2014, 18(11), 596- 604.
[http://dx.doi.org/10.1016/j.tics.2014.06.010] [PMID: 25060510]
[92]
Etkin, A. Remember the good times? biased autobiographical memory in depression. Am. J. Psychiatry, 2016, 173(1), 8-9.
[http://dx.doi.org/10.1176/appi.ajp.2015.15101313] [PMID: 26725339]
[93]
Liu, Y.; Zhang, F.; Wang, Z.; Cao, L.; Wang, J.; Na, A.; Sun, Y.; Zhao, X. Overgeneral autobiographical memory at baseline predicts depressive symptoms at follow-up in patients with first-episode depression. Psychiatry Res., 2016, 243, 123-127.
[http://dx.doi.org/10.1016/j.psychres.2016.06.029] [PMID: 27392229]
[94]
Ridout, N.; Dritschel, B.; Matthews, K.; O’Carroll, R. Autobiographical memory specificity in response to verbal and pictorial cues in clinical depression. J. Behav. Ther. Exp. Psychiatry, 2016, 51, 109-115.
[http://dx.doi.org/10.1016/j.jbtep.2016.01.002] [PMID: 26808234]
[95]
Söderlund, H.; Moscovitch, M.; Kumar, N.; Daskalakis, Z.J.; Flint, A.; Herrmann, N.; Levine, B. Autobiographical episodic memory in major depressive disorder. J. Abnorm. Psychol., 2014, 123(1), 51-60.
[http://dx.doi.org/10.1037/a0035610] [PMID: 24661159]
[96]
Brittlebank, A.D.; Scott, J.; Williams, J.M.; Ferrier, I.N. Autobiographical memory in depression: state or trait marker? Br. J. Psychiatry, 1993, 162, 118-121.
[http://dx.doi.org/10.1192/bjp.162.1.118] [PMID: 8425125]
[97]
Williams, J.M.G.; Barnhofer, T.; Crane, C.; Herman, D.; Raes, F.; Watkins, E.; Dalgleish, T. Autobiographical memory specificity and emotional disorder. Psychol. Bull., 2007, 133(1), 122-148.
[http://dx.doi.org/10.1037/0033-2909.133.1.122] [PMID: 17201573]
[98]
Garnefski, N.; Kraaij, V. Relationships between cognitive emotion regulation strategies and depressive symptoms: A comparative study of five specific samples. Pers. Individ. Dif., 2006, 40(8), 1659-1669.
[http://dx.doi.org/10.1016/j.paid.2005.12.009]
[99]
Zhang, R.; Kranz, G.S.; Zou, W.; Deng, Y.; Huang, X.; Lin, K.; Lee, T.M.C. Rumination network dysfunction in major depression: A brain connectome study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 98 109819
[http://dx.doi.org/10.1016/j.pnpbp.2019.109819] [PMID: 31734293]
[100]
Schwert, C.; Aschenbrenner, S.; Weisbrod, M.; Schröder, A. Cognitive impairments in unipolar depression: the impact of rumination. Psychopathology, 2017, 50(5), 347-354.
[http://dx.doi.org/10.1159/000478785] [PMID: 28850956]
[101]
Liu, Y.; Yu, X.; Yang, B.; Zhang, F.; Zou, W.; Na, A.; Zhao, X.; Yin, G. Rumination mediates the relationship between overgeneral autobiographical memory and depression in patients with major depressive disorder. BMC Psychiatry, 2017, 17(1), 103.
[http://dx.doi.org/10.1186/s12888-017-1264-8] [PMID: 28327097]
[102]
Stone, L.B.; McGeary, J.E.; Palmer, R.H.; Gibb, B.E. Identifying genetic predictors of depression risk: 5-HTTLPR and BDNF Val66Met polymorphisms are associated with rumination and co-rumination in adolescents. Front. Genet., 2013, 4, 246.
[http://dx.doi.org/10.3389/fgene.2013.00246] [PMID: 24312122]
[103]
Zuo, N.; Fang, J.; Lv, X.; Zhou, Y.; Hong, Y.; Li, T.; Tong, H.; Wang, X.; Wang, W.; Jiang, T. White matter abnormalities in major depression: a tract-based spatial statistics and rumination study. PLoS One, 2012, 7(5) e37561
[http://dx.doi.org/10.1371/journal.pone.0037561] [PMID: 22666366]
[104]
Cooney, R.E.; Joormann, J.; Eugène, F.; Dennis, E.L.; Gotlib, I.H. Neural correlates of rumination in depression. Cogn. Affect. Behav. Neurosci., 2010, 10(4), 470-478.
