Recent Advances in Self-Assembled Nanoparticles for Drug Delivery

Author(s): Lanke Tejesh Varma, Nidhi Singh, Bapi Gorain, Hira Choudhury, Murtaza M. Tambuwala, Prashant Kesharwani*, Rahul Shukla*

Journal Name: Current Drug Delivery

Volume 17 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The collection of different bulk materials forms the nanoparticles, where the properties of the nanoparticle are solely different from the individual components before being ensembled. Selfassembled nanoparticles are basically a group of complex functional units that are formed by gathering the individual bulk components of the system. It includes micelles, polymeric nanoparticle, carbon nanotubes, liposomes and niosomes, etc. This self-assembly has progressively heightened interest to control the final complex structure of the nanoparticle and its associated properties. The main challenge of formulating self-assembled nanoparticle is to improve the delivery system, bioavailability, enhance circulation time, confer molecular targeting, controlled release, protection of the incorporated drug from external environment and also serve as nanocarriers for macromolecules. Ultimately, these self-assembled nanoparticles facilitate to overcome the physiological barriers in vivo. Self-assembly is an equilibrium process where both individual and assembled components are subsisting in equilibrium. It is a bottom up approach in which molecules are assembled spontaneously, non-covalently into a stable and welldefined structure. There are different approaches that have been adopted in fabrication of self-assembled nanoparticles by the researchers. The current review is enriched with strategies for nanoparticle selfassembly, associated properties, and its application in therapy.

Keywords: Self-assembly, driving forces, nanoparticle, mesoporous silica nanoparticle, gold nanoparticle, liposome.

[1]
Gorain, B.; Choudhury, H.; Pandey, M.; Kesharwani, P. Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Mater. Sci. Eng. C, 2018, 91, 868-880.
[http://dx.doi.org/10.1016/j.msec.2018.05.054] [PMID: 30033322]
[2]
Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; Choudhury, H.; Pandey, M. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract., 2018, 136, 52-77.
[http://dx.doi.org/10.1016/j.diabres.2017.11.018] [PMID: 29196152]
[3]
Jain, A.; Sharma, G.; Ghoshal, G.; Kesharwani, P.; Singh, B.; Shivhare, U.S.; Katare, O.P. Lycopene loaded whey protein isolate nanoparticles: An innovative endeavor for enhanced bioavailability of lycopene and anti-cancer activity. Int. J. Pharm., 2018, 546(1-2), 97-105.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.061] [PMID: 29715533]
[4]
Gorain, B.; Choudhury, H.; Pandey, M.; Mohd Amin, M.C.I.; Singh, B.; Gupta, U. Dendrimers as Effective Carriers for the Treatment of Brain Tumor.Nanotechnology-Based Target. Drug Deliv. Syst. Brain Tumors; Elsevier, 2018, pp. 267-305.
[5]
Cui, W.; Li, J.; Decher, G. self-assembled smart nanocarriers for targeted drug delivery. Adv. Mater., 2016, 28(6), 1302-1311.
[http://dx.doi.org/10.1002/adma.201502479] [PMID: 26436442]
[6]
Choudhury, H.; Gorain, B.; Pandey, M.; Kumbhar, S.A.; Tekade, R.K.; Iyer, A.K.; Kesharwani, P. Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int. J. Pharm., 2017, 529(1-2), 506-522.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.018] [PMID: 28711640]
[7]
Jones, A.T.; Gumbleton, M.; Duncan, R. Understanding endocytic pathways and intracellular trafficking: a prerequisite for effective design of advanced drug delivery systems. Adv. Drug Deliv. Rev., 2003, 55(2003), 1353-1357.
[8]
Sun, J.; Hee, T.; Yong, K.; Soo, S.; Jin, J. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J. Control. Release, 2006, 115(2006), 37-45.
[9]
Hyung, J.; Kwon, S.; Lee, M.; Chung, H.; Kim, J.; Kim, Y. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials, 2006, 27(2006), 119-126.
