Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Review Article

Adeno-Associated Viral Vector Mediated Expression of Broadly- Neutralizing Antibodies Against HIV-Hitting a Fast-Moving Target

Author(s): Chringma Sherpa* and Stuart F.J. Le Grice

Volume 18, Issue 2, 2020

Page: [114 - 131] Pages: 18

DOI: 10.2174/1570162X18666200210121339

Price: $65

Abstract

The vast genetic variability of HIV has impeded efforts towards a cure for HIV. Lifelong administration of combined antiretroviral therapy (cART) is highly effective against HIV and has markedly increased the life expectancy of HIV infected individuals. However, the long-term usage of cART is associated with co-morbidities and the emergence of multidrug-resistant escape mutants necessitating the development of alternative approaches to combat HIV/AIDS. In the past decade, the development of single-cell antibody cloning methods has facilitated the characterization of a diverse array of highly potent neutralizing antibodies against a broad range of HIV strains. Although the passive transfer of these broadly neutralizing antibodies (bnAbs) in both animal models and humans has been shown to elicit significant antiviral effects, long term virologic suppression requires repeated administration of these antibodies. Adeno-associated virus (AAV) mediated antibody gene transfer provides a long-term expression of these antibodies from a single administration of the recombinant vector. Therefore, this vectored approach holds promises in the treatment and prevention of a chronic disease like HIV infection. Here, we provide an overview of HIV genetic diversity, AAV vectorology, and anti-HIV bnAbs and summarize the promises and challenges of the application of AAV in the delivery of bnAbs for HIV prevention and therapy.

Keywords: Adenovirus-associated virus, broadly neutralizing antibodies, HIV, genetic diversity, viral vector, gene therapy.

Next »
Graphical Abstract
[1]
World Health Organization. HIV-AIDS 2018. https://www.who. int/news-room/fact-sheets/detail/hiv-aids
[2]
Aidsinfo. Panel on Antiretroviral Guidelines for Adults and Adolescents D of H and HS. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV 2019. http://www. aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf
[3]
Kearney M, Maldarelli F, Shao W, et al. Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals. J Virol 2009; 83(6): 2715-27.
[http://dx.doi.org/10.1128/JVI.01960-08] [PMID: 19116249]
[4]
Mansky LM, Temin HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995; 69(8): 5087-94.
[http://dx.doi.org/10.1128/JVI.69.8.5087-5094.1995] [PMID: 7541846]
[5]
Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988; 242: 1171-3.
[6]
Schlub TE, Smyth RP, Grimm AJ, Mak J, Davenport MP. Accurately measuring recombination between closely related HIV-1 genomes. PLOS Comput Biol 2010; 6(4): e1000766
[http://dx.doi.org/10.1371/journal.pcbi.1000766] [PMID: 20442872]
[7]
Hu WS, Temin HM. Retroviral recombination and reverse transcription. Science (80- ) 1990; 250: 1227-33.
[http://dx.doi.org/10.1126/science.1700865]
[8]
Wei X, Decker JM, Wang S, et al. Antibody neutralization and escape by HIV-1. Nature 2003; 422(6929): 307-12.
[http://dx.doi.org/10.1038/nature01470] [PMID: 12646921]
[9]
Phillips RE, Rowland-Jones S, Nixon DF, et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 1991; 354(6353): 453-9.
[http://dx.doi.org/10.1038/354453a0] [PMID: 1721107]
[10]
Yu Q, König R, Pillai S, et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 2004; 11(5): 435-42.
[http://dx.doi.org/10.1038/nsmb758] [PMID: 15098018]
[11]
Blackard JT. HIV compartmentalization: a review on a clinically important phenomenon. Curr HIV Res 2012; 10(2): 133-42.
[http://dx.doi.org/10.2174/157016212799937245] [PMID: 22329519]
[12]
Bandera A, Gori A, Clerici M, Sironi M. Phylogenies in ART: HIV reservoirs, HIV latency and drug resistance. Curr Opin Pharmacol 2019; 48: 24-32.
[http://dx.doi.org/10.1016/j.coph.2019.03.003] [PMID: 31029861]
[13]
von Stockenstrom S, Odevall L, Lee E, et al. Longitudinal Genetic Characterization Reveals That Cell Proliferation Maintains a Persistent HIV Type 1 DNA Pool During Effective HIV Therapy. J Infect Dis 2015; 212(4): 596-607.
[http://dx.doi.org/10.1093/infdis/jiv092] [PMID: 25712966]
[14]
Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 2009; 15(8): 893-900.
[http://dx.doi.org/10.1038/nm.1972] [PMID: 19543283]
[15]
Hütter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009; 360(7): 692-8.
[http://dx.doi.org/10.1056/NEJMoa0802905] [PMID: 19213682]
[16]
Allers K, Hütter G, Hofmann J, et al. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 2011; 117(10): 2791-9.
[http://dx.doi.org/10.1182/blood-2010-09-309591] [PMID: 21148083]
[17]
Esparza J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31(35): 3502-18.
[http://dx.doi.org/10.1016/j.vaccine.2013.05.018] [PMID: 23707164]
[18]
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Mol Ther Methods Clin Dev 2016; 3: 16068.
[http://dx.doi.org/10.1038/mtm.2016.68] [PMID: 28197421]
[19]
Gautam R, Nishimura Y, Pegu A, et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 2016; 533(7601): 105-9.