[http://dx.doi.org/10.3758/CABN.10.4.470] [PMID: 21098808]
[105]
Schofield, P.W.; Marder, K.; Dooneief, G.; Jacobs, D.M.; Sano, M.; Stern, Y. Association of subjective memory complaints with subsequent cognitive decline in community-dwelling elderly individuals with baseline cognitive impairment. Am. J. Psychiatry, 1997, 154(5), 609-615.
[http://dx.doi.org/10.1176/ajp.154.5.609] [PMID: 9137114]
[106]
Lighthall, N.R.; Gorlick, M.A.; Schoeke, A.; Frank, M.J.; Mather, M. Stress modulates reinforcement learning in younger and older adults. Psychol. Aging, 2013, 28(1), 35-46.
[http://dx.doi.org/10.1037/a0029823] [PMID: 22946523]
[107]
von Gunten, A.; Pocnet, C.; Rossier, J. The impact of personality characteristics on the clinical expression in neurodegenerative disorders--a review. Brain Res. Bull., 2009, 80(4-5), 179-191.
[http://dx.doi.org/10.1016/j.brainresbull.2009.07.004] [PMID: 19616079]
[108]
Lahey, B.B. Public health significance of neuroticism. Am. Psychol., 2009, 64(4), 241-256.
[http://dx.doi.org/10.1037/a0015309] [PMID: 19449983]
[109]
Barlow, D.H.; Ellard, K.K.; Sauer-Zavala, S.; Bullis, J.R.; Carl, J.R. The Origins of Neuroticism. Perspect. Psychol. Sci., 2014, 9(5), 481-496.
[http://dx.doi.org/10.1177/1745691614544528] [PMID: 26186755]
[110]
de Moor, M.H.M.; Costa, P.T.; Terracciano, A.; Krueger, R.F.; de Geus, E.J.C.; Toshiko, T.; Penninx, B.W.; Esko, T.; Madden, P.A.F.; Derringer, J.; Amin, N.; Willemsen, G.; Hottenga, J.J.; Distel, M.A.; Uda, M.; Sanna, S.; Spinhoven, P.; Hartman, C.A.; Sullivan, P.; Realo, A.; Allik, J.; Heath, A.C.; Pergadia, M.L.; Agrawal, A.; Lin, P.; Grucza, R.; Nutile, T.; Ciullo, M.; Rujescu, D.; Giegling, I.; Konte, B.; Widen, E.; Cousminer, D.L.; Eriksson, J.G.; Palotie, A.; Peltonen, L.; Luciano, M.; Tenesa, A.; Davies, G.; Lopez, L.M.; Hansell, N.K.; Medland, S.E.; Ferrucci, L.; Schlessinger, D.; Montgomery, G.W.; Wright, M.J.; Aulchenko, Y.S.; Janssens, A.C.; Oostra, B.A.; Metspalu, A.; Abecasis, G.R.; Deary, I.J.; Räikkönen, K.; Bierut, L.J.; Martin, N.G.; van Duijn, C.M.; Boomsma, D.I. Meta-analysis of genome-wide association studies for personality. Mol. Psychiatry, 2012, 17(3), 337-349.
[http://dx.doi.org/10.1038/mp.2010.128] [PMID: 21173776]
[111]
Harrington, R.; Loffredo, D.A. Insight, rumination, and self-reflection as predictors of well-being. J. Psychol., 2011, 145(1), 39-57.
[http://dx.doi.org/10.1080/00223980.2010.528072] [PMID: 21290929]
[112]
Jeronimus, B.F.; Ormel, J.; Aleman, A.; Penninx, B.W.; Riese, H. Negative and positive life events are associated with small but lasting change in neuroticism. Psychol. Med., 2013, 43(11), 2403-2415.
[http://dx.doi.org/10.1017/S0033291713000159] [PMID: 23410535]
[113]
Krueger, R.F.; Eaton, N.R. Personality traits and the classification of mental disorders: toward a more complete integration in DSM-5 and an empirical model of psychopathology. Pers. Disord., 2010, 1(2), 97-118.
[http://dx.doi.org/10.1037/a0018990] [PMID: 22448621]
[114]
Ormel, J.; Jeronimus, B.F.; Kotov, R.; Riese, H.; Bos, E.H.; Hankin, B.; Rosmalen, J.G.M.; Oldehinkel, A.J. Neuroticism and common mental disorders: meaning and utility of a complex relationship. Clin. Psychol. Rev., 2013, 33(5), 686-697.
[http://dx.doi.org/10.1016/j.cpr.2013.04.003] [PMID: 23702592]
[115]
Robins Wahlin, T-B.; Byrne, G.J. Personality changes in Alzheimer’s disease: a systematic review. Int. J. Geriatr. Psychiatry, 2011, 26(10), 1019-1029.