[10]
Kesharwani, P.; Tekade, R.K.; Gajbhiye, V.; Jain, K.; Jain, N.K. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine (Lond.), 2011, 7(3), 295-304.
[http://dx.doi.org/10.1016/j.nano.2010.10.010] [PMID: 21070888]
[11]
Cao, Y.; Gu, Y.; Ma, H.; Bai, J.; Liu, L.; Zhao, P. Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide-doxorubicin conjugate loaded doxorubicin. Int. J. Biol. Macromol., 2010, 46(2010), 245-249.
[12]
Kesharwani, P.; Banerjee, S.; Gupta, U.; Mohd Amin, M.C.I.; Padhye, S.; Sarkar, F.H. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater. Today, 2015, 18(10), 565-572.
[http://dx.doi.org/10.1016/j.mattod.2015.06.003]
[13]
Shukla, R.; Handa, M.; Lokesh, S.B.; Ruwali, M.; Kohli, K. Conclusion and future prospective of polymeric nanoparticles for cancer therapy, polymer. Nanoparticles as a Promis; Tool Anti-Cancer Ther, 2019, pp. 389-408.
[14]
Sun, L. Peptide Self-assembled nanostructures for drug delivery applications. J. Nanomater., 2017, 16, e4562474
[15]
Fan, Z.; Sun, L.; Huang, Y.; Wang, Y.; Zhang, M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol., 2016, 11(4), 388-394.
[http://dx.doi.org/10.1038/nnano.2015.312] [PMID: 26751169]
[16]
Gorain, B.; Choudhury, H.; Pandey, M.; Nair, A.B.; Iqbal Mohd Amin, M.C.; Molugulu, N. Dendrimer-based nanocarriers in lung cancer therapy, nanotechnology-based target. Drug Deliv. Syst. Lung Cancer, 2019, 161-192.
[17]
Jain, A.; Kesharwani, P.; Garg, N.K.; Jain, A.; Jain, S.A.; Jain, A.K.; Nirbhavane, P.; Ghanghoria, R.; Tyagi, R.K.; Katare, O.P. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf. B Biointerfaces, 2015, 134, 47-58.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.027] [PMID: 26142628]
[18]
Larson, N.; Greish, K.; Bauer, H.; Maeda, H.; Ghandehari, H. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin. Int. J. Pharm., 2011, 420(1), 111-117.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.011] [PMID: 21856392]
[19]
Shi, J.; Xiao, Z.; Kamaly, N.; Farokhzad, O.C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res., 2011, 44(10), 1123-1134.
[http://dx.doi.org/10.1021/ar200054n] [PMID: 21692448]
[20]
Ariga, K.; Hill, J.P.; Lee, M.V.; Lee, Y.; Chen, Y.; Tarasova, N.I. To study protein unfolding Self-assembled peptide nanostructures for functional materials. Nanotechnology, 2002, 27, 1-37.
[http://dx.doi.org/10.1088/0957-4484/27/40/402002]
[21]
Vermant, J.; Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-marza, L.M. Directed self-assembly of nanoparticles. ACS Nano, 2010, 4, 3591-3605.
[22]
Park, S. Understanding the self-assembly behavior of nanoparticles and polymers. Angew. Chem. Int. Ed., 2007, 119, 9395.
[23]
Lu, H.; Wang, J.; Wang, T.; Zhong, J.; Bao, Y.; Hao, H. Recent progress on nanostructures for drug delivery applications. J. Nanomater., 2016, 12, e5762431
[http://dx.doi.org/10.1155/2016/5762431]
[24]
Shcherbina, M.A.; Chvalun, S.N. Driving forces of the self-assembly of supramolecular systems. Partially Ordered Mesophases, 2018, 92, 1161-1170.
[http://dx.doi.org/10.1134/S003602441806016X]
[25]
Tan, S.; Zou, C.; Zhang, W.; Yin, M.; Gao, X.; Tang, Q. Recent developments in d-α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug Deliv., 2017, 24(1), 1831-1842.