[http://dx.doi.org/10.1038/nature17677] [PMID: 27120156]
[20]
Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. MOPH-TAVEG Investigators. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009; 361(23): 2209-20.
[http://dx.doi.org/10.1056/NEJMoa0908492] [PMID: 19843557]
[21]
Gilbert PB, Berger JO, Stablein D, et al. Statistical interpretation of the RV144 HIV vaccine efficacy trial in Thailand: a case study for statistical issues in efficacy trials. J Infect Dis 2011; 203(7): 969-75.
[http://dx.doi.org/10.1093/infdis/jiq152] [PMID: 21402548]
[22]
US Department of Health and Human Services. NIH and partners to launch HIV vaccine efficacy trial in the Americas and Europe. 2019 n.d. Available at: https://www.nih.gov/news-events/news-releases/nih-partners-launch-hiv-vaccine-efficacy-trial-americas-europe
[23]
Hsu DC, O’Connell RJ. Progress in HIV vaccine development. Hum Vaccin Immunother 2017; 13(5): 1018-30.
[http://dx.doi.org/10.1080/21645515.2016.1276138] [PMID: 28281871]
[24]
Desrosiers RC. Prospects for an AIDS vaccine. Nat Med 2004; 10(3): 221-3.
[http://dx.doi.org/10.1038/nm0304-221] [PMID: 14991035]
[25]
Burton DR, Pyati J, Koduri R, et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science (80- ) 1994; 266: 1024-7.
[26]
Muster T, Guinea R, Trkola A, et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J Virol 1994; 68(6): 4031-4.
[http://dx.doi.org/10.1128/JVI.68.6.4031-4034.1994] [PMID: 7514684]
[27]
Trkola A, Purtscher M, Muster T, et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 1996; 70(2): 1100-8.
[http://dx.doi.org/10.1128/JVI.70.2.1100-1108.1996] [PMID: 8551569]
[28]
Surosky RT, Urabe M, Godwin SG, et al. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol 1997; 71(10): 7951-9.
[http://dx.doi.org/10.1128/JVI.71.10.7951-7959.1997] [PMID: 9311886]
[29]
Walker LM, Huber M, Doores KJ, et al. Protocol G Principal Investigators. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011; 477(7365): 466-70.
[http://dx.doi.org/10.1038/nature10373] [PMID: 21849977]
[30]
Walker LM, Phogat SK, Chan-Hui PY, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009; 326: 285-9.
[31]
Wu X, Yang ZY, Li Y, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 2010; 329: 856-61.
[32]
Wu X, Zhou T, Zhu J, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding Science (80- ) 2011; 333: 1593-602.
[33]
Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TY, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 2011; 333: 1633-7.
[http://dx.doi.org/10.1126/science.1207227]
[34]
Huang J, Kang BH, Pancera M, et al. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature 2014; 515(7525): 138-42.
[http://dx.doi.org/10.1038/nature13601] [PMID: 25186731]
[35]
Nakai H, Storm TA, Kay MA. Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J Virol 2000; 74(20): 9451-63.
[http://dx.doi.org/10.1128/JVI.74.20.9451-9463.2000] [PMID: 11000214]
[36]
Moore PL, Gray ES, Wibmer CK, et al. Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape. Nat Med 2012; 18(11): 1688-92.
[http://dx.doi.org/10.1038/nm.2985] [PMID: 23086475]
[37]
Liao HX, Lynch R, Zhou T, et al. NISC Comparative Sequencing Program. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 2013; 496(7446): 469-76.
[http://dx.doi.org/10.1038/nature12053] [PMID: 23552890]
[38]
Moldt B, Rakasz EG, Schultz N, et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci USA 2012; 109(46): 18921-5.
[http://dx.doi.org/10.1073/pnas.1214785109] [PMID: 23100539]
[39]
Pegu A, Yang ZY, Boyington JC, et al. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci Transl Med 2014; 6(243): 243ra88
[http://dx.doi.org/10.1126/scitranslmed.3008992] [PMID: 24990883]
[40]
Rudicell RS, Kwon YD, Ko SY, et al. NISC Comparative Sequencing Program. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 2014; 88(21): 12669-82.
[http://dx.doi.org/10.1128/JVI.02213-14] [PMID: 25142607]
[41]
Shingai M, Donau OK, Plishka RJ, et al. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J Exp Med 2014; 211(10): 2061-74.
[http://dx.doi.org/10.1084/jem.20132494] [PMID: 25155019]
[42]
Ledgerwood JE, Coates EE, Yamshchikov G, et al. VRC 602 Study Team. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin Exp Immunol 2015; 182(3): 289-301.
[http://dx.doi.org/10.1111/cei.12692] [PMID: 26332605]
[43]
Liu J, Ghneim K, Sok D, Bosche WJ, Li Y, Chipriano E, et al. Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science 2016; 353: 1045-9.
[http://dx.doi.org/10.1126/science.aag0491]
[44]
Deal CE, Balazs AB. Vectored antibody gene delivery for the prevention or treatment of HIV infection. Curr Opin HIV AIDS 2015; 10(3): 190-7.
[http://dx.doi.org/10.1097/COH.0000000000000145] [PMID: 25700206]
[45]
Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 2011; 481(7379): 81-4.
[http://dx.doi.org/10.1038/nature10660] [PMID: 22139420]
[46]
Balazs AB, Ouyang Y, Hong CM, et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med 2014; 20(3): 296-300.
[http://dx.doi.org/10.1038/nm.3471] [PMID: 24509526]
[47]
Johnson PR, Schnepp BC, Zhang J, et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 2009; 15(8): 901-6.