[http://dx.doi.org/10.1002/gps.2655] [PMID: 21905097]
[116]
Terracciano, A.; Stephan, Y.; Luchetti, M.; Albanese, E.; Sutin, A.R. Personality traits and risk of cognitive impairment and dementia. J. Psychiatr. Res., 2017, 89, 22-27.
[http://dx.doi.org/10.1016/j.jpsychires.2017.01.011] [PMID: 28153642]
[117]
Terracciano, A.; Sutin, A.R. Personality and Alzheimer’s disease: An integrative review. Pers. Disord., 2019, 10(1), 4-12.
[http://dx.doi.org/10.1037/per0000268] [PMID: 30604979]
[118]
Duchek, J.M.; Balota, D.A.; Storandt, M.; Larsen, R. The power of personality in discriminating between healthy aging and early-stage Alzheimer’s disease. The J. Gero.: Series B, 2007, 62(6), 353-361.
[http://dx.doi.org/10.1093/geronb/62.6.P353]
[119]
Kuzma, E.; Sattler, C.; Toro, P.; Schönknecht, P.; Schröder, J. Premorbid personality traits and their course in mild cognitive impairment: results from a prospective population-based study in Germany. Dement. Geriatr. Cogn. Disord., 2011, 32(3), 171-177.
[http://dx.doi.org/10.1159/000332082] [PMID: 22005607]
[120]
Balsis, S.; Carpenter, B.D.; Storandt, M. Personality change precedes clinical diagnosis of dementia of the Alzheimer type. J. Gerontol. B Psychol. Sci. Soc. Sci., 2005, 60(2), 98-P101.
[http://dx.doi.org/10.1093/geronb/60.2.P98] [PMID: 15746024]
[121]
Wilson, R.S.; Arnold, S.E.; Schneider, J.A.; Kelly, J.F.; Tang, Y.; Bennett, D.A. Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology, 2006, 27(3), 143-153.
[http://dx.doi.org/10.1159/000095761] [PMID: 16974109]
[122]
Wilson, R.S.; Begeny, C.T.; Boyle, P.A.; Schneider, J.A.; Bennett, D.A. Vulnerability to stress, anxiety, and development of dementia in old age. Am. J. Geriatr. Psychiatry, 2011, 19(4), 327-334.
[http://dx.doi.org/10.1097/JGP.0b013e31820119da] [PMID: 21427641]
[123]
Wilson, R.S.; Schneider, J.A.; Boyle, P.A.; Arnold, S.E.; Tang, Y.; Bennett, D.A. Chronic distress and incidence of mild cognitive impairment. Neurology, 2007, 68(24), 2085-2092.
[http://dx.doi.org/10.1212/01.wnl.0000264930.97061.82] [PMID: 17562829]
[124]
Pocnet, C.; Rossier, J.; Antonietti, J-P.; von Gunten, A. Personality traits and behavioral and psychological symptoms in patients at an early stage of Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2013, 28(3), 276-283.
[http://dx.doi.org/10.1002/gps.3822] [PMID: 22552913]
[125]
Malhotra, R.; Chei, C.L.; Østbye, T.; Chan, A.; Matchar, D.B. Older person behavioral and psychological symptoms (BPS) and functional limitations mediate the association between older person cognitive impairment and depressive symptoms in the caregiver. Arch. Gerontol. Geriatr., 2014, 58(2), 269-277.
[http://dx.doi.org/10.1016/j.archger.2013.10.004] [PMID: 24211024]
[126]
Manso-Calderon, R.; Cacabelos-Perez, P.; Sevillano-Garcia, M.D.; Herrero-Prieto, M.E.; Gonzalez-Sarmiento, R. The impact of vascular burden on behavioural and psychological symptoms in older adults with dementia: the BEVASDE study. Neurol. Sci., 2019, 41(1), 165-174.
[PMID: 31494822]
[127]
Mendez Rubio, M.; Antonietti, J.P.; Donati, A.; Rossier, J.; von Gunten, A. Personality traits and behavioural and psychological symptoms in patients with mild cognitive impairment. Dement. Geriatr. Cogn. Disord., 2013, 35(1-2), 87-97.
[http://dx.doi.org/10.1159/000346129] [PMID: 23364170]
[128]
Vicini Chilovi, B.; Conti, M.; Zanetti, M.; Mazzù, I.; Rozzini, L.; Padovani, A. Differential impact of apathy and depression in the development of dementia in mild cognitive impairment patients. Dement. Geriatr. Cogn. Disord., 2009, 27(4), 390-398.