[http://dx.doi.org/10.1080/10717544.2017.1406561] [PMID: 29182031]
[26]
Singh, A.; Vaishagya, K.; K Verma, R.; Shukla, R. Temperature/pH-triggered PNIPAM-based smart nanogel system loaded with anastrozole delivery for application in cancer chemotherapy. AAPS PharmSciTech, 2019, 20(5), 213.
[http://dx.doi.org/10.1208/s12249-019-1410-3] [PMID: 31165298]
[27]
Shukla, R.; Kumar, J.; Dwivedi, P.; Gatla, P.; Mishra, P.R. Microparticles of diethylcarbamazine citrate for the treatment of lymphatic filariasis. Asian J. Chem., 2013, 25, S302-S304.
[28]
Ghadiri, M.; Vasheghani-Farahani, E.; Atyabi, F.; Kobarfard, F.; Mohamadyar-Toupkanlou, F.; Hosseinkhani, H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J. Biomed. Mater. Res. A, 2017, 105(10), 2851-2864.
[http://dx.doi.org/10.1002/jbm.a.36145] [PMID: 28639394]
[29]
Yan, Y.; Zhou, K.; Xiong, H.; Miller, J.B.; Motea, E.A.; Boothman, D.A.; Liu, L.; Siegwart, D.J. Aerosol delivery of stabilized polyester-siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials, 2017, 118, 84-93.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.001] [PMID: 27974266]
[30]
Jing, X.; Mi, H-Y.; Peng, J.; Peng, X-F.; Turng, L-S. Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydr. Polym., 2015, 117, 941-949.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.025] [PMID: 25498720]
[31]
Zhou, J.; Xu, R.; Yin, C.; Li, Z.; Wu, W.; Wu, M. In situ growth of polyphosphazene nanoparticles on graphene sheets as a highly stable nanocomposite for metal-free lithium anodes. RSC Advances, 2016, 6, 62005-62010.
[http://dx.doi.org/10.1039/C6RA11597G]
[32]
Faridirad, F.; Ahmadi, S.; Barmar, M. Polyamide/carbon nanoparticles nanocomposites: a review. Polym. Eng. Sci., 2017, 57, 475-494.
[http://dx.doi.org/10.1002/pen.24444]
[33]
Pardhi, V.P.; Verma, T.; Flora, S.J.S.; Chandasana, H.; Shukla, R. Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. Curr. Pharm. Des., 2018, 24(43), 5129-5146.
[http://dx.doi.org/10.2174/1381612825666190215121148] [PMID: 30767737]
[34]
Jain, V.; Singodia, D.; Gupta, G.K.; Garg, D.; Keshava, G.B.S.; Shukla, R.; Shukla, P.K.; Mishra, P.R. Ciprofloxacin surf-plexes in sub-micron emulsions: a novel approach to improve payload efficiency and antimicrobial efficacy. Int. J. Pharm., 2011, 409(1-2), 237-244.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.020] [PMID: 21356290]
[35]
Shukla, R.; Gupta, J.; Shukla, P.; Dwivedi, P.; Tripathi, P.; Bhattacharya, S.M. Chitosan coated alginate micro particles for the oral delivery of antifilarial drugs and combinations for intervention in Brugia malayi induced lymphatic filariasis. RSC Advances, 2015, 5, 69047-69056.
[http://dx.doi.org/10.1039/C5RA06982C]
[36]
Singodia, D.; Kansal, S.; Verma, A.; Shukla, R.; Shukla, P.; Dwivedi, P. Development of nevirapine loaded novel surfactant free polymeric emulsion and investigations for its suitability as drug delivery vehicle. J. Bionanosci., 2010, 4, 66-73.
[http://dx.doi.org/10.1166/jbns.2010.1029]
[37]
Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4, 17028-17038.
[http://dx.doi.org/10.1039/C3RA47370H]
[38]
Kim, G.; Piao, C.; Oh, J.; Lee, M. Self-assembled polymeric micelles for combined delivery of anti-inflammatory gene and drug to the lungs by inhalation. Nanoscale, 2018, 10(18), 8503-8514.