[http://dx.doi.org/10.1038/nm.1967] [PMID: 19448633]
[48]
Atchison RW, Casto BC, Hammon WM. Adenovirus-Associated Defective Virus Particles. Science 1965; 149: 754-6.
[http://dx.doi.org/10.1126/science.149.3685.754]
[49]
Hoggan MD, Blacklow NR, Rowe WP. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci USA 1966; 55(6): 1467-74.
[http://dx.doi.org/10.1073/pnas.55.6.1467] [PMID: 5227666]
[50]
Buller RM, Janik JE, Sebring ED, Rose JA. Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol 1981; 40(1): 241-7.
[http://dx.doi.org/10.1128/JVI.40.1.241-247.1981] [PMID: 6270377]
[51]
Bauer HJ, Monreal G. Herpesviruses provide helper functions for avian adeno-associated parvovirus. J Gen Virol 1986; 67(Pt 1): 181-5.
[http://dx.doi.org/10.1099/0022-1317-67-1-181] [PMID: 3003233]
[52]
McPherson RA, Rosenthal LJ, Rose JA. Human cytomegalovirus completely helps adeno-associated virus replication. Virology 1985; 147(1): 217-22.
[http://dx.doi.org/10.1016/0042-6822(85)90243-0] [PMID: 2998066]
[53]
Hösel M, Lucifora J, Michler T, et al. Hepatitis B virus infection enhances susceptibility toward adeno-associated viral vector transduction in vitro and in vivo. Hepatology 2014; 59(6): 2110-20.
[http://dx.doi.org/10.1002/hep.26990] [PMID: 24425003]
[54]
Wang Z, Cheng F, Engelhardt JF, Yan Z, Qiu J. Development of a novel recombinant adeno-associated virus production system using human bocavirus 1 helper genes. Mol Ther Methods Clin Dev 2018; 11: 40-51.
[http://dx.doi.org/10.1016/j.omtm.2018.09.005] [PMID: 30397626]
[55]
Wang Z, Deng X, Zou W, Engelhardt JF, Yan Z, Qiu J. Human bocavirus 1 is a novel helper for adeno-associated virus replication. J Virol 2017; 91(18): e00710-7.
[http://dx.doi.org/10.1128/JVI.00710-17] [PMID: 28659483]
[56]
Blacklow NR, Hoggan MD, Rowe WP. Isolation of adenovirus-associated viruses from man. Proc Natl Acad Sci USA 1967; 58(4): 1410-5.
[http://dx.doi.org/10.1073/pnas.58.4.1410] [PMID: 4295829]
[57]
Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99(18): 11854-9.
[http://dx.doi.org/10.1073/pnas.182412299] [PMID: 12192090]
[58]
Gao G, Vandenberghe LH, Alvira MR, et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78(12): 6381-8.
[http://dx.doi.org/10.1128/JVI.78.12.6381-6388.2004] [PMID: 15163731]
[59]
Naso MF, Tomkowicz B, Perry WL III, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017; 31(4): 317-34.
[http://dx.doi.org/10.1007/s40259-017-0234-5] [PMID: 28669112]
[60]
Berns KI, Adler S. Separation of two types of adeno-associated virus particles containing complementary polynucleotide chains. J Virol 1972; 9(2): 394-6.
[http://dx.doi.org/10.1128/JVI.9.2.394-396.1972] [PMID: 5014934]
[61]
Mayor HD, Torikai K, Melnick JL, Mandel M. Plus and minus single-stranded DNA separately encapsidated in adeno-associated satellite virions. Science 1969; 166: 1280-2.
[http://dx.doi.org/10.1126/science.166.3910.1280]
[62]
Gerry HW, Kelly TJ Jr, Berns KI. Arrangement of nucleotide sequences in adeno-associated virus DNA. J Mol Biol 1973; 79(2): 207-25.
[http://dx.doi.org/10.1016/0022-2836(73)90001-6] [PMID: 4586409]
[63]
Berns KI, Kelly TJ Jr. Letter: Visualization of the inverted terminal repetition in adeno-associated virus DNA. J Mol Biol 1974; 82(2): 267-71.
[http://dx.doi.org/10.1016/0022-2836(74)90344-1] [PMID: 4816655]
[64]
Mendelson E, Trempe JP, Carter BJ. Identification of the trans-acting Rep proteins of adeno-associated virus by antibodies to a synthetic oligopeptide. J Virol 1986; 60(3): 823-32.
[http://dx.doi.org/10.1128/JVI.60.3.823-832.1986] [PMID: 3023672]
[65]
Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21(4): 583-93.
[http://dx.doi.org/10.1128/CMR.00008-08] [PMID: 18854481]
[66]
Becerra SP, Koczot F, Fabisch P, Rose JA. Synthesis of adeno-associated virus structural proteins requires both alternative mRNA splicing and alternative initiations from a single transcript. J Virol 1988; 62(8): 2745-54.
[http://dx.doi.org/10.1128/JVI.62.8.2745-2754.1988] [PMID: 2839699]
[67]
Becerra SP, Rose JA, Hardy M, Baroudy BM, Anderson CW. Direct mapping of adeno-associated virus capsid proteins B and C: a possible ACG initiation codon. Proc Natl Acad Sci USA 1985; 82(23): 7919-23.
