Cholesterol-Conjugate as a New Strategy to Improve the Cytotoxic Effect of 5-Fluorouracil on Liver Cancer: Impact of Liposomal Composition

Author(s): Saleh Ayed Alanazi*, Gamaleldin Ibrahim Harisa, Mohammad M. Badran, Nazrul Haq, Awwad Abdoh Radwan, Ashok Kumar, Faiyaz Shakeel, Fars Kaed Alanazi*

Journal Name: Current Drug Delivery

Volume 17 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Purpose: Hepatocellular carcinoma (HCC) is a common liver malignancy, which has a low survival rate of all cancers. 5-fluorouracil (5-FU) is clinically recognized to treat HCC. However, the success of this therapy is highly limited due to rapid clearance and non- selective distribution. Cholesterol- conjugate (5-FUC) loaded liposomes proposed to facilitate the transport of 5-FUC into tumor cells via Low-Density Lipoprotein receptor (LDL receptor) that overexpressed in HCC. Thus, the aim of this study was to use 5-FUC loaded liposome as a promising strategy to combat HCC and improve the response of HCC to chemotherapy.

Methods: 5-FUC and 5-FU loaded liposomes were optimized based on Cholesterol (CHO) ratio and type of phospholipid to achieve a potential effect on HCC. Liposomes were prepared by the thin-film hydration method, and evaluated in terms of particle size, polydispersity, zeta potential, Entrapment Efficiency (EE), morphology, drug release and cytotoxicity.

Results: The obtained liposomes had a suitable nano-range particle size with negative zeta potential, and acceptable EE%. In vitro drug release of 5-FUC loaded liposomes showed a lower cumulative release over 24 h as compared to 5-FU loaded liposomes. 5-FUC loaded liposomes exhibited a higher in vitro cytotoxic effect as compared to the free drug and 5-FU loaded liposomes against HepG2 cell lines after 48 h via MTT assay.

Conclusion: These results concluded that 5-FUC loaded liposomes could be used as an alternative tactic to increase the therapeutic index of 5-FU and pave the way for potential clinical applications.

Keywords: 5-Fluorouracil, phospholipids, liposomes, drug delivery, liver cancer, cytotoxicity.