[http://dx.doi.org/10.1039/C8NR00427G] [PMID: 29693671]
[39]
Piao, C.; Park, J.H.; Lee, M. Anti-inflammatory therapeutic effect of adiponectin gene delivery using a polymeric carrier in an acute lung injury model. Pharm. Res., 2017, 34(7), 1517-1526.
[http://dx.doi.org/10.1007/s11095-017-2175-6] [PMID: 28493099]
[40]
Kim, H.A.; Park, J.H.; Lee, S.; Choi, J.S.; Rhim, T.; Lee, M. Combined delivery of dexamethasone and plasmid DNA in an animal model of LPS-induced acute lung injury. J. Control. Release, 2011, 156(1), 60-69.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.041] [PMID: 21763372]
[41]
D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv., 2016, 13(9), 1257-1275.
[http://dx.doi.org/10.1080/17425247.2016.1182485] [PMID: 27116988]
[42]
Tang, Z.; He, C.; Tian, H.; Ding, J.; Hsiao, B.S.; Chu, B. Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci., 2016, 60, 86-128.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005]
[43]
Sevink, G.J.A.; Zvelindovsky, A.V. Self-assembly of complex vesicles. Macromolecules, 2005, 38, 7502-7512.
[http://dx.doi.org/10.1021/ma0506740]
[44]
Blanazs, A.; Armes, S.P.; Ryan, A.J. Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol. Rapid Commun., 2009, 30(4-5), 267-277.
[http://dx.doi.org/10.1002/marc.200800713] [PMID: 21706604]
[45]
Koide, A.; Kishimura, A.; Osada, K.; Jang, W-D.; Yamasaki, Y.; Kataoka, K. Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J. Am. Chem. Soc., 2006, 128(18), 5988-5989.
[http://dx.doi.org/10.1021/ja057993r] [PMID: 16669639]
[46]
Yaşayan, G.; Redhead, M.; Magnusson, J.P.; Spain, S.G.; Allen, S.; Davies, M. Well-defined polymeric vesicles with high stability and modulation of cell uptake by a simple coating protocol. Polym. Chem., 2012, 3, 2596-2604.
[http://dx.doi.org/10.1039/c2py20352a]
[47]
Bermúdez, H.; Hammer, D.A.; Discher, D.E. Effect of bilayer thickness on membrane bending rigidity. Langmuir, 2004, 20(3), 540-543.
[http://dx.doi.org/10.1021/la035497f] [PMID: 15773070]
[48]
Battaglia, G.; Ryan, A.J. Pathways of polymeric vesicle formation. J. Phys. Chem. B, 2006, 110(21), 10272-10279.
[http://dx.doi.org/10.1021/jp060728n] [PMID: 16722729]
[49]
Chacko, R.T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev., 2012, 64(9), 836-851.
[http://dx.doi.org/10.1016/j.addr.2012.02.002] [PMID: 22342438]
[50]
Rigogliuso, S.; Sabatino, M.A.; Adamo, G.; Grimaldi, N.; Dispenza, C.; Ghersi, G. Nanocarriers for drug delivery application. Chem. Eng. Trans., 2012, 27, 247-252.
[51]
Ferreira, S.A.; Gama, F.M.; Vilanova, M. Polymeric nanogels as vaccine delivery systems. Nanomedicine (Lond.), 2013, 9(2), 159-173.
[http://dx.doi.org/10.1016/j.nano.2012.06.001] [PMID: 22772049]
[52]
Choudhury, H.; Gorain, B.; Pandey, M.; Chatterjee, L.A.; Sengupta, P.; Das, A.; Molugulu, N.; Kesharwani, P. Recent update on nanoemulgel as topical drug delivery system. J. Pharm. Sci., 2017, 106(7), 1736-1751.
[http://dx.doi.org/10.1016/j.xphs.2017.03.042] [PMID: 28412398]
[53]
Kabanov, A.V.; Vinogradov, S.V. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5418-5429.
[http://dx.doi.org/10.1002/anie.200900441] [PMID: 19562807]
[54]
Akiyoshi, K.; Kobayashi, S.; Shichibe, S.; Mix, D.; Baudys, M.; Kim, S.W.; Sunamoto, J. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J. Control. Release, 1998, 54(3), 313-320.