[http://dx.doi.org/10.1073/pnas.82.23.7919] [PMID: 2999784]
[68]
Trempe JP, Carter BJ. Alternate mRNA splicing is required for synthesis of adeno-associated virus VP1 capsid protein. J Virol 1988; 62(9): 3356-63.
[http://dx.doi.org/10.1128/JVI.62.9.3356-3363.1988] [PMID: 2841488]
[69]
Xie Q, Bu W, Bhatia S, et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 2002; 99(16): 10405-10.
[http://dx.doi.org/10.1073/pnas.162250899] [PMID: 12136130]
[70]
Earley LF, Powers JM, Adachi K, et al. Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 2017; 91(3): e01980-16.
[http://dx.doi.org/10.1128/JVI.01980-16] [PMID: 27852862]
[71]
Naumer M, Sonntag F, Schmidt K, et al. Properties of the adeno-associated virus assembly-activating protein. J Virol 2012; 86(23): 13038-48.
[http://dx.doi.org/10.1128/JVI.01675-12] [PMID: 23015698]
[72]
Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72(2): 1438-45.
[http://dx.doi.org/10.1128/JVI.72.2.1438-1445.1998] [PMID: 9445046]
[73]
Pillay S, Meyer NL, Puschnik AS, et al. An essential receptor for adeno-associated virus infection. Nature 2016; 530(7588): 108-12.
[http://dx.doi.org/10.1038/nature16465] [PMID: 26814968]
[74]
Pillay S, Zou W, Cheng F, et al. Adeno-associated Virus (AAV) Serotypes Have Distinctive Interactions with Domains of the Cellular AAV Receptor. J Virol 2017; 91(18): e00391-17.
[http://dx.doi.org/10.1128/JVI.00391-17] [PMID: 28679762]
[75]
Summerford C, Johnson JS, Samulski RJ. AAVR: A Multi-Serotype Receptor for AAV. Mol Ther 2016; 24(4): 663-6.
[http://dx.doi.org/10.1038/mt.2016.49] [PMID: 27081719]
[76]
Agbandje-McKenna M, Kleinschmidt J. AAV capsid structure and cell interactions. Methods Mol Biol 2011; 807: 47-92.
[http://dx.doi.org/10.1007/978-1-61779-370-7_3] [PMID: 22034026]
[77]
Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 2012; 19(6): 649-58.
[http://dx.doi.org/10.1038/gt.2012.6] [PMID: 22357511]
[78]
Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 2006; 80(18): 8961-9.
[http://dx.doi.org/10.1128/JVI.00843-06] [PMID: 16940508]
[79]
Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999; 5(1): 71-7.
[http://dx.doi.org/10.1038/4758] [PMID: 9883842]
[80]
Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5(1): 78-82.
[http://dx.doi.org/10.1038/4768] [PMID: 9883843]
[81]
Sonntag F, Bleker S, Leuchs B, Fischer R, Kleinschmidt JA. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J Virol 2006; 80(22): 11040-54.
[http://dx.doi.org/10.1128/JVI.01056-06] [PMID: 16956943]
[82]
Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70(11): 8098-108.
[http://dx.doi.org/10.1128/JVI.70.11.8098-8108.1996] [PMID: 8892935]
[83]
Kelich JM, Ma J, Dong B, et al. Super-resolution imaging of nuclear import of adeno-associated virus in live cells. Mol Ther Methods Clin Dev 2015; 2: 15047.
[http://dx.doi.org/10.1038/mtm.2015.47] [PMID: 26665132]
[84]
Nicolson SC, Samulski RJ. Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J Virol 2014; 88(8): 4132-44.
[http://dx.doi.org/10.1128/JVI.02660-13] [PMID: 24478436]
[85]
Xiao W, Warrington KH Jr, Hearing P, Hughes J, Muzyczka N. Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2. J Virol 2002; 76(22): 11505-17.
[http://dx.doi.org/10.1128/JVI.76.22.11505-11517.2002] [PMID: 12388712]
[86]
Hauswirth WW, Berns KI. Adeno-associated virus DNA replication: nonunit-length molecules. Virology 1979; 93(1): 57-68.
[http://dx.doi.org/10.1016/0042-6822(79)90275-7] [PMID: 219605]
[87]
Hauswirth WW, Berns KI. Origin and termination of adeno-associated virus DNA replication. Virology 1977; 78(2): 488-99.
[http://dx.doi.org/10.1016/0042-6822(77)90125-8] [PMID: 867815]
[88]
Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70(5): 3227-34.
[http://dx.doi.org/10.1128/JVI.70.5.3227-3234.1996] [PMID: 8627803]
[89]
Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70(1): 520-32.
[http://dx.doi.org/10.1128/JVI.70.1.520-532.1996] [PMID: 8523565]
[90]
Kotin RM, Siniscalco M, Samulski RJ, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87(6): 2211-5.
[http://dx.doi.org/10.1073/pnas.87.6.2211] [PMID: 2156265]
[91]
Samulski RJ, Zhu X, Xiao X, et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10(12): 3941-50.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb04964.x] [PMID: 1657596]
[92]
Duan D, Sharma P, Yang J, et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 1998; 72(11): 8568-77.
[http://dx.doi.org/10.1128/JVI.72.11.8568-8577.1998] [PMID: 9765395]
[93]
Duan D, Yan Z, Yue Y, Engelhardt JF. Structural analysis of adeno-associated virus transduction circular intermediates. Virology 1999; 261(1): 8-14.
[http://dx.doi.org/10.1006/viro.1999.9821] [PMID: 10484751]
[94]
Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 2019; 18(5): 358-78.