[http://dx.doi.org/10.1159/000210045] [PMID: 19339777]
[129]
Belleville, S.; Fouquet, C.; Duchesne, S.; Collins, D.L.; Hudon, C. Detecting early preclinical Alzheimer’s disease via cognition, neuropsychiatry, and neuroimaging: qualitative review and recommendations for testing. J. Alzheimers Dis., 2014, 42(Suppl. 4), S375-S382.
[http://dx.doi.org/10.3233/JAD-141470] [PMID: 25190629]
[130]
Chung, J.A.; Cummings, J.L. Neurobehavioral and neuropsychiatric symptoms in Alzheimer’s disease: characteristics and treatment. Neurol. Clin., 2000, 18(4), 829-846.
[http://dx.doi.org/10.1016/S0733-8619(05)70228-0] [PMID: 11072263]
[131]
Kaup, A.R.; Harmell, A.L.; Yaffe, K. Conscientiousness is associated with lower risk of dementia among black and white older adults. Neuroepidemiology, 2019, 52(1-2), 86-92.
[http://dx.doi.org/10.1159/000492821] [PMID: 30602170]
[132]
Lyketsos, C.G.; Lopez, O.; Jones, B.; Fitzpatrick, A.L.; Breitner, J.; DeKosky, S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA, 2002, 288(12), 1475-1483.
[http://dx.doi.org/10.1001/jama.288.12.1475] [PMID: 12243634]
[133]
Tan, E.Y.L.; Köhler, S.; Hamel, R.E.G.; Muñoz-Sánchez, J.L.; Verhey, F.R.J.; Ramakers, I.H.G.B. Depressive symptoms in mild cognitive impairment and the risk of dementia: a systematic review and comparative meta-analysis of clinical and community-based studies. J. Alzheimers Dis., 2019, 67(4), 1319-1329.
[http://dx.doi.org/10.3233/JAD-180513] [PMID: 30689564]
[134]
Rozzini, L.; Vicini Chilovi, B.; Conti, M.; Delrio, I.; Borroni, B.; Trabucchi, M.; Padovani, A. Neuropsychiatric symptoms in amnestic and nonamnestic mild cognitive impairment. Dement. Geriatr. Cogn. Disord., 2008, 25(1), 32-36.
[http://dx.doi.org/10.1159/000111133] [PMID: 18025827]
[135]
Kendler, K.S.; Aggen, S.H.; Gillespie, N.; Neale, M.C.; Knudsen, G.P.; Krueger, R.F.; Czajkowski, N.; Ystrom, E.; Reichborn-Kjennerud, T. The genetic and environmental sources of resemblance between normative personality and personality disorder traits. J. Pers. Disord., 2017, 31(2), 193-207.
[http://dx.doi.org/10.1521/pedi_2016_30_251] [PMID: 27322578]
[136]
Czajkowski, N.; Aggen, S.H.; Krueger, R.F.; Kendler, K.S.; Neale, M.C.; Knudsen, G.P.; Gillespie, N.A.; Røysamb, E.; Tambs, K.; Reichborn-Kjennerud, T. A twin study of normative personality and DSM-IV personality disorder criterion counts: evidence for separate genetic influences. Am. J. Psychiatry, 2018, 175(7), 649-656.
[http://dx.doi.org/10.1176/appi.ajp.2017.17050493] [PMID: 29558815]
[137]
Hicks, B.M.; Bernat, E.; Malone, S.M.; Iacono, W.G.; Patrick, C.J.; Krueger, R.F.; McGue, M. Genes mediate the association between P3 amplitude and externalizing disorders. Psychophysiology, 2007, 44(1), 98-105.
[http://dx.doi.org/10.1111/j.1469-8986.2006.00471.x] [PMID: 17241145]
[138]
Kendler, K.S.; Aggen, S.H.; Neale, M.C.; Knudsen, G.P.; Krueger, R.F.; Tambs, K.; Czajkowski, N.; Ystrom, E.; Ørstavik, R.E.; Reichborn-Kjennerud, T. A longitudinal twin study of cluster A personality disorders. Psychol. Med., 2015, 45(7), 1531-1538.
[http://dx.doi.org/10.1017/S0033291714002669] [PMID: 25394477]
[139]
Krueger, R.F. The future is now: Personality disorder and the ICD-11. Pers. Ment. Health, 2016, 10(2), 118-119.
[http://dx.doi.org/10.1002/pmh.1340] [PMID: 27120422]
[140]
Krueger, R.F.; South, S.; Johnson, W.; Iacono, W. The heritability of personality is not always 50%: gene-environment interactions and correlations between personality and parenting. J. Pers., 2008, 76(6), 1485-1522.