[http://dx.doi.org/10.1016/S0168-3659(98)00017-0] [PMID: 9766251]
[55]
He, J.; Yan, B.; Tremblay, L.; Zhao, Y. Both core- and shell-cross-linked nanogels: photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors. Langmuir, 2011, 27(1), 436-444.
[http://dx.doi.org/10.1021/la1040322] [PMID: 21141813]
[56]
Ferreira, L.S.; Trierweiler, J.O. Modeling and simulation of the polymeric nanocapsule formation process. IFAC Proc., 2009, pp. 405-410.
[http://dx.doi.org/10.3182/20090712-4-TR-2008.00064]
[57]
Stewart, S.; Liu, G. Hollow Nanospheres from Polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chem. Mater., 1999, 11, 1048-1054.
[http://dx.doi.org/10.1021/cm981009r]
[58]
Dash, B.C.; Réthoré, G.; Monaghan, M.; Fitzgerald, K.; Gallagher, W.; Pandit, A. The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility. Biomaterials, 2010, 31(32), 8188-8197.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.067] [PMID: 20701967]
[59]
Gorain, B.; Tekade, M.; Kesharwani, P.; Iyer, A.K.; Kalia, K.; Tekade, R.K. The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov. Today, 2017, 22(4), 652-664.
[http://dx.doi.org/10.1016/j.drudis.2016.12.007] [PMID: 28219742]
[60]
Kesharwani, P.; Choudhury, H.; Meher, J.G.; Pandey, M.; Gorain, B. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog. Mater. Sci., 2019, 103, 484-508.
[http://dx.doi.org/10.1016/j.pmatsci.2019.03.003]
[61]
Gupta, U.; Agashe, H.B.; Asthana, A.; Jain, N.K. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules, 2006, 7(3), 649-658.
[http://dx.doi.org/10.1021/bm050802s] [PMID: 16529394]
[62]
Kesharwani, P.; Iyer, A.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today, 2015, 20(5), 536-547.
[http://dx.doi.org/10.1016/j.drudis.2014.12.012] [PMID: 25555748]
[63]
Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today, 2017, 22(2), 314-326.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013] [PMID: 27671487]
[64]
Tripathi, P.K.; Gorain, B.; Choudhury, H.; Srivastava, A.; Kesharwani, P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon, 2019, 5(3), e01343
[http://dx.doi.org/10.1016/j.heliyon.2019.e01343] [PMID: 30957038]
[65]
Pandey, D.; Kesharwani, P.; Jain, D. Entrapment of drug-sorbate complex in submicron emulsion: a potential approach to improve antimicrobial activity in bacterial corneal infection. J. Drug Deliv. Sci. Technol., 2019, 49, 455-462.
[http://dx.doi.org/10.1016/j.jddst.2018.12.006]
[66]
Ptorchilin, V. Nanoparticulates as drug carriers. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[67]
Gorain, B.; Choudhury, H.; Pandey, M.; Kokare, C.; Khurana, R.K.; Sehdev, A. Polyester, polyhydroxyalkanoate nanoparticles as a promising tool for anticancer therapeutics, polymer. Nanoparticles as a promis; Tool Anti-Cancer Ther, 2019, pp. 101-121.
[http://dx.doi.org/10.1016/B978-0-12-816963-6.00006-6]
[68]
Stephanopoulos, N.; Ortony, J.H.; Stupp, S.I. Self-assembly for the synthesis of functional biomaterials. Acta Mater., 2013, 61(3), 912-930.
[http://dx.doi.org/10.1016/j.actamat.2012.10.046] [PMID: 23457423]
[69]
Shukla, R.; Singh, A.; Pardhi, V.; Kashyap, K.; Dubey, S.K.; Dandela, R. Dendrimer-based nanoparticulate delivery system for cancer therapy, polymer. Nanoparticles as a promis; Tool Anti-Cancer Ther, 2019, pp. 233-255.
[70]
Liu, K.; Li, H.; Williams, G.R.; Wu, J.; Zhu, L-M. pH-responsive liposomes self-assembled from electrosprayed microparticles, and their drug release properties. Colloids Surf. A Physicochem. Eng. Asp., 2018, 537, 20-27.
[http://dx.doi.org/10.1016/j.colsurfa.2017.09.046]
[71]
Choudhury, H.; Pandey, M.; Gorain, B.; Chatterjee, B.; Madheswaran, T.; Md, S. Nanoemulsions as effective carriers for the treatment of lung cancer, nanotechnology-based target drug deliv. Syst. Lung Cancer, 2019, 217-247.
[72]
Gorain, B.; Bhattamishra, S.K.; Choudhury, H.; Nandi, U.; Pandey, M. Overexpressed receptors and proteins in lung cancer, nanotechnology- based target. Drug Deliv. Syst. Lung Cancer, 2019, 39-75.
[73]
Yu, D-G.; Yang, J-H.; Wang, X.; Tian, F. Liposomes self-assembled from electrosprayed composite microparticles. Nanotechnology, 2012, 23(10), 105606
[http://dx.doi.org/10.1088/0957-4484/23/10/105606] [PMID: 22362251]
[74]
Lo, C.T.; Jahn, A.; Locascio, L.E.; Vreeland, W.N. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir, 2010, 26(11), 8559-8566.
[http://dx.doi.org/10.1021/la904616s] [PMID: 20146467]
[75]
Dwivedi, N.; Shah, J.; Mishra, V.; Tambuwala, M.; Kesharwani, P. Nanoneuromedicine for management of neurodegenerative disorder. J. Drug Deliv. Sci. Technol., 2019, 49, 477-490.
[http://dx.doi.org/10.1016/j.jddst.2018.12.021]
[76]
Nagalakshmi, S.; Krishnaraj, K.; Jothy, M.A.; Chaudhari, P.S.; Pushpalatha, H.; Shanmuganthan, S. Fabrication and characterization of herbal drug-loaded nonionic surfactant based niosomal topical gel. J. Pharm. Sci. Res., 2016, 8, 1271-1278.
[77]
Pandey, M.; Choudhury, H.; Yi, C.X.; Mun, C.W.; Phing, G.K.; Rou, G.X.; Singh, B.J.K.A.A.J.; Jhee, A.N.A.; Chin, L.K.; Kesharwani, P.; Gorain, B.; Hussain, Z. Recent updates on novel approaches in insulin drug delivery: a review of challenges and pharmaceutical implications. Curr. Drug Targets, 2018, 19(15), 1782-1800.
[http://dx.doi.org/10.2174/1389450119666180523092100] [PMID: 29792143]
[78]
Meher, J.G.; Dixit, S.; Pathan, D.K.; Singh, Y.; Chandasana, H.; Pawar, V.K.; Sharma, M.; Bhatta, R.S.; Konwar, R.; Kesharwani, P.; Chourasia, M.K. Paclitaxel-loaded TPGS enriched self-emulsifying carrier causes apoptosis by modulating survivin expression and inhibits tumour growth in syngeneic mammary tumours. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), S344-S358.
[http://dx.doi.org/10.1080/21691401.2018.1492933]
[79]
Shi, J.; Xiao, Z.; Votruba, A.R.; Vilos, C.; Farokhzad, O.C. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew. Chem. Int. Ed. Engl., 2011, 50(31), 7027-7031.
[http://dx.doi.org/10.1002/anie.201101554] [PMID: 21698724]
[80]
Tambuwala, M.M.; Kesharwani, P.; Shukla, R.; Thompson, P.D.; McCarron, P.A. Caffeic acid phenethyl ester (CAPE) reverses fibrosis caused by chronic colon inflammation in murine model of colitis. Pathol. Res. Pract., 2018, 214(11), 1909-1911.
[http://dx.doi.org/10.1016/j.prp.2018.08.020] [PMID: 30170869]
[81]
Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical applications of graphene. Theranostics, 2012, 2(3), 283-294.
[http://dx.doi.org/10.7150/thno.3642] [PMID: 22448195]
[82]
Bakshi, H.A.; Mishra, V.; Satija, S.; Mehta, M.; Hakkim, F.L.; Kesharwani, P.; Dua, K.; Chellappan, D.K.; Charbe, N.B.; Shrivastava, G.; Rajeshkumar, S.; Aljabali, A.A.; Al-Trad, B.; Pabreja, K.; Tambuwala, M.M. Dynamics of prolyl hydroxylases levels during disease progression in experimental colitis. Inflammation, 2019, 42(6), 2032-2036.
[http://dx.doi.org/10.1007/s10753-019-01065-3] [PMID: 31377947]
[83]
Parameshwaran, R.; Sarı, A.; Jalaiah, N.; Karunakaran, R. Applications of thermal analysis to the study of phase-change materials. Handbook Thermal Anal. Calorimet, 2018, 6, 519-572.
[84]
Choudhury, H.; Gorain, B.; Pandey, M.; Khurana, R.K.; Kesharwani, P. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int. J. Pharm., 2019, 565, 509-522.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.042] [PMID: 31102804]
[85]
Zhu, Z.; Su, D.; Weinberg, G.; Schlögl, R. Supermolecular Self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett., 2004, 4, 2255-2259.
[http://dx.doi.org/10.1021/nl048794t]
[86]
Zeeshan, F.; Tabbassum, M.; Kesharwani, P. Investigation on secondary structure alterations of protein drugs as an indicator of their biological activity upon thermal exposure. Protein J., 2019, 38(5), 551-564.
[http://dx.doi.org/10.1007/s10930-019-09837-4] [PMID: 31054037]
[87]
Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano, 2010, 4(4), 1963-1970.
[http://dx.doi.org/10.1021/nn1000035] [PMID: 20355733]
[88]
Cai, D.; Song, M. Recent advance in functionalized graphene/polymer nanocomposites. J. Mater. Chem., 2010, 20, 7906.
[http://dx.doi.org/10.1039/c0jm00530d]
[89]
Choudhury, H.; Pandey, M.; Yin, T.H.; Kaur, T.; Jia, G.W.; Tan, S.Q.L.; Weijie, H.; Yang, E.K.S.; Keat, C.G.; Bhattamishra, S.K.; Kesharwani, P.; Md, S.; Molugulu, N.; Pichika, M.R.; Gorain, B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Mater. Sci. Eng. C, 2019, 101, 596-613.
[http://dx.doi.org/10.1016/j.msec.2019.04.005] [PMID: 31029353]
[90]
Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc., 2010, 132(21), 7472-7477.
[http://dx.doi.org/10.1021/ja102267j] [PMID: 20443559]
[91]
Cong, H-P.; Ren, X-C.; Wang, P.; Yu, S-H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano, 2012, 6(3), 2693-2703.
[http://dx.doi.org/10.1021/nn300082k] [PMID: 22303866]
[92]
Chen, W.; Yan, L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale, 2011, 3(8), 3132-3137.
[http://dx.doi.org/10.1039/c1nr10355e] [PMID: 21698339]
[93]
Chen, W.; Li, S.; Chen, C.; Yan, L. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater., 2011, 23(47), 5679-5683.
[http://dx.doi.org/10.1002/adma.201102838] [PMID: 22052602]
[94]
Gorain, B.; Choudhury, H.; Pandey, M.; Kesharwani, P.; Abeer, M.M.; Tekade, R.K.; Hussain, Z. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomed. Pharmacother., 2018, 104, 496-508.