[http://dx.doi.org/10.1038/s41573-019-0012-9] [PMID: 30710128]
[95]
Flotte TR, Afione SA, Zeitlin PL. Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Respir Cell Mol Biol 1994; 11(5): 517-21.
[http://dx.doi.org/10.1165/ajrcmb.11.5.7946381] [PMID: 7946381]
[96]
Ellis BL, Hirsch ML, Barker JC, Connelly JP, Steininger RJ III, Porteus MH. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J 2013; 10: 74.
[http://dx.doi.org/10.1186/1743-422X-10-74] [PMID: 23497173]
[97]
Dong JY, Fan PD, Frizzell RA. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 1996; 7(17): 2101-12.
[http://dx.doi.org/10.1089/hum.1996.7.17-2101] [PMID: 8934224]
[98]
Ghosh A, Yue Y, Shin J-H, Duan D. Systemic Trans-splicing adeno-associated viral delivery efficiently transduces the heart of adult mdx mouse, a model for duchenne muscular dystrophy. Hum Gene Ther 2009; 20(11): 1319-28.
[http://dx.doi.org/10.1089/hum.2009.058] [PMID: 19627234]
[99]
Lai Y, Yue Y, Liu M, et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 2005; 23(11): 1435-9.
[http://dx.doi.org/10.1038/nbt1153] [PMID: 16244658]
[100]
Ghosh A, Yue Y, Lai Y, Duan D. A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 2008; 16(1): 124-30.
[http://dx.doi.org/10.1038/sj.mt.6300322] [PMID: 17984978]
[101]
Ghosh A, Yue Y, Duan D. Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum Gene Ther 2011; 22(1): 77-83.
[http://dx.doi.org/10.1089/hum.2010.122] [PMID: 20662564]
[102]
Reich SJ, Auricchio A, Hildinger M, et al. Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum Gene Ther 2003; 14(1): 37-44.
[http://dx.doi.org/10.1089/10430340360464697] [PMID: 12573057]
[103]
Liu X, Luo M, Zhang LN, et al. Spliceosome-mediated RNA trans-splicing with recombinant adeno-associated virus partially restores cystic fibrosis transmembrane conductance regulator function to polarized human cystic fibrosis airway epithelial cells. Hum Gene Ther 2005; 16(9): 1116-23.
[http://dx.doi.org/10.1089/hum.2005.16.1116] [PMID: 16149910]
[104]
Ghosh A, Yue Y, Duan D. Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J Gene Med 2006; 8(3): 298-305.
[http://dx.doi.org/10.1002/jgm.835] [PMID: 16385549]
[105]
McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 2003; 10(26): 2112-8.
[http://dx.doi.org/10.1038/sj.gt.3302134] [PMID: 14625565]
[106]
Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2003; 10(26): 2105-11.
[http://dx.doi.org/10.1038/sj.gt.3302133] [PMID: 14625564]
[107]
Wu J, Zhao W, Zhong L, et al. Self-complementary recombinant adeno-associated viral vectors: packaging capacity and the role of rep proteins in vector purity. Hum Gene Ther 2007; 18(2): 171-82.
[http://dx.doi.org/10.1089/hum.2006.088] [PMID: 17328683]
[108]
McCarty DM, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004; 38: 819-45.
[http://dx.doi.org/10.1146/annurev.genet.37.110801.143717] [PMID: 15568995]
[109]
Schnepp BC, Jensen RL, Chen CL, Johnson PR, Clark KR. Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 2005; 79(23): 14793-803.
[http://dx.doi.org/10.1128/JVI.79.23.14793-14803.2005] [PMID: 16282479]
[110]
Drew HR, Lockett LJ, Both GW. Increased complexity of wild-type adeno-associated virus-chromosomal junctions as determined by analysis of unselected cellular genomes. J Gen Virol 2007; 88(Pt 6): 1722-32.
[http://dx.doi.org/10.1099/vir.0.82880-0] [PMID: 17485532]
[111]
Donsante A, Miller DG, Li Y, et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007; 317(5837): 477.
[http://dx.doi.org/10.1126/science.1142658]
[112]
Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 2016; 34(3): 334-8.
[http://dx.doi.org/10.1038/nbt.3469] [PMID: 26829317]
[113]
Smith LJ, Wright J, Clark G, et al. Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing. Proc Natl Acad Sci USA 2018; 115(31): E7379-88.
[http://dx.doi.org/10.1073/pnas.1802343115] [PMID: 30018062]
[114]
Hagedorn C, Schnödt-Fuchs M, Boehme P, Abdelrazik H, Lipps HJ, Büning H. S/MAR Element Facilitates Episomal Long-Term Persistence of Adeno-Associated Virus Vector Genomes in Proliferating Cells. Hum Gene Ther 2017; 28(12): 1169-79.
[http://dx.doi.org/10.1089/hum.2017.025] [PMID: 28665147]
[115]
Mays LE, Wang L, Lin J, et al. AAV8 induces tolerance in murine muscle as a result of poor APC transduction, T cell exhaustion, and minimal MHCI upregulation on target cells. Mol Ther 2014; 22(1): 28-41.
[http://dx.doi.org/10.1038/mt.2013.134] [PMID: 23778424]
[116]
Brockstedt DG, Podsakoff GM, Fong L, Kurtzman G, Mueller-Ruchholtz W, Engleman EG. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol 1999; 92(1): 67-75.
[http://dx.doi.org/10.1006/clim.1999.4724] [PMID: 10413654]
[117]
Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12(3): 342-7.