[http://dx.doi.org/10.1111/j.1467-6494.2008.00529.x] [PMID: 19012656]
[141]
Longenecker, J.M.; Krueger, R.F.; Sponheim, S.R. Personality traits across the psychosis spectrum: A Hierarchical Taxonomy of Psychopathology conceptualization of clinical symptomatology. Pers. Ment. Health, 2019.
[http://dx.doi.org/10.1002/pmh.1448] [PMID: 31309736]
[142]
Mullins-Sweatt, S.N.; DeShong, H.L.; Lengel, G.J.; Helle, A.C.; Krueger, R.F. Disinhibition as a unifying construct in understanding how personality dispositions undergird psychopathology. J. Res. Pers., 2019, 80, 55-61.
[http://dx.doi.org/10.1016/j.jrp.2019.04.006] [PMID: 31537951]
[143]
Cui, J.; Zufferey, V.; Kherif, F. In-vivo brain neuroimaging provides a gateway for integrating biological and clinical biomarkers of Alzheimer’s disease. Curr. Opin. Neurol., 2015, 28(4), 351-357.
[http://dx.doi.org/10.1097/WCO.0000000000000225] [PMID: 26132531]
[144]
Draganski, B.; Kherif, F.; Lutti, A. Computational anatomy for studying use-dependant brain plasticity. Front. Hum. Neurosci., 2014, 8, 380.
[http://dx.doi.org/10.3389/fnhum.2014.00380] [PMID: 25018716]
[145]
Draganski, B.; Lutti, A.; Kherif, F. Impact of brain aging and neurodegeneration on cognition: evidence from MRI. Curr. Opin. Neurol., 2013, 26(6), 640-645.
[http://dx.doi.org/10.1097/WCO.0000000000000029] [PMID: 24184970]
[146]
Frackowiak, R.; Ailamaki, A.; Kherif, F. Federating and integrating what we know about the brain at all scales: computer science meets the clinical neurosciences. In:Micro-, Meso- and Macro-Dynamics of the Brain; Buzsaki, G.; Christen, Y., Eds.; Springer: Berlin, 2016, pp. 157-170.
[147]
Guo, S.; Lai, C.; Wu, C.; Cen, G. Conversion discriminative analysis on mild cognitive impairment using multiple cortical features from MR images. Front. Aging Neurosci., 2017, 9, 146.
[http://dx.doi.org/10.3389/fnagi.2017.00146] [PMID: 28572766]
[148]
Kawasaki, Y.; Suzuki, M.; Kherif, F.; Takahashi, T.; Zhou, S.Y.; Nakamura, K.; Matsui, M.; Sumiyoshi, T.; Seto, H.; Kurachi, M. Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. Neuroimage, 2007, 34(1), 235-242.
[http://dx.doi.org/10.1016/j.neuroimage.2006.08.018] [PMID: 17045492]
[149]
Kherif, F.; Poline, J.B.; Flandin, G.; Benali, H.; Simon, O.; Dehaene, S.; Worsley, K.J. Multivariate model specification for fMRI data. Neuroimage, 2002, 16(4), 1068-1083.
[http://dx.doi.org/10.1006/nimg.2002.1094] [PMID: 12202094]
[150]
Lorio, S.; Kherif, F.; Ruef, A.; Melie-Garcia, L.; Frackowiak, R.; Ashburner, J.; Helms, G.; Lutti, A.; Draganski, B. Neurobiological origin of spurious brain morphological changes: A quantitative MRI study. Hum. Brain Mapp., 2016, 37(5), 1801-1815.
[http://dx.doi.org/10.1002/hbm.23137] [PMID: 26876452]
[151]
Simon, O.; Kherif, F.; Flandin, G.; Poline, J.B.; Rivière, D.; Mangin, J.F.; Le Bihan, D.; Dehaene, S. Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. Neuroimage, 2004, 23(3), 1192-1202.
[http://dx.doi.org/10.1016/j.neuroimage.2004.09.023] [PMID: 15528119]
[152]
Slater, D.A.; Melie-Garcia, L.; Preisig, M.; Kherif, F.; Lutti, A.; Draganski, B. Evolution of white matter tract microstructure across the life span. Hum. Brain Mapp., 2019, 40(7), 2252-2268.
[http://dx.doi.org/10.1002/hbm.24522] [PMID: 30673158]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2020
Published on: 10 February, 2020
Page: [782 - 791]
Pages: 10
DOI: 10.2174/1568026620666200211110545
Price: $65

Article Metrics

PDF: 34
HTML: 3