Mixed Oleic Acid-Erucic Acid Liposomes as a Carrier for Anticancer Drugs

Author(s): Vicit Rizal Eh Suk*, Ivy Chung, Misni Misran

Journal Name: Current Drug Delivery

Volume 17 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Liposomes are mostly known to be prepared from phospholipids and lipids and have a remarkable capacity to encapsulate both lipophobic and lipophilic molecules. However, there is little research on developing fatty acid liposomes for chemotherapy.

Objective: We have successfully prepared mixed fatty acid liposomes from two monounsaturated fatty acids, namely oleic acid and erucic acid, which stabilised by DOPEPEG2000. The Critical Vesicular Concentration (CVC) of liposomes was found to be within 0.09 to 0.21 mmol dm-3, with an average particle size of 400 nm.

Methods: Encapsulation of various anticancer drugs such as folinic acid, methotrexate, doxorubicin, or irinotecan resulted in Encapsulation Efficiency (%EE) of up to 90%. Using a 3-(4, 5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the median Inhibitory Concentration (IC50) values of mixed oleic acid-erucic acid encapsulating hydrophilic drugs was remarkably reduced at the end of 24 hours of incubation with the human lung carcinoma cell line A549.

Results: The results suggest that mixed oleic acid-erucic acid liposomes are a potential new approach to further develop as an alternative vehicle of various drugs for cancer treatment.

Keywords: Liposomes, oleic acid, erucic acid, fatty acid, anticancer drugs, solubility.