[http://dx.doi.org/10.1038/nm1358] [PMID: 16474400]
[118]
Vandenberghe LH, Wang L, Somanathan S, et al. Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nat Med 2006; 12(8): 967-71.
[http://dx.doi.org/10.1038/nm1445] [PMID: 16845388]
[119]
Greenberg B, Butler J, Felker GM, et al. Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure. Gene Ther 2016; 23(3): 313-9.
[http://dx.doi.org/10.1038/gt.2015.109] [PMID: 26699914]
[120]
Arbetman AE, Lochrie M, Zhou S, et al. Novel caprine adeno-associated virus (AAV) capsid (AAV-Go.1) is closely related to the primate AAV-5 and has unique tropism and neutralization properties. J Virol 2005; 79(24): 15238-45.
[http://dx.doi.org/10.1128/JVI.79.24.15238-15245.2005] [PMID: 16306595]
[121]
Lochrie MA, Tatsuno GP, Arbetman AE, et al. Adeno-associated virus (AAV) capsid genes isolated from rat and mouse liver genomic DNA define two new AAV species distantly related to AAV-5. Virology 2006; 353(1): 68-82.
[http://dx.doi.org/10.1016/j.virol.2006.05.023] [PMID: 16806384]
[122]
Bello A, Tran K, Chand A, et al. Isolation and evaluation of novel adeno-associated virus sequences from porcine tissues. Gene Ther 2009; 16(11): 1320-8.
[http://dx.doi.org/10.1038/gt.2009.82] [PMID: 19626054]
[123]
Chicoine LG, Montgomery CL, Bremer WG, et al. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol Ther 2014; 22(2): 338-47.
[http://dx.doi.org/10.1038/mt.2013.244] [PMID: 24196577]
[124]
Corti M, Elder M, Falk D, et al. B-Cell Depletion is Protective Against Anti-AAV Capsid Immune Response: A Human Subject Case Study. Mol Ther Methods Clin Dev 2014; 1: 14033.
[http://dx.doi.org/10.1038/mtm.2014.33] [PMID: 25541616]
[125]
Carlisle RC, Benjamin R, Briggs SS, et al. Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera. J Gene Med 2008; 10(4): 400-11.
[http://dx.doi.org/10.1002/jgm.1161] [PMID: 18220318]
[126]
Maguire CA, Balaj L, Sivaraman S, et al. Microvesicle-associated AAV vector as a novel gene delivery system. Mol Ther 2012; 20(5): 960-71.
[http://dx.doi.org/10.1038/mt.2011.303] [PMID: 22314290]
[127]
Tse LV, Klinc KA, Madigan VJ, et al. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc Natl Acad Sci USA 2017; 114(24): E4812-21.
[http://dx.doi.org/10.1073/pnas.1704766114] [PMID: 28559317]
[128]
Fuchs SP, Martinez-Navio JM, Gao G, Desrosiers RC. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG. PLoS One 2016; 11(6): e0158009
[http://dx.doi.org/10.1371/journal.pone.0158009] [PMID: 27332822]
[129]
Martinez-Navio JM, Fuchs SP, Pedreño-López S, Rakasz EG, Gao G, Desrosiers RC. Host Anti-antibody Responses Following Adeno-associated Virus-mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys. Mol Ther 2016; 24(1): 76-86.
[http://dx.doi.org/10.1038/mt.2015.191] [PMID: 26444083]
[130]
Gardner MR, Fetzer I, Kattenhorn LM, et al. Anti-drug Antibody Responses Impair Prophylaxis Mediated by AAV-Delivered HIV-1 Broadly Neutralizing Antibodies. Mol Ther 2019; 27(3): 650-60.
[http://dx.doi.org/10.1016/j.ymthe.2019.01.004] [PMID: 30704961]
[131]
Saunders KO, Wang L, Joyce MG, et al. Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. J Virol 2015; 89(16): 8334-45.
[http://dx.doi.org/10.1128/JVI.00908-15] [PMID: 26041300]
[132]
Nussenzweig MC, Alt FW. Antibody diversity: one enzyme to rule them all. Nat Med 2004; 10(12): 1304-5.
[http://dx.doi.org/10.1038/nm1204-1304] [PMID: 15580255]
[133]
Cao O, Hoffman BE, Moghimi B, et al. Impact of the underlying mutation and the route of vector administration on immune responses to factor IX in gene therapy for hemophilia B. Mol Ther 2009; 17(10): 1733-42.
[http://dx.doi.org/10.1038/mt.2009.159] [PMID: 19603001]
[134]
Gautam R, Nishimura Y, Gaughan N, et al. A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection. Nat Med 2018; 24(5): 610-6.
[http://dx.doi.org/10.1038/s41591-018-0001-2] [PMID: 29662199]
[135]
Saunders KO, Pegu A, Georgiev IS, et al. Sustained delivery of a broadly neutralizing antibody in nonhuman primates confers long-term protection against simian/human immunodeficiency virus infection. J Virol 2015; 89: 5895-903.
[136]
Wang L, Dobrzynski E, Schlachterman A, Cao O, Herzog RW. Systemic protein delivery by muscle-gene transfer is limited by a local immune response. Blood 2005; 105(11): 4226-34.
[http://dx.doi.org/10.1182/blood-2004-03-0848] [PMID: 15713796]
[137]
Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 2013; 122(1): 23-36.