[http://dx.doi.org/10.1016/j.biopha.2018.05.066] [PMID: 29800914]
[95]
Luo, S.; Luo, Y.; Wu, H.; Li, M.; Yan, L.; Jiang, K.; Liu, L.; Li, Q.; Fan, S.; Wang, J. Self-assembly of 3D carbon nanotube sponges: a simple and controllable way to build macroscopic and ultralight porous architectures. Adv. Mater., 2017, 29(1), 1603549
[http://dx.doi.org/10.1002/adma.201603549] [PMID: 27805759]
[96]
Kim, S.H.; Kaplan, J.A.; Sun, Y.; Shieh, A.; Sun, H-L.; Croce, C.M.; Grinstaff, M.W.; Parquette, J.R. The self-assembly of anticancer camptothecin-dipeptide nanotubes: a minimalistic and high drug loading approach to increased efficacy. Chemistry, 2015, 21(1), 101-105.
[http://dx.doi.org/10.1002/chem.201404520] [PMID: 25384556]
[97]
Bolskar, R.D. Fullerenes for drug delivery encyclopedia nanotechnology; Springer Netherlands: Dordrecht, 2016, pp. 1267-1281.
[98]
Li, F.; Yager, K.G.; Dawson, N.M.; Jiang, Y-B.; Malloy, K.J.; Qin, Y. Nano-structuring polymer/fullerene composites through the interplay of conjugated polymer crystallization, block copolymer self-assembly and complementary hydrogen bonding interactions. Polym. Chem., 2015, 6, 721-731.
[http://dx.doi.org/10.1039/C4PY00934G]
[99]
Kim, K-H.; Ko, D-K.; Kim, Y-T.; Kim, N.H.; Paul, J.; Zhang, S-Q.; Murray, C.B.; Acharya, R.; DeGrado, W.F.; Kim, Y.H.; Grigoryan, G. Protein-directed self-assembly of a fullerene crystal. Nat. Commun., 2016, 7, 11429.
[http://dx.doi.org/10.1038/ncomms11429] [PMID: 27113637]
[100]
Bharti, C.; Nagaich, U.; Pal, A.K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig., 2015, 5(3), 124-133.
[101]
Banik, M.; Basu, T. Calcium phosphate nanoparticles: a study of their synthesis, characterization and mode of interaction with salmon testis DNA. Dalton Trans., 2014, 43(8), 3244-3259.
[102]
Hayes, M.E.; Drummond, D.C.; Kirpotin, D.B.; Zheng, W.W.; Noble, C.O.; Park, J.W.; Marks, J.D.; Benz, C.C.; Hong, K. Genospheres: self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery. Gene Ther., 2006, 13(7), 646-651.
[http://dx.doi.org/10.1038/sj.gt.3302699] [PMID: 16341056]
[103]
Kundu, A.; Nandi, S.; Nandi, A.K. Progress in materials science nucleic acid based polymer and nanoparticle conjugates : synthesis, properties and applications. Prog. Mater. Sci., 2017, 88, 136-185.
[http://dx.doi.org/10.1016/j.pmatsci.2017.04.001]
[104]
Goldberg, M.; Langer, R.; Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed., 2007, 18(3), 241-268.
[http://dx.doi.org/10.1163/156856207779996931] [PMID: 17471764]
[105]
Cheetham, A.G.; Zhang, P.; Lin, Y.A.; Lock, L.L.; Cui, H. Supramolecular nanostructures formed by anticancer drug assembly. J. Am. Chem. Soc., 2013, 135(8), 2907-2910.
[http://dx.doi.org/10.1021/ja3115983] [PMID: 23379791]
[106]
Lock, L.L.; LaComb, M.; Schwarz, K.; Cheetham, A.G.; Lin, Y.A.; Zhang, P.; Cui, H. Self-assembly of natural and synthetic drug amphiphiles into discrete supramolecular nanostructures. Faraday Discuss., 2013, 166, 285-301.
[http://dx.doi.org/10.1039/c3fd00099k] [PMID: 24611283]
[107]
Li, H.; Kan, C.; Yi, Z.; Ding, X.; Cao, Y.; Zhu, J. Synthesis of one dimensional gold nanostructures. J. Nanomater., 2010, 2010, 1-8.
[http://dx.doi.org/10.1155/2010/962718]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Page: [279 - 291]
Pages: 13
DOI: 10.2174/1567201817666200210122340
Price: $65

Article Metrics

PDF: 25
HTML: 1