Harding, M.C.; Sloan, C.D.; Merrill, R.M.; Harding, T.M.; Thacker, B.J.; Thacker, E.L. MP67: transition from cardiovascular disease to cancer as the leading cause of death in US States, 1999-2013. Circulation, 2016, 133(Suppl. 1), AMP67-AMP67.
(a) Andresen, T.L.; Jensen, S.S.; Jørgensen, K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog. Lipid Res., 2005, 44(1), 68-97.
[http://dx.doi.org/10.1016/j.plipres.2004.12.001] [PMID: 15748655]
(b) Mura, S.; Bui, D.T.; Couvreur, P.; Nicolas, J. Lipid prodrug nanocarriers in cancer therapy. J. Control. Release, 2015, 208, 25-41.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.021] [PMID: 25617724]
(c) Pratt, W.B. The anticancer drugs; Oxford University Press: United Kingdom, 1994.
(d) Giri, T.K. Breaking the barrier of cancer through liposome loaded with phytochemicals. Curr. Drug Deliv., 2019, 16(1), 3-17.
[http://dx.doi.org/10.2174/1567201815666180918112139] [PMID: 30227818]
(a) Bhushan, S.; Kakkar, V.; Pal, H.C.; Mondhe, D.M.; Kaur, I.P. The augmented anticancer potential of AP9-cd loaded solid lipid nanoparticles in human leukemia Molt-4 cells and experimental tumor. Chem. Biol. Interact., 2016, 244, 84-93.
[http://dx.doi.org/10.1016/j.cbi.2015.11.022] [PMID: 26620693]
(b) Woo, J.O.; Misran, M.; Lee, P.F.; Tan, L.P. Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery. Scientific World J., 2014, 2014, 205703
[http://dx.doi.org/10.1155/2014/205703] [PMID: 24578624]
(a) Guo, J.; Wang, Y.; Wang, J.; Zheng, X.; Chang, D.; Wang, S.; Jiang, T. A novel nanogel delivery of poly-α, β-polyasparthydrazide by reverse microemulsion and its redox-responsive release of 5- fluorouridine. Asian J. Pharm. Sci, 2016, 735-743.
(b) Yew, H-C.; Misran, M.B. Nonionic mixed surfactant stabilized water-in-oil microemulsions for active ingredient in vitro sustained release. J. Surfactants Deterg., 2016, 19(1), 49-56.
Braddock, M. Nanomedicines: design, delivery and detection; Royal Soc. Chem: United Kingdom, 2016, p. 48.
(a) Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67(3), 217-223.
[PMID: 20524422]
(b) Eloy, J.O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J.P.A.; Lee, R.J.; Marchetti, J.M. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf. B Biointerfaces, 2014, 123, 345-363.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.029] [PMID: 25280609]
(c) Gulati, M.; Grover, M.; Singh, S.; Singh, M. Lipophilic drug derivatives in liposomes. Int. J. Pharm., 1998, 165(2), 129-168.
(d) Hsu, W-H.; Liu, S-Y.; Chang, Y-J.; Chang, C-H.; Ting, G.; Lee, T-W. The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumor model. Nucl. Med. Biol., 2014, 41(9), 765-771.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.05.142] [PMID: 25027866]
(e) Teo, Y.Y.; Misran, M.; Low, K.H.; Zain, S.M. Effect of unsaturation on the stability of C18polyunsaturated fatty acids vesicles suspension in aqueous solution. Bull. Korean Chem. Soc., 2011, 32(1), 59-64.
(f) Mahmoudi, A.; Oskuee, R.K.; Ramezani, M.; Malaekeh-Nikoue, B. Preparation and in-vitro transfection efficiency evaluation of modified cationic liposome-polyethyleneimine-plasmid nanocomplexes as a novel gene carrier. Curr. Drug Deliv., 2014, 11(5), 636-642.
[http://dx.doi.org/10.2174/1567201811666140616160237] [PMID: 24934225]
(a) Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol., 1964, 8(5), 660-668.
[http://dx.doi.org/10.1016/S0022-2836(64)80115-7] [PMID: 14187392]
(b) Chia, S.W.; Misran, M. Flow Behavior of oleic acid liposomes in sucrose ester glycolipid oil-in-water emulsions. J. Surfactants Deterg., 2013, 17(1), 1-10.
(c) Tan, H.W.; Misran, M. Polysaccharide-anchored fatty acid liposome. Int. J. Pharm., 2013, 441(1-2), 414-423.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.013] [PMID: 23174410]
Arouri, A.; Lauritsen, K.E.; Nielsen, H.L.; Mouritsen, O.G. Effect of fatty acids on the permeability barrier of model and biological membranes. Chem. Phys. Lipids, 2016, 200, 139-146.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.10.001] [PMID: 27725161]
Chow, C.K. Fatty acids in foods and their health implications, Third Edition,; Press: United States, 2007.
Fameau, A-L.; Arnould, A.; Saint-Jalmes, A. Responsive self-assemblies based on fatty acids. Curr. Opin. Colloid Interface Sci., 2014, 19(5), 471-479.
(a) Gebicki, J.M.; Hicks, M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature, 1973, 243(5404), 232-234.
[http://dx.doi.org/10.1038/243232a0] [PMID: 4706295]
(b) Morigaki, K.; Walde, P. Fatty acid vesicles. Curr. Opin. Colloid Interface Sci., 2007, 12(2), 75-80.
Shu, Y.; Xue, W.; Xu, X.; Jia, Z.; Yao, X.; Liu, S.; Liu, L. Interaction of erucic acid with bovine serum albumin using a multi-spectroscopic method and molecular docking technique. Food Chem., 2015, 173, 31-37.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.164] [PMID: 25465991]
Koudelka, S.; Turanek Knotigova, P.; Masek, J.; Prochazka, L.; Lukac, R.; Miller, A.D.; Neuzil, J.; Turanek, J. Liposomal delivery systems for anti-cancer analogues of vitamin E. J. Control. Release, 2015, 207, 59-69.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.003] [PMID: 25861728]
Chen, I.A.; Szostak, J.W. A kinetic study of the growth of fatty acid vesicles. Biophys. J., 2004, 87(2), 988-998.
[http://dx.doi.org/10.1529/biophysj.104.039875] [PMID: 15298905]
(a) Jadhav, M.; Kalhapure, R.S.; Rambharose, S.; Mocktar, C.; Singh, S.; Kodama, T.; Govender, T. Novel lipids with three C18-fatty acid chains and an amino acid head group for pH-responsive and sustained antibiotic delivery. Chem. Phys. Lipids, 2018, 212, 12-25.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.12.007] [PMID: 29305156]
(b) Ravichandiran, V.; Masilamani, K.; Senthilnathan, B.; Maheshwaran, A.; Wong, T.W.; Roy, P. Quercetin-decorated curcumin liposome design for cancer therapy: in-vitro and in-vivo studies. Curr. Drug Deliv., 2017, 14(8), 1053-1059.
[http://dx.doi.org/10.2174/1567201813666160829100453] [PMID: 27572089]
(a) Feitosa, E.; Adati, R.D.; Alves, F.R. Thermal and phase behavior of didodecyldimethylammonium bromide aqueous dispersions. Colloid Surface A, 2015, 480, 253-259.
(b) Zhai, L.; Zhang, J.; Shi, Q.; Chen, W.; Zhao, M. Transition from micelle to vesicle in aqueous mixtures of anionic/zwitterionic surfactants studied by fluorescence, conductivity, and turbidity methods. J. Colloid Interface Sci., 2005, 284(2), 698-703.
[http://dx.doi.org/10.1016/j.jcis.2004.10.026] [PMID: 15780313]
Phapal, S.M.; Has, C.; Sunthar, P. Spontaneous formation of single component liposomes from a solution. Chem. Phys. Lipids, 2017, 205, 25-33.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.04.003] [PMID: 28412173]
(a) Ohnishi, N.; Yamamoto, E.; Tomida, H.; Hyodo, K.; Ishihara, H.; Kikuchi, H.; Tahara, K.; Takeuchi, H. Rapid determination of the encapsulation efficiency of a liposome formulation using column-switching HPLC. Int. J. Pharm., 2013, 441(1-2), 67-74.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.019] [PMID: 23262429]
(b) Koliqi, R.; Dimchevska, S.; Geskovski, N.; Petruševski, G.; Chacorovska, M.; Pejova, B.; Hristov, D.R.; Ugarkovic, S.; Goracinova, K. D.; Ugarkovic, S.; Goracinova, K. PEO-PPO-PEO/Poly (DL-lactide-co-caprolactone) nanoparticles as carriers for SN-38: design, optimization and nano-bio interface interactions. Curr. Drug Deliv., 2016, 13(3), 339-352.
[http://dx.doi.org/10.2174/1567201813666151130221806] [PMID: 26728136]
(c) Azzi, J.; Auezova, L.; Danjou, P-E.; Fourmentin, S.; Greige-Gerges, H. First evaluation of drug-in-cyclodextrin-in-liposomes as an encapsulating system for nerolidol. Food Chem., 2018, 255, 399-404.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.055] [PMID: 29571492]
(a) Yang, Y.; Lu, Y.; Wu, Q-Y.; Hu, H-Y.; Chen, Y-H.; Liu, W-L. Evidence of ATP assay as an appropriate alternative of MTT assay for cytotoxicity of secondary effluents from WWTPs. Ecotoxicol. Environ. Saf., 2015, 122, 490-496.
[http://dx.doi.org/10.1016/j.ecoenv.2015.09.006] [PMID: 26410194]
(b) Sun, L.; Zhou, D-S.; Zhang, P.; Li, Q-H.; Liu, P. Gemcitabine and γ-cyclodextrin/docetaxel inclusion complex-loaded liposome for highly effective combinational therapy of osteosarcoma. Int. J. Pharm., 2015, 478(1), 308-317.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.052] [PMID: 25433201]
Kanicky, J.R.; Shah, D.O. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J. Colloid Interface Sci., 2002, 256(1), 201-207.
[http://dx.doi.org/10.1006/jcis.2001.8009] [PMID: 12505514]
Suzuki, T.; Ichihara, M.; Hyodo, K.; Yamamoto, E.; Ishida, T.; Kiwada, H.; Ishihara, H.; Kikuchi, H. Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs. Int. J. Pharm., 2012, 436(1-2), 636-643.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.049] [PMID: 22850293]
Klevens, H.B. Structure and aggregation in dilate solution of surface active agents. J. Am. Oil Chem. Soc., 1953, 30(2), 74-80.
(a) Karn, P.R.; Cho, W.; Park, H-J.; Park, J-S.; Hwang, S-J. Characterization and stability studies of a novel liposomal cyclosporin A prepared using the supercritical fluid method: comparison with the modified conventional Bangham method. Int. J. Nanomedicine, 2013, 8, 365-377.
[PMID: 23378759]
(b) Kuntsche, J.; Horst, J.C.; Bunjes, H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm., 2011, 417(1-2), 120-137.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.001] [PMID: 21310225]
(c) Banerjee, K.; Banerjee, S.; Mandal, M. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions. J. Colloid Interface Sci., 2017, 491, 98-110.
[http://dx.doi.org/10.1016/j.jcis.2016.12.025] [PMID: 28012918]
Eh Suk, V.R.; Misran, M. Development and characterization of DOPEPEG2000 coated oleic acid liposomes encapsulating anticancer drugs. J. Surfactants Deterg., 2016, 20, 321-329.
Ciani, L.; Ristori, S.; Bonechi, C.; Rossi, C.; Martini, G. Effect of the preparation procedure on the structural properties of oligonucleotide/cationic liposome complexes (lipoplexes) studied by electron spin resonance and Zeta potential. Biophys. Chem., 2007, 131(1-3), 80-87.
[http://dx.doi.org/10.1016/j.bpc.2007.09.011] [PMID: 17950520]
Paini, M.; Daly, S.R.; Aliakbarian, B.; Fathi, A.; Tehrany, E.A.; Perego, P.; Dehghani, F.; Valtchev, P. An efficient liposome based method for antioxidants encapsulation. Colloids Surf. B Biointerfaces, 2015, 136, 1067-1072.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.038] [PMID: 26590900]
Kielhorn, J.; Melching-Kollmuss, S.; Mangelsdorf, I. Dermal Absorption; World Health Organization: Geneva, 2006.
Modi, P. Development of in vitro release test for capsaicin topical gel formulations by Rusing Franz diffusion cell. Int. J. Pharma Bio Sci., 2014, 5, 285-293.
(a) Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J., 2010, 12(3), 263-271.
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
(b) Jain, A.; Jain, S.K. In vitro release kinetics model fitting of liposomes: an insight. Chem. Phys. Lipids, 2016, 201, 28-40.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.10.005] [PMID: 27983957]
Anabousi, S.; Bakowsky, U.; Schneider, M.; Huwer, H.; Lehr, C-M.; Ehrhardt, C. In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur. J. Pharm. Sci., 2006, 29(5), 367-374.
[http://dx.doi.org/10.1016/j.ejps.2006.07.004] [PMID: 16952451]
Barton-Burke, M.; Wilkes, G.M.; Ingwersen, K. Cancer chemotherapy: a nursing process approach; Jones and Bartlett: United States, 2001.
(a) Brown, R.; Böger-Brown, U. Cytotoxic drug resistance mechanisms; Humana Press: United States,, 1999.
(b) Langdon, S.P. Cancer cell culture: methods and protocols; Humana Press Inc.: New Jersey,, 2004.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [292 - 302]
Pages: 11
DOI: 10.2174/1567201817666200210122933
Price: $65

Article Metrics

PDF: 15