[http://dx.doi.org/10.1182/blood-2013-01-306647] [PMID: 23596044]
[138]
Martino AT, Basner-Tschakarjan E, Markusic DM, et al. Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells. Blood 2013; 121(12): 2224-33.
[http://dx.doi.org/10.1182/blood-2012-10-460733] [PMID: 23325831]
[139]
Gardner MR, Farzan M. Engineering antibody-like inhibitors to prevent and treat HIV-1 infection. Curr Opin HIV AIDS 2017; 12(3): 294-301.
[http://dx.doi.org/10.1097/COH.0000000000000367] [PMID: 28422793]
[140]
Noël D, Pelegrin M, Marin M, et al. In vitro and in vivo secretion of cloned antibodies by genetically modified myogenic cells. Hum Gene Ther 1997; 8(10): 1219-29.
[http://dx.doi.org/10.1089/hum.1997.8.10-1219] [PMID: 9215739]
[141]
Lewis AD, Chen R, Montefiori DC, Johnson PR, Clark KR. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J Virol 2002; 76(17): 8769-75.
[http://dx.doi.org/10.1128/JVI.76.17.8769-8775.2002] [PMID: 12163597]
[142]
Clark KR, Sferra TJ, Johnson PR. Recombinant adeno-associated viral vectors mediate long-term transgene expression in muscle. Hum Gene Ther 1997; 8(6): 659-69.
[http://dx.doi.org/10.1089/hum.1997.8.6-659] [PMID: 9113506]
[143]
Herzog RW, Hagstrom JN, Kung SH, et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997; 94(11): 5804-9.
[http://dx.doi.org/10.1073/pnas.94.11.5804] [PMID: 9159155]
[144]
Monahan PE, Samulski RJ, Tazelaar J, et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther 1998; 5(1): 40-9.
[http://dx.doi.org/10.1038/sj.gt.3300548] [PMID: 9536263]
[145]
West AP Jr, Galimidi RP, Gnanapragasam PNP, Bjorkman PJ. Single-chain Fv-based anti-HIV proteins: potential and limitations. J Virol 2012; 86(1): 195-202.
[http://dx.doi.org/10.1128/JVI.05848-11] [PMID: 22013046]
[146]
Fang J, Qian JJ, Yi S, et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 2005; 23(5): 584-90.
[http://dx.doi.org/10.1038/nbt1087] [PMID: 15834403]
[147]
Fang J, Yi S, Simmons A, et al. An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo. Mol Ther 2007; 15(6): 1153-9.
[http://dx.doi.org/10.1038/sj.mt.6300142] [PMID: 17375065]
[148]
Klein F, Gaebler C, Mouquet H, et al. Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. J Exp Med 2012; 209(8): 1469-79.
[http://dx.doi.org/10.1084/jem.20120423] [PMID: 22826297]
[149]
Klein F, Mouquet H, Dosenovic P, Scheid JF, Scharf L, Nussenzweig MC. Antibodies in HIV-1 vaccine development and therapy. Science 2013; 341(6151): 1199-204.
[http://dx.doi.org/10.1126/science.1241144] [PMID: 24031012]
[150]
Scharf L, Scheid JF, Lee JH, et al. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep 2014; 7(3): 785-95.
[http://dx.doi.org/10.1016/j.celrep.2014.04.001] [PMID: 24767986]
[151]
Mouquet H, Scharf L, Euler Z, et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci USA 2012; 109(47): E3268-77.
[http://dx.doi.org/10.1073/pnas.1217207109] [PMID: 23115339]
[152]
Kwon YD, Georgiev IS, Ofek G, et al. Optimization of the solubility of HIV-1-neutralizing antibody 10E8 through somatic variation and structure-based design. J Virol 2016; 90(13): 5899-914.
[http://dx.doi.org/10.1128/JVI.03246-15] [PMID: 27053554]
[153]
Huang J, Ofek G, Laub L, et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 2012; 491(7424): 406-12.
[http://dx.doi.org/10.1038/nature11544] [PMID: 23151583]
[154]
Martinez-Navio JM, Fuchs SP, Pantry SN, et al. Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression Immunity 2019; 50(3): 567-575. e5.
[http://dx.doi.org/10.1016/j.immuni.2019.02.005] [PMID: 30850342]
[155]
Gardner MR, Kattenhorn LM, Kondur HR, et al. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 2015; 519(7541): 87-91.
[http://dx.doi.org/10.1038/nature14264] [PMID: 25707797]
[156]
Pilcher CD, Tien HC, Eron JJ Jr, et al. Quest Study; Duke-UNC-Emory Acute HIV Consortium. Brief but efficient: acute HIV infection and the sexual transmission of HIV. J Infect Dis 2004; 189(10): 1785-92.
[http://dx.doi.org/10.1086/386333] [PMID: 15122514]
[157]
Gray RH, Wawer MJ, Brookmeyer R, et al. Rakai Project Team. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 2001; 357(9263): 1149-53.
[http://dx.doi.org/10.1016/S0140-6736(00)04331-2] [PMID: 11323041]
[158]
Ramjee G, Daniels B. Women and HIV in Sub-Saharan Africa. AIDS Res Ther 2013; 10(1): 30.
[http://dx.doi.org/10.1186/1742-6405-10-30] [PMID: 24330537]
[159]
Abdel-Motal UM, Harbison C, Han T, et al. Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer. Gene Ther 2014; 21(9): 802-10.
[http://dx.doi.org/10.1038/gt.2014.56] [PMID: 24965083]
[160]
Sun Z, Denton PW, Estes JD, et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 2007; 204(4): 705-14.