[1]
Dangi, R.; Hurkat, P.; Jain, A.; Shilpi, S.; Jain, A.; Gulbake, A.; Jain, S.K. Targeting liver cancer via ASGP receptor using 5-FU-loaded surface-modified PLGA nanoparticles. J. Microencapsul., 2014, 31(5), 479-487.
[http://dx.doi.org/10.3109/02652048.2013.879929 ] [PMID: 24697169]
[2]
Aravalli, R.N. Development of microRNA therapeutics for hepatocellular carcinoma. Diagnostics (Basel), 2013, 3(1), 170-191.
[http://dx.doi.org/10.3390/diagnostics3010170 ] [PMID: 26835673]
[3]
Galun, D.; Srdic-Rajic, T.; Bogdanovic, A.; Loncar, Z.; Zuvela, M. Targeted therapy and personalized medicine in hepatocellular carcinoma: drug resistance, mechanisms, and treatment strategies. J. Hepatocell. Carcinoma, 2017, 4, 93-103.
[http://dx.doi.org/10.2147/JHC.S106529 ] [PMID: 28744453]
[4]
Guo, J.; Chen, Q.; Lam, C.W.; Wang, C.; Wong, V.K.; Xu, F.; Jiang, Z.; Zhang, W. Application of artificial neural network to investigate the effects of 5-fluorouracil on ribonucleotides and deoxyribonucleotides in HepG2 cells. Sci. Rep., 2015, 5, 16861.
[http://dx.doi.org/10.1038/srep16861 ] [PMID: 26578061]
[5]
McAlpine, J.A.; Lu, H.T.; Wu, K.C.; Knowles, S.K.; Thomson, J.A. Down-regulation of argininosuccinate synthetase is associated with cisplatin resistance in hepatocellular carcinoma cell lines: implications for PEGylated arginine deiminase combination therapy. BMC Cancer, 2014, 14, 621.
[http://dx.doi.org/10.1186/1471-2407-14-621 ] [PMID: 25164070]
[6]
Chen, X.; Ding, G.; Gao, Q.; Sun, J.; Zhang, Q.; Du, L.; Qiu, Z.; Wang, C.; Zheng, F.; Sun, B.; Ni, J.; Feng, Z.; Zhu, J. A human anti-c-Met Fab fragment conjugated with doxorubicin as targeted chemotherapy for hepatocellular carcinoma. PLoS One, 2013, 8(5), e63093.
[http://dx.doi.org/10.1371/journal.pone.0063093 ] [PMID: 23675455]
[7]
Wigmore, P.M.; Mustafa, S.; El-Beltagy, M.; Lyons, L.; Umka, J.; Bennett, G. Effects of 5-FU. In: Chemo Fog. Adv. Exp. Med. Biol; Raffa, R.B.; Tallarida, R.J., Eds.; Springer: NY,, 2010, 678, pp. 157-164.
[8]
Asghar, U.; Meyer, T. Are there opportunities for chemotherapy in the treatment of hepatocellular cancer? J. Hepatol., 2012, 56(3), 686-695.
[http://dx.doi.org/10.1016/j.jhep.2011.07.031 ] [PMID: 21971559]
[9]
Calderini, A.; Pessine, B.T.; Franchi, G.C.; Nowill, A.E. Preparation and characterisation of 5-fluorouracil containing PLGA nanospheres coated with chitosan for drug delivery. Int. J. Nanotechnol., 2012, 9, 851-861.
[http://dx.doi.org/10.1504/IJNT.2012.049450]
[10]
Presant, C.A.; Jacobson, J.; Wolf, W.; Waluch, V.; Weitz, I.C.; Macdonald, J.S. Does leucovorin alter the intratumoral pharmacokinetics of 5-fluorouracil (5-FU)? a Southwest oncology group study. Invest. New Drugs, 2002, 20(4), 369-376.
[http://dx.doi.org/10.1023/A:1020651311866 ] [PMID: 12448653]
[11]
Radwan, A.A.; Alanazi, F.K. Design and synthesis of new cholesterol-conjugated 5-fluorouracil: a novel potential delivery system for cancer treatment. Molecules, 2014, 19(9), 13177-13187.
[http://dx.doi.org/10.3390/molecules190913177 ] [PMID: 25162958]
[12]
Kostner, G.M.; Laggner, P. Human plasma lipoprotein; Walter de Gruyter: Berlin, Germany, 1989, pp. 23-51.
[http://dx.doi.org/10.1515/9783110873665-005]
[13]
Chen, Y.; Hughes-Fulford, M. Human prostate cancer cells lack feedback regulation of low-density lipoprotein receptor and its regulator, SREBP2. Int. J. Cancer, 2001, 91(1), 41-45.
[http://dx.doi.org/10.1002/1097-0215(20010101)91:1<41::AID-IJC1009>3.0.CO;2-2 ] [PMID: 11149418]
[14]
Harisa, G.I.; Alanazi, F.K. Low density lipoprotein bionanoparticles: from cholesterol transport to delivery of anti-cancer drugs. Saudi Pharm. J., 2014, 22(6), 504-515.
[http://dx.doi.org/10.1016/j.jsps.2013.12.015 ] [PMID: 25561862]
[15]
Ji, B.; Lu, D.R. A novel approach to targeted drug delivery for treatment of brain cancer. J. Cont. Release, 2001, 10, 248-268.
[16]
Shakeel, F.; Alanazi, F.K.; Raish, M.; Haq, N.; Radwan, A.A.; Alsarra, I. Pharmacokinetic and in vitro cytotoxic evaluation of cholesterol-rich nanoemulsion of cholesteryl-succinyl-5-fluorouracil. J. Mol. Liq., 2015, 211, 164-168.
[http://dx.doi.org/10.1016/j.molliq.2015.06.069]
[17]
Alanazi, F.K.; Haq, N.; Radwan, A.A.; Alsarra, I.A.; Shakeel, F. Development and validation of UHPLC-DAD method for the determination of cholesteryl-hexahydrophthaloyl-5-fluorouracil in lipid nanoemulsion. J. Anal. Chem., 2015, 70, 593-599.
[http://dx.doi.org/10.1134/S1061934815050056]
[18]
Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V.P.; Jiang, W.; Popovic, Z.; Jain, R.K.; Bawendi, M.G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA, 2011, 108(6), 2426-2431.
[http://dx.doi.org/10.1073/pnas.1018382108 ] [PMID: 21245339]
[19]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614 ] [PMID: 18758474]
[20]
Farzaneh, H.; Ebrahimi Nik, M.; Mashreghi, M.; Saberi, Z.; Jaafari, M.R.; Teymouri, M. A study on the role of cholesterol and phosphatidylcholine in various features of liposomal doxorubicin: from liposomal preparation to therapy. Int. J. Pharm., 2018, 551(1-2), 300-308.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.047 ] [PMID: 30243944]
[21]
Moura, J.A.; Valduga, C.J.; Tavares, E.R.; Kretzer, I.F.; Maria, D.A.; Maranhão, R.C. Novel formulation of a methotrexate derivative with a lipid nanoemulsion. Int. J. Nanomed, 2011, 6, 2285-2295.
[PMID: 22072866]
[22]
Alves, A.C.; Magarkar, A.; Horta, M.; Lima, J.L.F.C.; Bunker, A.; Nunes, C.; Reis, S. Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Sci. Rep., 2017, 7(1), 6343.
[http://dx.doi.org/10.1038/s41598-017-06445-z ] [PMID: 28740256]
[23]
Huang, Z.; Szoka, F.C. Jr Sterol-modified phospholipids: cholesterol and phospholipid chimeras with improved biomembrane properties. J. Am. Chem. Soc., 2008, 130(46), 15702-15712.
[http://dx.doi.org/10.1021/ja8065557 ] [PMID: 18950160]
[24]
Song, M.; Liang, Y.; Li, K.; Zhang, J.; Zhang, N.; Tian, B. HanHyaluronic acid, modified liposomes for targeted delivery of doxorubicin and paclitaxel to CD44 overexpressing tumor cells with improved dual-drugs synergistic effect. J. Drug Deliv. Sci. Technol., 2019, 53, 101179.
[http://dx.doi.org/10.1016/j.jddst.2019.101179]
[25]
Badran, M.M.; Mady, M.M.; Ghannam, M.M.; Shakeel, F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int. J. Biol. Macromol., 2017, 95, 643-649.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.098 ] [PMID: 27908720]
[26]
Albadawi, D.A.; Mothana, R.A.; Khaled, J.M.; Ashour, A.E.; Kumar, A.; Ahmad, S.F.; Al-Said, M.S.; Al-Rehaily, A.J.; Almusayeib, N.M. Antimicrobial, anticancer, and antioxidant compounds from Premna resinosa growing in Saudi Arabia. Pharm. Biol., 2017, 55(1), 1759-1766.
[http://dx.doi.org/10.1080/13880209.2017.1322617 ] [PMID: 28508699]
[27]
AlQahtani, S.A.; Harisa, G.I.; Badran, M.M.; AlGhamdi, K.M.; Kumar, A.; Salem-Bekhit, M.M.; Ahmad, S.F.; Alanazi, F.K. Nano-erythrocyte membrane-chaperoned 5-fluorouracil liposomes as biomimetic delivery platforms to target hepatocellular carcinoma cell lines. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 989-996.
[http://dx.doi.org/10.1080/21691401.2019.1577887 ] [PMID: 30873877]
[28]
Wada, S.; Yasuhara, H.; Wada, F.; Sawamura, M.; Waki, R.; Yamamoto, T.; Harada-Shiba, M.; Obika, S. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides. J. Control. Release, 2016, 226, 57-65.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.007 ] [PMID: 26855051]
[29]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26(1), 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015 ] [PMID: 18190833]
[30]
Essa, E.A. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J. Pharm., 2010, 4, 227-233.
[http://dx.doi.org/10.4103/0973-8398.76752]
[31]
Duangjit, S.; Pamornpathomkul, B.; Opanasopit, P.; Rojanarata, T.; Obata, Y.; Takayama, K.; Ngawhirunpat, T. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int. J. Nanomed., 2014, 9, 2005-2017.
[http://dx.doi.org/10.2147/IJN.S60674 ] [PMID: 24851047]
[32]
Pereira, S.; Egbu, R.; Jannati, G.; Al-Jamal, W.T. Docetaxel-loaded liposomes: the effect of lipid composition and purification on drug encapsulation and in vitro toxicity. Int. J. Pharm., 2016, 514(1), 150-159.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.057 ] [PMID: 27863659]
[33]
Epand, R.M.; Epand, R.F.; Maekawa, S. The arrangement of cholesterol in membranes and binding of NAP-22. Chem. Phys. Lipids, 2003, 122(1-2), 33-39.
[http://dx.doi.org/10.1016/S0009-3084(02)00176-7 ] [PMID: 12598036]
[34]
Hosny, K.M. Ciprofloxacin as ocular liposomal hydrogel. AAPS PharmSciTech, 2010, 11(1), 241-246.
[http://dx.doi.org/10.1208/s12249-009-9373-4 ] [PMID: 20151337]
[35]
Sezer, A.D.; Baş, A.L.; Akbuğa, J. Encapsulation of enrofloxacin in liposomes I: preparation and in vitro characterization of LUV. J. Liposome Res., 2004, 14(1-2), 77-86.
[http://dx.doi.org/10.1081/LPR-120039717 ] [PMID: 15461934]
[36]
Panwar, P.; Pandey, B.; Lakhera, P.C.; Singh, K.P. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int. J. Nanomed, 2010, 5, 101-108.
[PMID: 20309396]
[37]
Tabandeh, H.; Mortazavi, S.A. An investigation into some effective factors on encapsulation efficiency of alpha-tocopherol in MLvs and the release profile from the corresponding liposomal gel. Iran. J. Pharm. Res., 2013, 12(Suppl.), 21-30.
[PMID: 24250668]
[38]
Aydin, R.S.T.; Pulat, M. 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J. Nanomater., 2012, E313961, 1-10.
[39]
Qiang, Z.; Adams, C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res., 2004, 38(12), 2874-2890.
[http://dx.doi.org/10.1016/j.watres.2004.03.017 ] [PMID: 15223282]
[40]
Briuglia, M.L.; Rotella, C.; McFarlane, A.; Lamprou, D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res., 2015, 5(3), 231-242.
[http://dx.doi.org/10.1007/s13346-015-0220-8 ] [PMID: 25787731]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 10
Year: 2020
Published on: 28 October, 2020
Page: [898 - 910]
Pages: 13
DOI: 10.2174/1567201817666200211095452
Price: $65

Article Metrics

PDF: 31
HTML: 1