[http://dx.doi.org/10.1084/jem.20062411] [PMID: 17389241]
[161]
Abdel-Motal UM, Sarkis PTN, Han T, et al. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro. PLoS One 2011; 6(10): e26473-3.
[http://dx.doi.org/10.1371/journal.pone.0026473] [PMID: 22031835]
[162]
Scheid JF, Horwitz JA, Bar-On Y, et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 2016; 535(7613): 556-60.
[http://dx.doi.org/10.1038/nature18929] [PMID: 27338952]
[163]
Caskey M, Schoofs T, Gruell H, et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat Med 2017; 23(2): 185-91.
[http://dx.doi.org/10.1038/nm.4268] [PMID: 28092665]
[164]
Caskey M, Klein F, Lorenzi JCC, et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 2015; 522(7557): 487-91.
[http://dx.doi.org/10.1038/nature14411] [PMID: 25855300]
[165]
Lynch RM, Boritz E, Coates EE, et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med 2015; 7: 319ra206
[166]
Priddy FH, Lewis DJM, Gelderblom HC, et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet HIV 2019; 6(4): e230-9.
[http://dx.doi.org/10.1016/S2352-3018(19)30003-7] [PMID: 30885692]
[167]
Lin A, Balazs AB. Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology 2018; 15(1): 66.
[http://dx.doi.org/10.1186/s12977-018-0449-7] [PMID: 30285769]
[168]
Boisgerault F, Gross D-A, Ferrand M, et al. Prolonged gene expression in muscle is achieved without active immune tolerance using microrRNA 142.3p-regulated rAAV gene transfer. Hum Gene Ther 2013; 24(4): 393-405.
[http://dx.doi.org/10.1089/hum.2012.208] [PMID: 23427817]
[169]
Majowicz A, Maczuga P, Kwikkers KL, et al. Mir-142-3p target sequences reduce transgene-directed immunogenicity following intramuscular adeno-associated virus 1 vector-mediated gene delivery. J Gene Med 2013; 15(6-7): 219-32.
[http://dx.doi.org/10.1002/jgm.2712] [PMID: 23658149]
[170]
Zhong L, Li B, Mah CS, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008; 105(22): 7827-32.
[http://dx.doi.org/10.1073/pnas.0802866105] [PMID: 18511559]
[171]
Zabaleta N, Salas D, Paramo M, et al. Improvement of Adeno-Associated Virus-Mediated Liver Transduction Efficacy by Regional Administration in Macaca fascicularis. Hum Gene Ther Clin Dev 2017; 28(2): 68-73.
[http://dx.doi.org/10.1089/humc.2016.183] [PMID: 28285544]
[172]
Sen D, Gadkari RA, Sudha G, et al. Targeted modifications in adeno-associated virus serotype 8 capsid improves its hepatic gene transfer efficiency in vivo. Hum Gene Ther Methods 2013; 24(2): 104-16.
[http://dx.doi.org/10.1089/hgtb.2012.195] [PMID: 23442071]
[173]
Qiao C, Zhang W, Yuan Z, et al. Adeno-associated virus serotype 6 capsid tyrosine-to-phenylalanine mutations improve gene transfer to skeletal muscle. Hum Gene Ther 2010; 21(10): 1343-8.
[http://dx.doi.org/10.1089/hum.2010.003] [PMID: 20497037]
[174]
Mao Y, Wang X, Yan R, et al. Single point mutation in adeno-associated viral vectors -DJ capsid leads to improvement for gene delivery in vivo. BMC Biotechnol 2016; 16: 1.
[http://dx.doi.org/10.1186/s12896-015-0230-0] [PMID: 26729248]
[175]
Wang X, Terhorst C, Herzog RW. In vivo induction of regulatory T cells for immune tolerance in hemophilia. Cell Immunol 2016; 301: 18-29.
[http://dx.doi.org/10.1016/j.cellimm.2015.10.001] [PMID: 26454643]
[176]
Mueller C, Chulay JD, Trapnell BC, et al. Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression. J Clin Invest 2013; 123(12): 5310-8.
[http://dx.doi.org/10.1172/JCI70314] [PMID: 24231351]
[177]
Brady JM, Baltimore D, Balazs AB. Antibody gene transfer with adeno-associated viral vectors as a method for HIV prevention. Immunol Rev 2017; 275(1): 324-33.
[http://dx.doi.org/10.1111/imr.12478] [PMID: 28133808]
[178]
Zalevsky J, Chamberlain AK, Horton HM, et al. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 2010; 28(2): 157-9.
[http://dx.doi.org/10.1038/nbt.1601] [PMID: 20081867]
[179]
Hinton PR, Johlfs MG, Xiong JM, et al. Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 2004; 279(8): 6213-6.
[http://dx.doi.org/10.1074/jbc.C300470200] [PMID: 14699147]
[180]
Burden RP, Cotton RE, Wallington TB, Reeves WG. Immune deposits in extraglomerular vessels: their correlation with circulating immune complexes. Clin Exp Immunol 1980; 42(3): 483-9.
[PMID: 7011614]
[181]
Yang G, Holl TM, Liu Y, et al. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies. J Exp Med 2013; 210(2): 241-56.
[http://dx.doi.org/10.1084/jem.20121977] [PMID: 23359068]
[182]
Haynes BF, Fleming J, St. Clair EW, et al. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 2005; 308: 1906-8.
[http://dx.doi.org/10.1126/science.1111781]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy