Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach

Author(s): Shareen Singh, Thakur Gurjeet Singh*

Journal Name: Current Neuropharmacology

Volume 18 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

A transcriptional regulatory nuclear factor kappa B (NF-κB) protein is a modulator of cellular biological activity via binding to a promoter region in the nucleus and transcribing various protein genes. The recent research implicated the intensive role of nuclear factor kappa B (NF-κB) in diseases like autoimmune disorder, inflammatory, cardiovascular and neurodegenerative diseases. Therefore, targeting the nuclear factor kappa B (NF-κB) protein offers a new opportunity as a therapeutic approach. Activation of IκB kinase/NF-κB signaling pathway leads to the development of various pathological conditions in human beings, such as neurodegenerative, inflammatory disorders, autoimmune diseases, and cancer. Therefore, the transcriptional activity of IκB kinase/NF- κB is strongly regulated at various cascade pathways. The nuclear factor NF-kB pathway plays a major role in the expression of pro-inflammatory genes, including cytokines, chemokines, and adhesion molecules. In response to the diverse stimuli, the cytosolic sequestered NF-κB in an inactivated form by binding with an inhibitor molecule protein (IkB) gets phosphorylated and translocated into the nucleus further transcribing various genes necessary for modifying various cellular functions. The various researches confirmed the role of different family member proteins of NF-κB implicated in expressing various genes products and mediating various cellular cascades. MicroRNAs, as regulators of NF- κB microRNAs play important roles in the regulation of the inflammatory process. Therefore, the inhibitor of NF-κB and its family members plays a novel therapeutic target in preventing various diseases. Regulation of NF- κB signaling pathway may be a safe and effective treatment strategy for various disorders.

Keywords: Transcriptional, nuclear factor kappa B (NF-κB), MicroRNAs, pro-inflammatory genes, neurodegenerative, inflammatory disorders, autoimmune diseases.

[1]
Qin, Z.H.; Tao, L.Y.; Chen, X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol. Sin., 2007, 28(12), 1859-1872.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00741.x ] [PMID: 18031598]
[2]
Chen, C.H.; Zhou, W.; Liu, S.; Deng, Y.; Cai, F.; Tone, M.; Tone, Y.; Tong, Y.; Song, W. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int. J. Neuropsychopharmacol., 2012, 15(1), 77-90.
[http://dx.doi.org/10.1017/S1461145711000149 ] [PMID: 21329555]
[3]
Camandola, S.; Mattson, M.P. NF-κ B as a therapeutic target in neurodegenerative diseases. Expert Opin. Ther. Targets, 2007, 11(2), 123-132.
[http://dx.doi.org/10.1517/14728222.11.2.123 ] [PMID: 17227229]
[4]
Kaltschmidt, B.; Baeuerle, P.A.; Kaltschmidt, C. Potential involvement of the transcription factor NF-κ B in neurological disorders. Mol. Aspects Med., 1993, 14(3), 171-190.
[http://dx.doi.org/10.1016/0098-2997(93)90004-W ] [PMID: 8264332]
[5]
O’Neill, L.A.; Kaltschmidt, C. NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci., 1997, 20(6), 252-258.
[http://dx.doi.org/10.1016/S0166-2236(96)01035-1 ] [PMID: 9185306]
[6]
Thanos, D.; Maniatis, T. NF-κ B: a lesson in family values. Cell, 1995, 80(4), 529-532.
[http://dx.doi.org/10.1016/0092-8674(95)90506-5 ] [PMID: 7867060]
[7]
Karin, M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene, 1999, 18(49), 6867-6874.
[http://dx.doi.org/10.1038/sj.onc.1203219 ] [PMID: 10602462]
[8]
Tripathi, P.; Aggarwal, A. NF-kB transcription factor: a key player in the generation of immune response. Curr. Sci., 2006, 90(4), 519.
[9]
Cornwell, W.D.; Kirkpatrick, R.B. Cactus-independent nuclear translocation of Drosophila RELISH. J. Cell. Biochem., 2001, 82(1), 22-37.
[http://dx.doi.org/10.1002/jcb.1144 ] [PMID: 11400160]
[10]
Heissmeyer, V.; Krappmann, D.; Hatada, E.N.; Scheidereit, C. Shared pathways of IkappaB kinase-induced SCF(betaTrCP)-mediated ubiquitination and degradation for the NF-kappaB precursor p105 and IkappaBalpha. Mol. Cell. Biol., 2001, 21(4), 1024-1035.
[http://dx.doi.org/10.1128/MCB.21.4.1024-1035.2001 ] [PMID: 11158290]
[11]
Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4) a000034
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[12]
Gao, Z.; Chiao, P.; Zhang, X.; Zhang, X.; Lazar, M.A.; Seto, E.; Young, H.A.; Ye, J. Coactivators and corepressors of NF-kappaB in IkappaB alpha gene promoter. J. Biol. Chem., 2005, 280(22), 21091-21098.
[http://dx.doi.org/10.1074/jbc.M500754200 ] [PMID: 15811852]
[13]
Gao, Z.; He, Q.; Peng, B.; Chiao, P.; Ye, J. Regulation of nuclear translocation of HDAC3 by IkBalpha is required for TNF-inhibition of PPARgamma function. J. Biochem., 2006, 281(7), 4540-4547.
[14]
Barré, B.; Perkins, N.D. A cell cycle regulatory network controlling NF-kappaB subunit activity and function. EMBO J., 2007, 26(23), 4841-4855.
[http://dx.doi.org/10.1038/sj.emboj.7601899 ] [PMID: 17962807]
[15]
Courtois, G.; Fauvarque, M.O. The many roles of ubiquitin in NF-κB signaling. Biomedicines, 2018, 6(2), 43.
[http://dx.doi.org/10.3390/biomedicines6020043 ] [PMID: 29642643]
[16]
Wu, Y.; Kang, J.; Zhang, L.; Liang, Z.; Tang, X.; Yan, Y.; Qian, H.; Zhang, X.; Xu, W.; Mao, F. Ubiquitination regulation of inflammatory responses through NF-κB pathway. Am. J. Transl. Res., 2018, 10(3), 881-891.
[PMID: 29636878]
[17]
Gilmore, T.D. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 2006, 25(51), 6680-6684.
[http://dx.doi.org/10.1038/sj.onc.1209954 ] [PMID: 17072321]
[18]
Perkins, N.D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol., 2007, 8(1), 49-62.
[http://dx.doi.org/10.1038/nrm2083 ] [PMID: 17183360]
[19]
Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front. Mol. Neurosci., 2015, 8, 77.
[http://dx.doi.org/10.3389/fnmol.2015.00077 ] [PMID: 26733801]
[20]
Kendellen, M.F.; Bradford, J.W.; Lawrence, C.L.; Clark, K.S.; Baldwin, A.S. Canonical and non-canonical NF-κB signaling promotes breast cancer tumor-initiating cells. Oncogene, 2014, 33(10), 1297-1305.
[http://dx.doi.org/10.1038/onc.2013.64 ] [PMID: 23474754]
[21]
Verstrepen, L.; Bekaert, T.; Chau, T.L.; Tavernier, J.; Chariot, A.; Beyaert, R. TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell. Mol. Life Sci., 2008, 65(19), 2964-2978.
[http://dx.doi.org/10.1007/s00018-008-8064-8 ] [PMID: 18535784]
[22]
Israël, A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol., 2010, 2(3) a000158
[http://dx.doi.org/10.1101/cshperspect.a000158] [PMID: 20300203]
[23]
Verma, S.; De Jesus, P.; Chanda, S.K.; Verma, I.M. SNW1, a Novel transcriptional regulator of the NF-κB pathway. Mol. Cell. Biol., 2019, 39(3), e00415-e00418.
[PMID: 30397075]
[24]
Kaltschmidt, B.; Sparna, T.; Kaltschmidt, C. Activation of NF-κ B by reactive oxygen intermediates in the nervous system. Antioxid. Redox Signal., 1999, 1(2), 129-144.
[http://dx.doi.org/10.1089/ars.1999.1.2-129 ] [PMID: 11228742]
[25]
Ghosh, A.; Roy, A.; Liu, X.; Kordower, J.H.; Mufson, E.J.; Hartley, D.M.; Ghosh, S.; Mosley, R.L.; Gendelman, H.E.; Pahan, K. Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18754-18759.
[http://dx.doi.org/10.1073/pnas.0704908104 ] [PMID: 18000063]
[26]
Friedmann-Morvinski, D.; Narasimamurthy, R.; Xia, Y.; Myskiw, C.; Soda, Y.; Verma, I.M. Targeting NF-κB in glioblastoma: A therapeutic approach. Sci. Adv., 2016, 2(1) e1501292
[http://dx.doi.org/10.1126/sciadv.1501292] [PMID: 26824076]
[27]
Negroni, A.; Pierdomenico, M.; Cucchiara, S.; Stronati, L. NOD2 and inflammation: current insights. J. Inflamm. Res., 2018, 11, 49-60.
[http://dx.doi.org/10.2147/JIR.S137606 ] [PMID: 29483781]
[28]
Ahmed, A.U.; Williams, B.R.; Hannigan, G.E. Transcriptional activation of inflammatory genes: mechanistic insight into selectivity and diversity. Biomolecules, 2015, 5(4), 3087-3111.
[http://dx.doi.org/10.3390/biom5043087 ] [PMID: 26569329]
[29]
Rahman, M.M.; McFadden, G. Modulation of NF-κB signalling by microbial pathogens. Nat. Rev. Microbiol., 2011, 9(4), 291-306.
[http://dx.doi.org/10.1038/nrmicro2539 ] [PMID: 21383764]
[30]
Chen, F.; Demers, L.M.; Shi, X. Upstream signal transduction of NF-kappaB activation. Curr. Drug Targets Inflamm. Allergy, 2002, 1(2), 137-149.
[http://dx.doi.org/10.2174/1568010023344706 ] [PMID: 14561196]
[31]
Shaftel, S.S.; Griffin, W.S.T.; O’Banion, M.K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J. Neuroinflammation, 2008, 5(1), 7.
[http://dx.doi.org/10.1186/1742-2094-5-7 ] [PMID: 18302763]
[32]
Stojakovic, A.; Paz-Filho, G.; Arcos-Burgos, M.; Licinio, J.; Wong, M.L.; Mastronardi, C.A. Role of the IL-1 pathway in dopaminergic neurodegeneration and decreased voluntary movement. Mol. Neurobiol., 2017, 54(6), 4486-4495.
[http://dx.doi.org/10.1007/s12035-016-9988-x ] [PMID: 27356916]
[33]
Garcia, J.M.; Stillings, S.A.; Leclerc, J.L.; Phillips, H.; Edwards, N.J.; Robicsek, S.A.; Hoh, B.L.; Blackburn, S.; Doré, S. Role of interleukin-10 in acute brain injuries. Front. Neurol., 2017, 8, 244.
[http://dx.doi.org/10.3389/fneur.2017.00244 ] [PMID: 28659854]
[34]
Costantini, E.; D’Angelo, C.; Reale, M. The role of immunosenescence in neurodegenerative diseases. Mediators Inflamm., 2018, 2018 6039171
[http://dx.doi.org/10.1155/2018/6039171] [PMID: 29706800]
[35]
Jung, Y.J.; Tweedie, D.; Scerba, M.T.; Greig, N.H. Neuroinflammation as a factor of neurodegenerative disease: Thalidomide analogs as treatments. Front. Cell Dev. Biol., 2019, 7, 313.
[http://dx.doi.org/10.3389/fcell.2019.00313 ] [PMID: 31867326]
[36]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016 ] [PMID: 20303880]
[37]
Krumbholz, M.; Theil, D.; Derfuss, T.; Rosenwald, A.; Schrader, F.; Monoranu, C.M.; Kalled, S.L.; Hess, D.M.; Serafini, B.; Aloisi, F.; Wekerle, H.; Hohlfeld, R.; Meinl, E. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med., 2005, 201(2), 195-200.
[http://dx.doi.org/10.1084/jem.20041674 ] [PMID: 15642740]
[38]
Ma, L.; Li, R.; Huang, H.; Yuan, J.; Ou, S.; Xu, T.; Yu, X.; Liu, X.; Chen, Y. Up-regulated BAFF and BAFF receptor expression in patients with intractable temporal lobe epilepsy and a pilocarpine-induced epilepsy rat model. Seizure, 2017, 48, 79-88.
[http://dx.doi.org/10.1016/j.seizure.2017.03.016 ] [PMID: 28441631]
[39]
O’Dea, E.L.; Kearns, J.D.; Hoffmann, A. UV as an amplifier rather than inducer of NF-kappaB activity. Mol. Cell, 2008, 30(5), 632-641.
[http://dx.doi.org/10.1016/j.molcel.2008.03.017 ] [PMID: 18538661]
[40]
Verma, A.; Kushwaha, H.N.; Srivastava, A.K.; Srivastava, S.; Jamal, N.; Srivastava, K.; Ray, R.S. Piperine attenuates UV-R induced cell damage in human keratinocytes via NF-kB, Bax/Bcl-2 pathway: An application for photoprotection. J. Photochem. Photobiol. B, 2017, 172, 139-148.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.018 ] [PMID: 28550736]
[41]
Liu, L.; Hui, L.; Zhang, Z.Z. Activation of JNK/Bim/Bax pathway in UV-induced apoptosis. International Society for Optics and Photonics. In: Biophotonics and Immune Responses VI; 2011; p. 7900, 79000I..
[42]
Begum, N.; Wang, B.; Mori, M.; Vares, G. Does ionizing radiation influence Alzheimer’s disease risk? J. Radiat. Res. (Tokyo), 2012, 53(6), 815-822.
[http://dx.doi.org/10.1093/jrr/rrs036 ] [PMID: 22872779]
[43]
Li, Y.; Jiao, Q.; Xu, H.; Du, X.; Shi, L.; Jia, F.; Jiang, H. Biometal dyshomeostasis and toxic metal accumulations in the development of Alzheimer’s disease. Front. Mol. Neurosci., 2017, 10, 339.
[http://dx.doi.org/10.3389/fnmol.2017.00339 ] [PMID: 29114205]
[44]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016 4350965
[http://dx.doi.org/10.1155/2016/4350965]]
[45]
Sun, J.; Nan, G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target. (Review). Int. J. Mol. Med., 2017, 39(6), 1338-1346.
[http://dx.doi.org/10.3892/ijmm.2017.2962] [PMID: 28440493]
[46]
Lee, J.K.; Kim, N.J. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules, 2017, 22(8), 1287.
[http://dx.doi.org/10.3390/molecules22081287 ] [PMID: 28767069]
[47]
Choi, C.; Park, J.Y.; Lee, J.; Lim, J.H.; Shin, E.C.; Ahn, Y.S.; Kim, C.H.; Kim, S.J.; Kim, J.D.; Choi, I.S.; Choi, I.H. Fas ligand and Fas are expressed constitutively in human astrocytes and the expression increases with IL-1, IL-6, TNF-α, or IFN-γ. J. Immunol., 1999, 162(4), 1889-1895.
[PMID: 9973455]
[48]
Vuong, B.; Hogan-Cann, A.D.; Alano, C.C.; Stevenson, M.; Chan, W.Y.; Anderson, C.M.; Swanson, R.A.; Kauppinen, T.M. NF-κB transcriptional activation by TNFα requires phospholipase C, extracellular signal-regulated kinase 2 and poly(ADP-ribose) polymerase-1. J. Neuroinflammation, 2015, 12(1), 229.
[http://dx.doi.org/10.1186/s12974-015-0448-8 ] [PMID: 26637332]
[49]
Yin, D.; Woodruff, M.; Zhang, Y.; Whaley, S.; Miao, J.; Ferslew, K.; Zhao, J.; Stuart, C. Morphine promotes Jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J. Neuroimmunol., 2006, 174(1-2), 101-107.
[http://dx.doi.org/10.1016/j.jneuroim.2006.02.001 ] [PMID: 16529824]
[50]
Yang, L.; Tao, L.Y.; Chen, X.P. Roles of NF-kappaB in central nervous system damage and repair. Neurosci. Bull., 2007, 23(5), 307-313.
[http://dx.doi.org/10.1007/s12264-007-0046-6 ] [PMID: 17952141]
[51]
Kinaci, M.K.; Erkasap, N.; Kucuk, A.; Koken, T.; Tosun, M. Effects of quercetin on apoptosis, NF-κB and NOS gene expression in renal ischemia/reperfusion injury. Exp. Ther. Med., 2012, 3(2), 249-254.
[http://dx.doi.org/10.3892/etm.2011.382 ] [PMID: 22969877]
[52]
Jia, G.; Zhang, Y.; Li, W.; Dai, H. Neuroprotective role of icariin in experimental spinal cord injury via its antioxidant, anti-neuroinflammatory and anti-apoptotic properties. Mol. Med. Rep., 2019, 20(4), 3433-3439.
[http://dx.doi.org/10.3892/mmr.2019.10537]
[53]
Gutierrez, H.; Hale, V.A.; Dolcet, X.; Davies, A. NF-kappaB signalling regulates the growth of neural processes in the developing PNS and CNS. Development, 2005, 132(7), 1713-1726.
[http://dx.doi.org/10.1242/dev.01702 ] [PMID: 15743881]
[54]
Gutierrez, H.; Davies, A.M. Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci., 2011, 34(6), 316-325.
[http://dx.doi.org/10.1016/j.tins.2011.03.001 ] [PMID: 21459462]
[55]
Mattson, M.P.; Camandola, S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest., 2001, 107(3), 247-254.
[http://dx.doi.org/10.1172/JCI11916 ] [PMID: 11160145]
[56]
Mincheva-Tasheva, S.; Soler, R.M. NF-κB signaling pathways: role in nervous system physiology and pathology. Neuroscientist, 2013, 19(2), 175-194.
[http://dx.doi.org/10.1177/1073858412444007 ] [PMID: 22785105]
[57]
Snow, W.M.; Albensi, B.C. Neuronal gene targets of NF-κB and their dysregulation in Alzheimer’s disease. Front. Mol. Neurosci., 2016, 9, 118.
[http://dx.doi.org/10.3389/fnmol.2016.00118 ] [PMID: 27881951]
[58]
Engelmann, C.; Weih, F.; Haenold, R. Role of nuclear factor kappa B in central nervous system regeneration. Neural Regen. Res., 2014, 9(7), 707-711.
[http://dx.doi.org/10.4103/1673-5374.131572 ] [PMID: 25206877]
[59]
Mattson, M.P.; Meffert, M.K. Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ., 2006, 13(5), 852-860.
[http://dx.doi.org/10.1038/sj.cdd.4401837 ] [PMID: 16397579]
[60]
Dresselhaus, E.C.; Meffert, M.K. Cellular specificity of NF-kappaB function in the nervous system. Front. Immunol., 2019, 10, 1043.
[http://dx.doi.org/10.3389/fimmu.2019.01043 ] [PMID: 31143184]
[61]
Motyl, J.; Strosznajder, J.B. Sphingosine kinase 1/sphingosine-1-phosphate receptors dependent signalling in neurodegenerative diseases. The promising target for neuroprotection in Parkinson’s disease. Pharmacol. Rep., 2018, 70(5), 1010-1014.
[http://dx.doi.org/10.1016/j.pharep.2018.05.002]
[62]
Strozyk, E.; Kulms, D. NFκB: cell survival or cell death? Signal Transduct., 2005, 5(6), 334-349.
[http://dx.doi.org/10.1002/sita.200500070]
[63]
Pozniak, P.D.; White, M.K.; Khalili, K. TNF-α/NF-κB signaling in the CNS: possible connection to EPHB2. J. Neuroimmune Pharmacol., 2014, 9(2), 133-141.
[http://dx.doi.org/10.1007/s11481-013-9517-x ] [PMID: 24277482]
[64]
Sedger, L.M.; McDermott, M.F. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev., 2014, 25(4), 453-472.
[http://dx.doi.org/10.1016/j.cytogfr.2014.07.016 ] [PMID: 25169849]
[65]
Karin, M.; Lin, A. NF-kappaB at the crossroads of life and death. Nat. Immunol., 2002, 3(3), 221-227.
[http://dx.doi.org/10.1038/ni0302-221 ] [PMID: 11875461]
[66]
Yi, J.; Luo, J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim. Biophys. Acta, 2010, 1804(8), 1684-1689.
[http://dx.doi.org/10.1016/j.bbapap.2010.05.002 ] [PMID: 20471503]
[67]
Nkpaa, K.W.; Adedara, I.A.; Amadi, B.A.; Wegwu, M.O.; Farombi, E.O. Ethanol via Regulation of NF-κB/p53 Signaling Pathway Increases Manganese-Induced Inflammation and Apoptosis in Hypothalamus of Rats. Biol. Trace Elem. Res., 2019, 190(1), 101-108.
[http://dx.doi.org/10.1007/s12011-018-1535-3 ] [PMID: 30284675]
[68]
Park, A.; Koh, H.C. NF-κB/mTOR-mediated autophagy can regulate diquat-induced apoptosis. Arch. Toxicol., 2019, 93(5), 1239-1253.
[http://dx.doi.org/10.1007/s00204-019-02424-7 ] [PMID: 30848314]
[69]
Pourhanifeh, M.H.; Shafabakhsh, R.; Reiter, R.J.; Asemi, Z. The Effect of resveratrol on neurodegenerative disorders: possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr. Pharm. Des., 2019, 25(19), 2178-2191.
[http://dx.doi.org/10.2174/1381612825666190717110932 ] [PMID: 31333112]
[70]
Culmsee, C.; Mattson, M.P. p53 in neuronal apoptosis. Biochem. Biophys. Res. Commun., 2005, 331(3), 761-777.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.149 ] [PMID: 15865932]
[71]
Grilli, M.; Memo, M. Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ., 1999, 6(1), 22-27.
[http://dx.doi.org/10.1038/sj.cdd.4400463 ] [PMID: 10200544]
[72]
Karova, K.; Wainwright, J.V.; Machova-Urdzikova, L.; Pisal, R.V.; Schmidt, M.; Jendelova, P.; Jhanwar-Uniyal, M. Transplantation of neural precursors generated from spinal progenitor cells reduces inflammation in spinal cord injury via NF-κB pathway inhibition. J. Neuroinflammation, 2019, 16(1), 12.
[http://dx.doi.org/10.1186/s12974-019-1394-7 ] [PMID: 30654804]
[73]
Swarbrick, S.; Wragg, N.; Ghosh, S.; Stolzing, A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol. Neurobiol., 2019, 56(9), 6156-6167.
[http://dx.doi.org/10.1007/s12035-019-1500-y ] [PMID: 30734227]
[74]
Muhammad, T.; Ikram, M.; Ullah, R.; Rehman, S.U.; Kim, M.O. Hesperetin, a citrus flavonoid, attenuates lps-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients, 2019, 11(3), 648.
[http://dx.doi.org/10.3390/nu11030648 ] [PMID: 30884890]
[75]
Hu, K.; Xie, Y.Y.; Zhang, C.; Ouyang, D.S.; Long, H.Y.; Sun, D.N.; Long, L.L.; Feng, L.; Li, Y.; Xiao, B. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci., 2012, 13(1), 115.
[http://dx.doi.org/10.1186/1471-2202-13-115 ] [PMID: 22998082]
[76]
Hu, Y.; Deng, H.; Xu, S.; Zhang, J. MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion injury. Int. J. Mol. Sci., 2015, 16(10), 24895-24917.
[http://dx.doi.org/10.3390/ijms161024895 ] [PMID: 26492239]
[77]
Savari, F.; Badavi, M.; Rezaie, A.; Gharib-Naseri, M.K.; Mard, S.A. Evaluation of the therapeutic potential effect of Fas receptor gene knockdown in experimental model of non-alcoholic steatohepatitis. Free Radic. Res., 2019, 53(5), 486-496.
[http://dx.doi.org/10.1080/10715762.2019.1608982 ] [PMID: 31010354]
[78]
Kempuraj, D.; Thangavel, R.; Natteru, P.A.; Selvakumar, G.P.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.S.; Zaheer, A. Neuroinflammation induces neurodegeneration. J. Neurol Neurosurg. Spine, 2016, 1(1), 1003.
[PMID: 28127589]
[79]
Tan, D.X.; Reiter, R.J. Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res., 2019, 2(1), 44-66.
[http://dx.doi.org/10.32794/mr11250011]
[80]
Borg, J.; London, J. Copper/zinc superoxide dismutase overexpression promotes survival of cortical neurons exposed to neurotoxins in vitro. J. Neurosci. Res., 2002, 70(2), 180-189.
[http://dx.doi.org/10.1002/jnr.10404 ] [PMID: 12271467]
[81]
Sun, L.; Guo, Y.; He, P.; Xu, X.; Zhang, X.; Wang, H.; Tang, T.; Zhou, W.; Xu, P.; Xie, P. Genome-wide profiling of long noncoding RNA expression patterns and CeRNA analysis in mouse cortical neurons infected with different strains of borna disease virus. Genes Dis., 2019, 6(2), 147-158.
[http://dx.doi.org/10.1016/j.gendis.2019.04.002 ] [PMID: 31193942]
[82]
Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; Rassenti, L.; Alder, H.; Volinia, S.; Liu, C.G.; Kipps, T.J.; Negrini, M.; Croce, C.M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA, 2005, 102(39), 13944-13949.
[http://dx.doi.org/10.1073/pnas.0506654102 ] [PMID: 16166262]
[83]
Wang, X.; Liu, P.; Zhu, H.; Xu, Y.; Ma, C.; Dai, X.; Huang, L.; Liu, Y.; Zhang, L.; Qin, C. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res. Bull., 2009, 80(4-5), 268-273.
[http://dx.doi.org/10.1016/j.brainresbull.2009.08.006 ] [PMID: 19683563]
[84]
Ouyang, Y.B.; Lu, Y.; Yue, S.; Giffard, R.G. miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion, 2012, 12(2), 213-219.
[http://dx.doi.org/10.1016/j.mito.2011.09.001 ] [PMID: 21958558]
[85]
Chen, Q.; Xu, J.; Li, L.; Li, H.; Mao, S.; Zhang, F.; Zen, K.; Zhang, C.Y.; Zhang, Q. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis., 2014, 5(3) e1132
[http://dx.doi.org/10.1038/cddis.2014.92] [PMID: 24651435]
[86]
Xu, Z.; Zhang, K.; Wang, Q.; Zheng, Y. MicroRNA124 improves functional recovery and suppresses Baxdependent apoptosis in rats following spinal cord injury. Mol. Med. Rep., 2019, 19(4), 2551-2560.
[http://dx.doi.org/10.3892/mmr.2019.9904 ] [PMID: 30720072]
[87]
Blokhuis, A.M.; Groen, E.J.; Koppers, M.; van den Berg, L.H.; Pasterkamp, R.J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol., 2013, 125(6), 777-794.
[http://dx.doi.org/10.1007/s00401-013-1125-6 ] [PMID: 23673820]
[88]
Fomin, V.; Richard, P.; Hoque, M.; Li, C.; Gu, Z.; Fissore-O’Leary, M.; Tian, B.; Prives, C.; Manley, J.L. The C9ORF72 gene, implicated in ALS/FTD, encodes a protein that functions in control of endothelin and glutamate signaling. Mol. Cell. Biol., 2018, 38(22), e00155-e18.
[http://dx.doi.org/10.1128/MCB.00155-18 ] [PMID: 30150298]
[89]
Casciati, A.; Ferri, A.; Cozzolino, M.; Celsi, F.; Nencini, M.; Rotilio, G.; Carrì, M.T. Oxidative modulation of nuclear factor-kappaB in human cells expressing mutant fALS-typical superoxide dismutases. J. Neurochem., 2002, 83(5), 1019-1029.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01232.x ] [PMID: 12437573]
[90]
Prell, T.; Lautenschläger, J.; Weidemann, L.; Ruhmer, J.; Witte, O.W.; Grosskreutz, J. Endoplasmic reticulum stress is accompanied by activation of NF-κB in amyotrophic lateral sclerosis. J. Neuroimmunol., 2014, 270(1-2), 29-36.
[http://dx.doi.org/10.1016/j.jneuroim.2014.03.005 ] [PMID: 24666819]
[91]
Dong, Y.; Chen, Y. The role of ubiquitinated TDP-43 in amyotrophic lateral sclerosis. Neuroimmunol. Neuroinflamm., 2018, 5, 5.
[http://dx.doi.org/10.20517/2347-8659.2017.47]
[92]
Frakes, A.E.; Ferraiuolo, L.; Haidet-Phillips, A.M.; Schmelzer, L.; Braun, L.; Miranda, C.J.; Ladner, K.J.; Bevan, A.K.; Foust, K.D.; Godbout, J.P.; Popovich, P.G.; Guttridge, D.C.; Kaspar, B.K. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron, 2014, 81(5), 1009-1023.
[http://dx.doi.org/10.1016/j.neuron.2014.01.013 ] [PMID: 24607225]
[93]
Cereda, C.; Gagliardi, S.; Cova, E.; Diamanti, L.; Ceroni, M. The role of TNF-Alpha in ALS: new hypotheses for future therapeutic approaches. Amyotroph. Lateral Scler., 2012, 413-436.
[94]
Swarup, V.; Phaneuf, D.; Dupré, N.; Petri, S.; Strong, M.; Kriz, J.; Julien, J.P. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J. Exp. Med., 2011, 208(12), 2429-2447.
[http://dx.doi.org/10.1084/jem.20111313 ] [PMID: 22084410]
[95]
Ajmone-Cat, M.A.; Onori, A.; Toselli, C.; Stronati, E.; Morlando, M.; Bozzoni, I.; Monni, E.; Kokaia, Z.; Lupo, G.; Minghetti, L.; Biagioni, S.; Cacci, E. Increased FUS levels in astrocytes leads to astrocyte and microglia activation and neuronal death. Sci. Rep., 2019, 9(1), 4572.
[http://dx.doi.org/10.1038/s41598-019-41040-4 ] [PMID: 30872738]
[96]
Ohta, Y.; Tremblay, C.; Schneider, J.A.; Bennett, D.A.; Calon, F.; Julien, J.P. Interaction of transactive response DNA binding protein 43 with nuclear factor κB in mild cognitive impairment with episodic memory deficits. Acta Neuropathol. Commun., 2014, 2(1), 37.
[http://dx.doi.org/10.1186/2051-5960-2-37 ] [PMID: 24690380]
[97]
Ohuchi, K.; Ono, Y.; Joho, M.; Tsuruma, K.; Ogami, S.; Yamane, S.; Funato, M.; Kaneko, H.; Nakamura, S.; Hara, H.; Shimazawa, M. A docosahexaenoic acid-derived pro-resolving agent, Maresin 1, protects motor neuron cells death. Neurochem. Res., 2018, 43(7), 1413-1423.
[http://dx.doi.org/10.1007/s11064-018-2556-1 ] [PMID: 29797139]
[98]
Rinchetti, P.; Rizzuti, M.; Faravelli, I.; Corti, S. MicroRNA metabolism and dysregulation in amyotrophic lateral sclerosis. Mol neuro, 2018, 55(3), 2617-30.,
[99]
Dardiotis, E.; Aloizou, A.M.; Siokas, V.; Patrinos, G.P.; Deretzi, G.; Mitsias, P.; Aschner, M.; Tsatsakis, A. The role of microRNAs in patients with amyotrophic lateral sclerosis. J. Mol. Neurosci., 2018, 66(4), 617-628.
[http://dx.doi.org/10.1007/s12031-018-1204-1 ] [PMID: 30415446]
[100]
Shah, S.Z.A.; Zhao, D.; Hussain, T.; Yang, L. The role of unfolded protein response and mitogen-activated protein kinase signaling in neurodegenerative diseases with special focus on prion diseases. Front. Aging Neurosci., 2017, 9, 120.
[http://dx.doi.org/10.3389/fnagi.2017.00120 ] [PMID: 28507517]
[101]
Julius, C.; Heikenwalder, M.; Schwarz, P.; Marcel, A.; Karin, M.; Prinz, M.; Pasparakis, M.; Aguzzi, A. Prion propagation in mice lacking central nervous system NF-kappaB signalling. J. Gen. Virol., 2008, 89(Pt 6), 1545-1550.
[http://dx.doi.org/10.1099/vir.0.83622-0 ] [PMID: 18474572]
[102]
Aguzzi, A.; Nuvolone, M.; Zhu, C. The immunobiology of prion diseases. Nat. Rev. Immunol., 2013, 13(12), 888-902.
[http://dx.doi.org/10.1038/nri3553 ] [PMID: 24189576]
[103]
Prasad, K.N.; Bondy, S.C. Oxidative and inflammatory events in prion diseases: can they be therapeutic targets? Curr. Aging Sci., 2019, 11(4), 216-225.
[http://dx.doi.org/10.2174/1874609812666190111100205 ] [PMID: 30636622]
[104]
Carroll, J.A.; Chesebro, B. Neuroinflammation, microglia, and cell-association during prion disease. Viruses, 2019, 11(1), 65.
[http://dx.doi.org/10.3390/v11010065 ] [PMID: 30650564]
[105]
Saba, R.; Goodman, C.D.; Huzarewich, R.L.; Robertson, C.; Booth, S.A. A miRNA signature of prion induced neurodegeneration. PLoS One, 2008, 3(11) e3652
[http://dx.doi.org/10.1371/journal.pone.0003652] [PMID: 18987751]
[106]
Kanata, E.; Thüne, K.; Xanthopoulos, K.; Ferrer, I.; Dafou, D.; Zerr, I.; Sklaviadis, T.; Llorens, F. MicroRNA alterations in the brain and body fluids of humans and animal prion disease models: current status and perspectives. Front. Aging Neurosci., 2018, 10, 220.
[http://dx.doi.org/10.3389/fnagi.2018.00220 ] [PMID: 30083102]
[107]
Saba, R.; Gushue, S.; Huzarewich, R.L.; Manguiat, K.; Medina, S.; Robertson, C.; Booth, S.A. MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One, 2012, 7(2) e30832
[http://dx.doi.org/10.1371/journal.pone.0030832] [PMID: 22363497]
[108]
Bacot, S.M.; Lenz, P.; Frazier-Jessen, M.R.; Feldman, G.M. Activation by prion peptide PrP106-126 induces a NF-kappaB-driven proinflammatory response in human monocyte-derived dendritic cells. J. Leukoc. Biol., 2003, 74(1), 118-125.
[http://dx.doi.org/10.1189/jlb.1102521 ] [PMID: 12832450]
[109]
Bourteele, S.; Oesterle, K.; Weinzierl, A.O.; Paxian, S.; Riemann, M.; Schmid, R.M.; Planz, O. Alteration of NF-kappaB activity leads to mitochondrial apoptosis after infection with pathological prion protein. Cell. Microbiol., 2007, 9(9), 2202-2217.
[http://dx.doi.org/10.1111/j.1462-5822.2007.00950.x ] [PMID: 17573907]
[110]
Wu, G.R.; Mu, T.C.; Gao, Z.X.; Wang, J.; Sy, M.S.; Li, C.Y. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J. Biol. Chem., 2017, 292(46), 18747-18759.
[http://dx.doi.org/10.1074/jbc.M117.787283 ] [PMID: 28900035]
[111]
Sawa, A.; Wiegand, G.W.; Cooper, J.; Margolis, R.L.; Sharp, A.H.; Lawler, J.F., Jr; Greenamyre, J.T.; Snyder, S.H.; Ross, C.A. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat. Med., 1999, 5(10), 1194-1198.
[http://dx.doi.org/10.1038/13518 ] [PMID: 10502825]
[112]
Marcora, E.; Kennedy, M.B. The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-κB from the synapse to the nucleus. Hum. Mol. Genet., 2010, 19(22), 4373-4384.
[http://dx.doi.org/10.1093/hmg/ddq358 ] [PMID: 20739295]
[113]
Martin, D.D.O.; Hayden, M.R. Neurodegeneration: Role of repeats in protein clearance. Nature, 2017, 545(7652), 33-34.
[http://dx.doi.org/10.1038/nature22489 ] [PMID: 28445458]
[114]
Alexandrov, A.I.; Serpionov, G.V.; Kushnirov, V.V.; Ter-Avanesyan, M.D. Wild type huntingtin toxicity in yeast: Implications for the role of amyloid cross-seeding in polyQ diseases. Prion, 2016, 10(3), 221-227.
[http://dx.doi.org/10.1080/19336896.2016.1176659 ] [PMID: 27220690]
[115]
Hatters, D.M. Proteome Aggregation patterns under proteostasis stress as signatures for understanding Huntington’s Disease. Biophys. J., 2019, 116(3), 5a.
[http://dx.doi.org/10.1016/j.bpj.2018.11.054]
[116]
Napolitano, M.; Zei, D.; Centonze, D.; Palermo, R.; Bernardi, G.; Vacca, A.; Calabresi, P.; Gulino, A. NF-kB/NOS cross-talk induced by mitochondrial complex II inhibition: implications for Huntington’s disease. Neurosci. Lett., 2008, 434(3), 241-246.
[http://dx.doi.org/10.1016/j.neulet.2007.09.056 ] [PMID: 18329171]
[117]
Turillazzi, E.; Neri, M.; Cerretani, D.; Cantatore, S.; Frati, P.; Moltoni, L.; Busardò, F.P.; Pomara, C.; Riezzo, I.; Fineschi, V. Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB. J. Cell. Mol. Med., 2016, 20(4), 601-612.
[http://dx.doi.org/10.1111/jcmm.12748 ] [PMID: 26828721]
[118]
Zhou, B.; Zuo, Y.X.; Jiang, R.T. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci. Ther., 2019, 25(6), 665-673.
[http://dx.doi.org/10.1111/cns.13123 ] [PMID: 30929313]
[119]
Zhou, P.; Du, S.; Zhou, L.; Sun, Z.; Zhuo, L.H.; He, G.; Zhao, Y.; Wu, Y.; Zhang, X. Tetramethylpyrazine2'Osodium ferulate provides neuroprotection against neuroinflammation and brain injury in MCAO/R rats by suppressing TLR-4/NF-κB signaling pathway. Pharmacol. Biochem. Behav., 2019, 176, 33-42.
[http://dx.doi.org/10.1016/j.pbb.2018.08.010 ] [PMID: 30171935]
[120]
Ghose, J.; Sinha, M.; Das, E.; Jana, N.R.; Bhattacharyya, N.P. Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington’s disease. PLoS One, 2011, 6(8) e23837
[http://dx.doi.org/10.1371/journal.pone.0023837] [PMID: 21887328]
[121]
Chang, K.H.; Wu, Y.R.; Chen, C.M. Down-regulation of miR-9* in the peripheral leukocytes of Huntington’s disease patients. Orphanet J. Rare Dis., 2017, 12(1), 185.
[http://dx.doi.org/10.1186/s13023-017-0742-x ] [PMID: 29258536]
[122]
Paulson, H.L.; Shakkottai, V.G.; Clark, H.B.; Orr, H.T. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat. Rev. Neurosci., 2017, 18(10), 613-626.
[http://dx.doi.org/10.1038/nrn.2017.92 ] [PMID: 28855740]
[123]
Li, J.; Gu, X.; Ma, Y.; Calicchio, M.L.; Kong, D.; Teng, Y.D.; Yu, L.; Crain, A.M.; Vartanian, T.K.; Pasqualini, R.; Arap, W.; Libermann, T.A.; Snyder, E.Y.; Sidman, R.L. Nna1 mediates Purkinje cell dendritic development via lysyl oxidase propeptide and NF-κB signaling. Neuron, 2010, 68(1), 45-60.
[http://dx.doi.org/10.1016/j.neuron.2010.08.013 ] [PMID: 20920790]
[124]
Kim, J.H.; Lukowicz, A.; Qu, W.; Johnson, A.; Cvetanovic, M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia, 2018, 66(9), 1972-1987.
[http://dx.doi.org/10.1002/glia.23451 ] [PMID: 30043530]
[125]
Mellesmoen, A.; Sheeler, C.; Ferro, A.; Rainwater, O.; Cvetanovic, M. Brain derived neurotrophic factor (BDNF) delays onset of pathogenesis in transgenic mouse model of spinocerebellar ataxia type 1 (SCA1). Front. Cell. Neurosci., 2019, 12, 509.
[http://dx.doi.org/10.3389/fncel.2018.00509 ] [PMID: 30718999]
[126]
Ferro, A.; Qu, W.; Lukowicz, A.; Svedberg, D.; Johnson, A.; Cvetanovic, M. Inhibition of NF-κB signaling in IKKβF/F;LysM Cre mice causes motor deficits but does not alter pathogenesis of Spinocerebellar ataxia type 1. PLoS One, 2018, 13(7) e0200013
[http://dx.doi.org/10.1371/journal.pone.0200013] [PMID: 29975753]
[127]
Koscianska, E.; Krzyzosiak, W.J. Current understanding of the role of microRNAs in spinocerebellar ataxias. Cerebellum Ataxias, 2014, 1(1), 7.
[http://dx.doi.org/10.1186/2053-8871-1-7 ] [PMID: 26331031]
[128]
van der Stijl, R.; Withoff, S.; Verbeek, D.S. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration. Neurobiol. Dis., 2017, 108, 148-158.
[http://dx.doi.org/10.1016/j.nbd.2017.08.003 ] [PMID: 28823930]
[129]
Zarouchlioti, C.; Parfitt, D.A.; Li, W.; Gittings, L.M.; Cheetham, M.E. DNAJ Proteins in neurodegeneration: essential and protective factors., 2018.Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1738), 20160534..
[http://dx.doi.org/10.1098/rstb.2016.0534] [PMID: 29203718]
[130]
Lee, Y.; Samaco, R.C.; Gatchel, J.R.; Thaller, C.; Orr, H.T.; Zoghbi, H.Y. miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat. Neurosci., 2008, 11(10), 1137-1139.
[http://dx.doi.org/10.1038/nn.2183 ] [PMID: 18758459]
[131]
Rodriguez-Lebron, E.; Liu, G.; Keiser, M.; Behlke, M.A.; Davidson, B.L. Altered Purkinje cell miRNA expression and SCA1 pathogenesis. Neurobiol. Dis., 2013, 54, 456-463.
[http://dx.doi.org/10.1016/j.nbd.2013.01.019 ] [PMID: 23376683]
[132]
Gantier, M.P.; Stunden, H.J.; McCoy, C.E.; Behlke, M.A.; Wang, D.; Kaparakis-Liaskos, M.; Sarvestani, S.T.; Yang, Y.H.; Xu, D.; Corr, S.C.; Morand, E.F.; Williams, B.R. A miR-19 regulon that controls NF-κB signaling. Nucleic Acids Res., 2012, 40(16), 8048-8058.
[http://dx.doi.org/10.1093/nar/gks521 ] [PMID: 22684508]
[133]
Hutchison, E.R.; Kawamoto, E.M.; Taub, D.D.; Lal, A.; Abdelmohsen, K.; Zhang, Y.; Wood, W.H., III; Lehrmann, E.; Camandola, S.; Becker, K.G.; Gorospe, M.; Mattson, M.P. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia, 2013, 61(7), 1018-1028.
[http://dx.doi.org/10.1002/glia.22483 ] [PMID: 23650073]
[134]
Karch, C.M.; Goate, A.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry, 2015, 77(1), 43-51.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.006 ] [PMID: 24951455]
[135]
Chen, X.Q.; Mobley, W.C. Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Front. Neurosci., 2019, 13, 659.
[http://dx.doi.org/10.3389/fnins.2019.00659 ] [PMID: 31293377]
[136]
Sun, J.; Roy, S. The physical approximation of APP and BACE-1: A key event in alzheimer’s disease pathogenesis. Dev. Neurobiol., 2018, 78(3), 340-347.
[http://dx.doi.org/10.1002/dneu.22556 ] [PMID: 29106038]
[137]
Oh, S.B.; Kim, M.S.; Park, S.; Son, H.; Kim, S.Y.; Kim, M.S.; Jo, D.G.; Tak, E.; Lee, J.Y. Clusterin contributes to early stage of Alzheimer’s disease pathogenesis. Brain Pathol., 2019, 29(2), 217-231.
[http://dx.doi.org/10.1111/bpa.12660 ] [PMID: 30295351]
[138]
Pung, L.; Wang, X.; Li, M.; Xue, L. The role of APP in Alzheimer’s disease. Adv. Alzheimer Dis., 2013, 2(02), 60.
[http://dx.doi.org/10.4236/aad.2013.22008]
[139]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5 ] [PMID: 25792098]
[140]
Heneka, M.T.; McManus, R.M.; Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci., 2018, 19(10), 610-621.
[http://dx.doi.org/10.1038/s41583-018-0055-7 ] [PMID: 30206330]
[141]
Hébert, S.S.; Horré, K.; Nicolaï, L.; Bergmans, B.; Papadopoulou, A.S.; Delacourte, A.; De Strooper, B. MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol. Dis., 2009, 33(3), 422-428.
[http://dx.doi.org/10.1016/j.nbd.2008.11.009 ] [PMID: 19110058]
[142]
Sujeetha, P.; Cheerian, J.; Basavaraju, P.; Moorthi, P.V.; Anand, A.V. The role of epigenetics in Alzheimer’s disease. J Geri Ment Health, 2018, 5(2), 94.
[http://dx.doi.org/10.4103/jgmh.jgmh_33_17]
[143]
Zhao, Y.; Bhattacharjee, S.; Jones, B.M.; Hill, J.; Dua, P.; Lukiw, W.J. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol. Neurobiol., 2014, 50(1), 97-106.
[http://dx.doi.org/10.1007/s12035-013-8595-3 ] [PMID: 24293102]
[144]
Walker, L.; Stefanis, L.; Attems, J. Clinical and neuropathological differences between Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies - current issues and future directions. J. Neurochem., 2019, 150(5), 467-474.
[http://dx.doi.org/10.1111/jnc.14698 ] [PMID: 30892688]
[145]
Gan, L.; Li, Z.; Lv, Q.; Huang, W. Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanoparticles inhibit neuroinflammation in a Parkinson’s disease model. Int. J. Pharm., 2019, 567 118449
[http://dx.doi.org/10.1016/j.ijpharm.2019.118449] [PMID: 31226473]
[146]
Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact., 2018, 279, 111-120.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019 ] [PMID: 29054324]
[147]
Jiang, X.; Wang, X.; Tuo, M.; Ma, J.; Xie, A. RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci. Lett., 2018, 672, 65-69.
[http://dx.doi.org/10.1016/j.neulet.2018.02.049 ] [PMID: 29477598]
[148]
Hassanzadeh, K.; Rahimmi, A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J. Cell. Physiol., 2018, 234(1), 23-32.
[http://dx.doi.org/10.1002/jcp.26865 ] [PMID: 30078201]
[149]
Asanuma, M.; Miyazaki, I.; Ogawa, N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res., 2003, 5(3), 165-176.
[http://dx.doi.org/10.1007/BF03033137 ] [PMID: 12835121]
[150]
Miñones-Moyano, E.; Porta, S.; Escaramís, G.; Rabionet, R.; Iraola, S.; Kagerbauer, B.; Espinosa-Parrilla, Y.; Ferrer, I.; Estivill, X.; Martí, E. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet., 2011, 20(15), 3067-3078.
[http://dx.doi.org/10.1093/hmg/ddr210 ] [PMID: 21558425]
[151]
Harraz, M.M.; Dawson, T.M.; Dawson, V.L. MicroRNAs in Parkinson’s disease. J. Chem. Neuroanat., 2011, 42(2), 127-130.
[http://dx.doi.org/10.1016/j.jchemneu.2011.01.005 ] [PMID: 21295133]
[152]
Correddu, D.; Leung, I.K.H. Targeting mRNA translation in Parkinson’s disease. Drug Discov. Today, 2019, 24(6), 1295-1303.
[http://dx.doi.org/10.1016/j.drudis.2019.04.003 ] [PMID: 30974176]
[153]
Martín-Nieto, J.; Uribe, M.L.; Esteve-Rudd, J.; Herrero, M.T.; Campello, L. A role for DJ-1 against oxidative stress in the mammalian retina. Neurosci. Lett., 2019, 708 134361
[http://dx.doi.org/10.1016/j.neulet.2019.134361] [PMID: 31276729]
[154]
Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Mouradian, M.M.; Junn, E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett., 2015, 589(3), 319-325.
[http://dx.doi.org/10.1016/j.febslet.2014.12.014 ] [PMID: 25541488]
[155]
Yao, L.; Zhu, Z.; Wu, J.; Zhang, Y.; Zhang, H.; Sun, X.; Qian, C.; Wang, B.; Xie, L.; Zhang, S.; Lu, G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson’s disease. FASEB J., 2019, 33(7), 8648-8665.
[http://dx.doi.org/10.1096/fj.201900363R ] [PMID: 30995872]
[156]
Wu, S.P.; Zhang, J.W.; Ma, J.J.; Li, X.; Qi, Y.W.; Yang, H.Q. The role of miR-146a in MPTP treated mice with Parkinson’s disease. Int. J. Clin. Exp. Med., 2019, 12(4), 3668-3676.
[157]
Du, S.; Deng, Y.; Yuan, H.; Sun, Y. Safflower Yellow B Protects Brain against Cerebral Ischemia Reperfusion Injury through AMPK/NF-kB Pathway. Evid Based Complement Alternat Med, 2019, 2019
[158]
Ansari, M.N.; Ganaie, M.A.; Rehman, N.U.; Alharthy, K.M.; Khan, T.H.; Imam, F.; Ansari, M.A.; Al-Harbi, N.O.; Jan, B.L.; Sheikh, I.A.; Hamad, A.M. Protective role of Roflumilast against cadmium-induced cardiotoxicity through inhibition of oxidative stress and NF-κB signaling in rats. Saudi Pharm. J., 2019, 27(5), 673-681.
[http://dx.doi.org/10.1016/j.jsps.2019.04.002]
[159]
Wang, Y.; Wang, Y.; Yang, G.Y. MicroRNAs in cerebral ischemia. Stroke Res. Treat., 2013, 2013 276540
[http://dx.doi.org/10.1155/2013/276540] [PMID: 23533957]
[160]
Wang, S.W.; Liu, Z.; Shi, Z.S. Non-Coding RNA in acute ischemic stroke: mechanisms, biomarkers and therapeutic targets. Cell Transplant., 2018, 27(12), 1763-1777.
[http://dx.doi.org/10.1177/0963689718806818 ] [PMID: 30362372]
[161]
Xiang, B.; Zhong, P.; Fang, L.; Wu, X.; Song, Y.; Yuan, H. miR-183 inhibits microglia activation and expression of inflammatory factors in rats with cerebral ischemia reperfusion via NF-κB signaling pathway. Exp. Ther. Med., 2019, 18(4), 2540-2546.
[http://dx.doi.org/10.3892/etm.2019.7827 ] [PMID: 31572505]
[162]
Dong, H.; Cui, B.; Hao, X. MicroRNA22 alleviates inflammation in ischemic stroke via p38 MAPK pathways. Mol. Med. Rep., 2019, 20(1), 735-744.
[http://dx.doi.org/10.3892/mmr.2019.10269 ] [PMID: 31115561]
[163]
Feng, Y.; Cui, C.; Liu, X.; Wu, Q.; Hu, F.; Zhang, H.; Ma, Z.; Wang, L. Protective role of apocynin via suppression of neuronal autophagy and TLR4/NF-κB signaling pathway in a rat model of traumatic brain injury. Neurochem. Res., 2017, 42(11), 3296-3309.
[http://dx.doi.org/10.1007/s11064-017-2372-z ] [PMID: 28786047]
[164]
Rahimifard, M.; Maqbool, F.; Moeini-Nodeh, S.; Niaz, K.; Abdollahi, M.; Braidy, N.; Nabavi, S.M.; Nabavi, S.F. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res. Rev., 2017, 36, 11-19.
[http://dx.doi.org/10.1016/j.arr.2017.02.004 ] [PMID: 28235660]
[165]
Shi, H.; Hua, X.; Kong, D.; Stein, D.; Hua, F. Role of Toll-like receptor mediated signaling in traumatic brain injury. Neuropharmacology, 2019, 145(Pt B), 259-267.,
[http://dx.doi.org/10.1016/j.neuropharm.2018.07.022] [PMID: 30075158]
[166]
Jayakumar, A.R.; Tong, X.Y.; Ruiz-Cordero, R.; Bregy, A.; Bethea, J.R.; Bramlett, H.M.; Norenberg, M.D. Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury. J. Neurotrauma, 2014, 31(14), 1249-1257.
[http://dx.doi.org/10.1089/neu.2013.3169 ] [PMID: 24471369]
[167]
Xiong, Y.; Mahmood, A.; Chopp, M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin. J. Traumatol., 2018, 21(3), 137-151.
[http://dx.doi.org/10.1016/j.cjtee.2018.02.003 ] [PMID: 29764704]
[168]
Feng, Y.; Cui, Y.; Gao, J.L.; Li, M.H.; Li, R.; Jiang, X.H.; Tian, Y.X.; Wang, K.J.; Cui, C.M.; Cui, J.Z. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-κB signaling pathway in experimental traumatic brain injury. Int. J. Mol. Med., 2016, 37(4), 921-930.
[http://dx.doi.org/10.3892/ijmm.2016.2495 ] [PMID: 26936125]
[169]
Kong, L.; Yao, Y.; Xia, Y.; Liang, X.; Ni, Y.; Yang, J. Osthole alleviates inflammation by down-regulating NF-κB signaling pathway in traumatic brain injury. Immunopharmacol. Immunotoxicol., 2019, 41(2), 349-360.
[http://dx.doi.org/10.1080/08923973.2019.1608560 ] [PMID: 31056982]
[170]
Liu, L.; Sun, T.; Liu, Z.; Chen, X.; Zhao, L.; Qu, G.; Li, Q. Traumatic brain injury dysregulates microRNAs to modulate cell signaling in rat hippocampus. PLoS One, 2014, 9(8) e103948
[http://dx.doi.org/10.1371/journal.pone.0103948] [PMID: 25089700]
[171]
Wang, W.X.; Visavadiya, N.P.; Pandya, J.D.; Nelson, P.T.; Sullivan, P.G.; Springer, J.E. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp. Neurol., 2015, 265, 84-93.
[http://dx.doi.org/10.1016/j.expneurol.2014.12.018 ] [PMID: 25562527]
[172]
Su, X.; Ye, Y.; Yang, Y.; Zhang, K.; Bai, W.; Chen, H.; Kang, E.; Kong, C.; He, X. The Effect of SPTLC2 on promoting neuronal apoptosis is alleviated by MiR-124-3p through TLR4 signalling pathway. Neurochem. Res., 2019, 44(9), 2113-2122.
[http://dx.doi.org/10.1007/s11064-019-02849-7 ] [PMID: 31372925]
[173]
Lee, B.H.; Kim, Y.K. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig., 2010, 7(4), 231-235.
[http://dx.doi.org/10.4306/pi.2010.7.4.231 ] [PMID: 21253405]
[174]
Caviedes, A.; Lafourcade, C.; Soto, C.; Wyneken, U. BDNF/NF-κB signaling in the neurobiology of depression. Curr. Pharm. Des., 2017, 23(21), 3154-3163.
[http://dx.doi.org/10.2174/1381612823666170111141915 ] [PMID: 28078988]
[175]
Liu, C.H.; Zhang, G.Z.; Li, B.; Li, M.; Woelfer, M.; Walter, M.; Wang, L. Role of inflammation in depression relapse. J. Neuroinflammation, 2019, 16(1), 90.
[http://dx.doi.org/10.1186/s12974-019-1475-7 ] [PMID: 30995920]
[176]
Koo, J.W.; Russo, S.J.; Ferguson, D.; Nestler, E.J.; Duman, R.S. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2669-2674.
[http://dx.doi.org/10.1073/pnas.0910658107 ] [PMID: 20133768]
[177]
Tang, C.Z.; Zhang, D.F.; Yang, J.T.; Liu, Q.H.; Wang, Y.R.; Wang, W.S. Overexpression of microRNA-301b accelerates hippocampal microglia activation and cognitive impairment in mice with depressive-like behavior through the NF-κB signaling pathway. Cell Death Dis., 2019, 10(4), 316.
[http://dx.doi.org/10.1038/s41419-019-1522-4 ] [PMID: 30962417]
[178]
Hung, Y.Y.; Wu, M.K.; Tsai, M.C.; Huang, Y.L.; Kang, H.Y. Aberrant Expression of Intracellular let-7e, miR-146a, and miR-155 correlates with severity of depression in patients with major depressive disorder and is ameliorated after antidepressant treatment. Cells, 2019, 8(7), 647.
[http://dx.doi.org/10.3390/cells8070647 ] [PMID: 31252530]
[179]
Feng, J.; Wang, M.; Li, M.; Yang, J.; Jia, J.; Liu, L.; Zhou, J.; Zhang, C.; Wang, X. Serum miR-221-3p as a new potential biomarker for depressed mood in perioperative patients. Brain Res., 2019, 1720 146296
[http://dx.doi.org/10.1016/j.brainres.2019.06.015] [PMID: 31211948]
[180]
Vezzani, A.; Aronica, E.; Mazarati, A.; Pittman, Q.J. Epilepsy and brain inflammation. Exp. Neurol., 2013, 244, 11-21.
[http://dx.doi.org/10.1016/j.expneurol.2011.09.033 ] [PMID: 21985866]
[181]
Rana, A.; Musto, A.E. The role of inflammation in the development of epilepsy. J. Neuroinflammation, 2018, 15(1), 144.
[http://dx.doi.org/10.1186/s12974-018-1192-7 ] [PMID: 29764485]
[182]
Li, G.; Bauer, S.; Nowak, M.; Norwood, B.; Tackenberg, B.; Rosenow, F.; Knake, S.; Oertel, W.H.; Hamer, H.M. Cytokines and epilepsy. Seizure, 2011, 20(3), 249-256.
[http://dx.doi.org/10.1016/j.seizure.2010.12.005 ] [PMID: 21216630]
[183]
Rowley, S.; Patel, M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic. Biol. Med., 2013, 62, 121-131.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.002 ] [PMID: 23411150]
[184]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178 ] [PMID: 21135885]
[185]
Devinsky, O.; Vezzani, A.; Najjar, S.; De Lanerolle, N.C.; Rogawski, M.A. Glia and epilepsy: excitability and inflammation. Trends Neurosci., 2013, 36(3), 174-184.
[http://dx.doi.org/10.1016/j.tins.2012.11.008 ] [PMID: 23298414]
[186]
Shimada, T.; Takemiya, T.; Sugiura, H.; Yamagata, K. Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm., 2014, 2014 901902
[http://dx.doi.org/10.1155/2014/901902] [PMID: 25197169]
[187]
Somade, O.T.; Ajayi, B.O.; Adeyi, O.E.; Aina, B.O.; David, B. O.; Sodiya, I.D. Activation of NF-kB mediates up-regulation of cerebellar and hypothalamic pro-inflammatory chemokines (RANTES and MCP-1) and cytokines (TNF-α, IL-1β, IL-6) in acute edible camphor administration. Sci. Am., 2019, 5e00114.
[188]
Aronica, E.; Fluiter, K.; Iyer, A.; Zurolo, E.; Vreijling, J.; van Vliet, E.A.; Baayen, J.C.; Gorter, J.A. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur. J. Neurosci., 2010, 31(6), 1100-1107.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07122.x ] [PMID: 20214679]
[189]
Li, M.M.; Li, X.M.; Zheng, X.P.; Yu, J.T.; Tan, L. MicroRNAs dysregulation in epilepsy. Brain Res., 2014, 1584, 94-104.
[http://dx.doi.org/10.1016/j.brainres.2013.09.049 ] [PMID: 24096213]
[190]
Alsharafi, W.; Xiao, B. Dynamic expression of microRNAs (183, 135a, 125b, 128, 30c and 27a) in the rat pilocarpine model and temporal lobe epilepsy patients. CNS Neurol. Disord. Drug Targets, 2015, 14(8), 1096-1102.
[http://dx.doi.org/10.2174/1871527314666150317225945 ] [PMID: 25801837]
[191]
Henshall, D.C.; Hamer, H.M.; Pasterkamp, R.J.; Goldstein, D.B.; Kjems, J.; Prehn, J.H.M.; Schorge, S.; Lamottke, K.; Rosenow, F. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol., 2016, 15(13), 1368-1376.
[http://dx.doi.org/10.1016/S1474-4422(16)30246-0 ] [PMID: 27839653]
[192]
Huang, W.S.; Zhu, L. MiR-134 expression and changes in inflammatory cytokines of rats with epileptic seizures. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(11), 3479-3484.
[PMID: 29917202]
[193]
Sonkoly, E.; Pivarcsi, A. microRNAs in inflammation. Int. Rev. Immunol., 2009, 28(6), 535-561.
[http://dx.doi.org/10.3109/08830180903208303 ] [PMID: 19954362]
[194]
Rippo, M.R.; Olivieri, F.; Monsurrò, V.; Prattichizzo, F.; Albertini, M.C.; Procopio, A.D. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp. Gerontol., 2014, 56, 154-163.
[http://dx.doi.org/10.1016/j.exger.2014.03.002 ] [PMID: 24607549]
[195]
Hai , Ping P.; Feng Bo, T.; Li, L.; Nan, H. Y.; Hong, Z. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch. Biochem. Biophys., 2016, 604, 20-26.
[http://dx.doi.org/10.1016/j.abb.2016.06.001 ] [PMID: 27264420]
[196]
Srivastava, A.; Dixit, A.B.; Banerjee, J.; Tripathi, M.; Sarat Chandra, P. Role of inflammation and its miRNA based regulation in epilepsy: Implications for therapy. Clin. Chim. Acta, 2016, 452, 1-9.
[http://dx.doi.org/10.1016/j.cca.2015.10.023 ] [PMID: 26506013]
[197]
Liu, A.H.; Wu, Y.T.; Wang, Y.P. MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway. Brain Res. Bull., 2017, 132, 139-149.
[http://dx.doi.org/10.1016/j.brainresbull.2017.05.004 ] [PMID: 28528202]
[198]
Srinivasan, M.; Lahiri, D.K. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin. Ther. Targets, 2015, 19(4), 471-487.
[http://dx.doi.org/10.1517/14728222.2014.989834 ] [PMID: 25652642]
[199]
Karunaweera, N.; Raju, R.; Gyengesi, E.; Münch, G. Plant polyphenols as inhibitors of NF-κB induced cytokine production-a potential anti-inflammatory treatment for Alzheimer’s disease? Front. Mol. Neurosci., 2015, 8, 24.
[http://dx.doi.org/10.3389/fnmol.2015.00024 ] [PMID: 26136655]
[200]
Seo, E.J.; Fischer, N.; Efferth, T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol. Res., 2018, 129, 262-273.
[http://dx.doi.org/10.1016/j.phrs.2017.11.030 ] [PMID: 29179999]
[201]
Santa-Cecília, F.V.; Socias, B.; Ouidja, M.O.; Sepulveda-Diaz, J.E.; Acuña, L.; Silva, R.L.; Michel, P.P.; Del-Bel, E.; Cunha, T.M.; Raisman-Vozari, R. Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotox. Res., 2016, 29(4), 447-459.
[http://dx.doi.org/10.1007/s12640-015-9592-2 ] [PMID: 26745968]
[202]
Jing, H.; Wang, S.; Wang, M.; Fu, W.; Zhang, C.; Xu, D. Isobavachalcone attenuates mptp-induced Parkinson’s Disease in mice by inhibition of microglial activation through NF-κB pathway. PLoS One, 2017, 12(1) e0169560
[http://dx.doi.org/10.1371/journal.pone.0169560] [PMID: 28060896]
[203]
Subedi, L.; Lee, J.H.; Yumnam, S.; Ji, E.; Kim, S.Y. Anti-inflammatory effect of sulforaphane on lps-activated microglia potentially through JNK/AP-1/NF-κB inhibition and Nrf2/HO-1 Activation. Cells, 2019, 8(2), 194.
[http://dx.doi.org/10.3390/cells8020194 ] [PMID: 30813369]
[204]
Majdi, F.; Taheri, F.; Salehi, P.; Motaghinejad, M.; Safari, S. Cannabinoids Δ9-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-κB signaling. Med. Hypotheses, 2019, 133 109371
[http://dx.doi.org/10.1016/j.mehy.2019.109371] [PMID: 31465975]
[205]
Lu, H.; Le, W.D.; Xie, Y.Y.; Wang, X.P. Current therapy of drugs in amyotrophic lateral sclerosis. Curr. Neuropharmacol., 2016, 14(4), 314-321.
[http://dx.doi.org/10.2174/1570159X14666160120152423 ] [PMID: 26786249]
[206]
Crisafulli, S.G.; Brajkovic, S.; Cipolat Mis, M.S.; Parente, V.; Corti, S. Therapeutic strategies under development targeting inflammatory mechanisms in amyotrophic lateral sclerosis. Mol. Neurobiol., 2018, 55(4), 2789-2813.
[http://dx.doi.org/10.1007/s12035-017-0532-4 ] [PMID: 28455693]
[207]
Zhao, Z.; Fu, J.; Li, S.; Li, Z. Neuroprotective effects of genistein in a sod1-g93a transgenic mouse model of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol., 2019, 14(4), 688-696.
[http://dx.doi.org/10.1007/s11481-019-09866-x ] [PMID: 31321663]
[208]
Yun, Y.C.; Jeong, S.G.; Kim, S.H.; Cho, G.W. Reduced sirtuin 1/adenosine monophosphate-activated protein kinase in amyotrophic lateral sclerosis patient-derived mesenchymal stem cells can be restored by resveratrol. J. Tissue Eng. Regen. Med., 2019, 13(1), 110-115.
[PMID: 30479062]
[209]
Bai, Y.; Li, Q.; Yang, J.; Zhou, X.; Yin, X.; Zhao, D. p75(NTR) activation of NF-kappaB is involved in PrP106-126-induced apoptosis in mouse neuroblastoma cells. Neurosci. Res., 2008, 62(1), 9-14.
[http://dx.doi.org/10.1016/j.neures.2008.05.004 ] [PMID: 18602709]
[210]
Choi, J.; Kim, J.; Min, D.Y.; Jung, E.; Lim, Y.; Shin, S.Y.; Lee, Y.H. Inhibition of TNFα-induced interleukin-6 gene expression by barley (Hordeum vulgare) ethanol extract in BV-2 microglia. Genes Genomics, 2019, 41(5), 557-566.
[http://dx.doi.org/10.1007/s13258-018-00781-8 ] [PMID: 30796706]
[211]
Zhang, L.; Previn, R.; Lu, L.; Liao, R.F.; Jin, Y.; Wang, R.K. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway. Brain Res. Bull., 2018, 142, 352-359.
[http://dx.doi.org/10.1016/j.brainresbull.2018.08.021 ] [PMID: 30179677]
[212]
Yu, H.; Zhang, F.; Guan, X. Baicalin reverse depressive-like behaviors through regulation SIRT1-NF-kB signaling pathway in olfactory bulbectomized rats. Phytother. Res., 2019, 33(5), 1480-1489.
[http://dx.doi.org/10.1002/ptr.6340 ] [PMID: 30848526]
[213]
El-Agamy, D.S.; El-Harbi, K.M.; Khoshhal, S.; Ahmed, N.; Elkablawy, M.A.; Shaaban, A.A.; Abo-Haded, H.M. Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Manag. Res., 2018, 11, 47-61.
[http://dx.doi.org/10.2147/CMAR.S186696 ] [PMID: 30588110]
[214]
Zhu, S.; Tang, S.; Su, F. Dioscin inhibits ischemic strokeinduced inflammation through inhibition of the TLR4/MyD88/NFκB signaling pathway in a rat model. Mol. Med. Rep., 2018, 17(1), 660-666.
[http://dx.doi.org/29115455]
[215]
Sun, X.; Zeng, H.; Wang, Q.; Yu, Q.; Wu, J.; Feng, Y.; Deng, P.; Zhang, H. Glycyrrhizin ameliorates inflammatory pain by inhibiting microglial activation-mediated inflammatory response via blockage of the HMGB1-TLR4-NF-kB pathway. Exp. Cell Res., 2018, 369(1), 112-119.
[http://dx.doi.org/10.1016/j.yexcr.2018.05.012 ] [PMID: 29763588]
[216]
Luan, L.; Cao, L.; Zhu, L.; Sun, J. Diosmetin ameliorates cerebral ischemia/reperfusion injury in pc12 cells through nuclear factor-kB (NF-kB) and nuclear factor erythroid 2-related factor/heme oxygenase-1 (Nrf 2/HO-1) Pathway. Curr. Top. Nutraceutical Res., 2019, 17(3), 322-328.
[http://dx.doi.org/10.37290/ctnr2641-452X.17:322-328]
[217]
Nan, D.; Jin, H.; Deng, J.; Yu, W.; Liu, R.; Sun, W.; Huang, Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress. FASEB J., 2019, 33(9), 10152-10164.
[http://dx.doi.org/10.1096/fj.201900326R ] [PMID: 31184927]
[218]
Gugliandolo, E.; D’Amico, R.; Cordaro, M.; Fusco, R.; Siracusa, R.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. Neuroprotective effect of artesunate in experimental model of traumatic brain injury. Front. Neurol., 2018, 9, 590.
[http://dx.doi.org/10.3389/fneur.2018.00590 ] [PMID: 30108544]
[219]
Dai, W.; Wang, H.; Fang, J.; Zhu, Y.; Zhou, J.; Wang, X.; Zhou, Y.; Zhou, M. Curcumin provides neuroprotection in model of traumatic brain injury via the Nrf2-ARE signaling pathway. Brain Res. Bull., 2018, 140, 65-71.
[http://dx.doi.org/10.1016/j.brainresbull.2018.03.020 ] [PMID: 29626606]
[220]
Caglayan, B.; Kilic, E.; Dalay, A.; Altunay, S.; Tuzcu, M.; Erten, F.; Orhan, C.; Gunal, M.Y.; Yulug, B.; Juturu, V.; Sahin, K. Allyl isothiocyanate attenuates oxidative stress and inflammation by modulating Nrf2/HO-1 and NF-κB pathways in traumatic brain injury in mice. Mol. Biol. Rep., 2019, 46(1), 241-250.
[http://dx.doi.org/10.1007/s11033-018-4465-4 ] [PMID: 30406889]
[221]
Vigont, V.; Gusev, K.; Kaznacheyeva, E. EVP4593 Compound Decreases abnormal store-operated calcium entry in ipscs-based model of Huntington’s Disease. Biophysical, 2018, 114(3), 285a-286a.
[http://dx.doi.org/10.1016/j.bpj.2017.11.1638]
[222]
Wickenberg, A.K.; Hagai, E.L.; Eyal, E. +Teva Pharmaceutical Industries Ltd, assignee. Use of laquinimod to delay huntington's disease progression. United States patent application US 15/794,846
[223]
Pandey, M.; Rajamma, U. Huntington’s disease: the coming of age. J. Genet., 2018, 97(3), 649-664.
[http://dx.doi.org/10.1007/s12041-018-0957-1 ] [PMID: 30027901]
[224]
Mestre, T.A. Recent advances in the therapeutic development for Huntington disease. Parkinsonism Relat. Disord., 2019, 59, 125-130.
[http://dx.doi.org/10.1016/j.parkreldis.2018.12.003 ] [PMID: 30616867]
[225]
Denis, H.L.; Lauruol, F.; Cicchetti, F. Are immunotherapies for Huntington’s disease a realistic option? Mol. Psychiatry, 2019, 24(3), 364-377.
[http://dx.doi.org/10.1038/s41380-018-0021-9 ] [PMID: 29487401]
[226]
Kataria, R.; Sobarzo-Sanchez, E.; Khatkar, A. Role of morin in neurodegenerative diseases: a review. Curr. Top. Med. Chem., 2018, 18(11), 901-907.
[http://dx.doi.org/10.2174/1568026618666180711153416 ] [PMID: 29992884]
[227]
Provost, P. MicroRNAs as a molecular basis for mental retardation, Alzheimer’s and prion diseases. Brain Res., 2010, 1338, 58-66.
[http://dx.doi.org/10.1016/j.brainres.2010.03.069 ] [PMID: 20347722]
[228]
Satoh, J. Molecular network of microRNA targets in Alzheimer’s disease brains. Exp. Neurol., 2012, 235(2), 436-446.
[http://dx.doi.org/10.1016/j.expneurol.2011.09.003 ] [PMID: 21945006]
[229]
da Silva, F.C.; Iop, R.D.; Vietta, G.G.; Kair, D.A.; Gutierres Filho, P.J.; de Alvarenga, J.G.; da Silva, R. microRNAs involved in Parkinson’s disease: A systematic review. Mol. Med. Rep., 2016, 14(5), 4015-4022.
[http://dx.doi.org/10.3892/mmr.2016.5759 ] [PMID: 27666518]
[230]
Nagai, M.; Abe, K.; Okamoto, K.; Itoyama, Y. Identification of alternative splicing forms of GLT-1 mRNA in the spinal cord of amyotrophic lateral sclerosis patients. Neurosci. Lett., 1998, 244(3), 165-168.
[http://dx.doi.org/10.1016/S0304-3940(98)00158-X ] [PMID: 9593515]
[231]
Trotti, D.; Rolfs, A.; Danbolt, N.C.; Brown, R.H., Jr; Hediger, M.A. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat. Neurosci., 1999, 2(5), 427-433.
[http://dx.doi.org/10.1038/8091 ] [PMID: 10321246]
[232]
Chen, S.; Sayana, P.; Zhang, X.; Le, W. Genetics of amyotrophic lateral sclerosis: an update. Mol. Neurodegener., 2013, 8(1), 28.
[http://dx.doi.org/10.1186/1750-1326-8-28 ] [PMID: 23941283]
[233]
Souza, P.V.; Pinto, W.B.; Oliveira, A.S. C9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases. Arq. Neuropsiquiatr., 2015, 73(3), 246-256.
[http://dx.doi.org/10.1590/0004-282X20140229 ] [PMID: 25807132]
[234]
Krasemann, S.; Zerr, I.; Weber, T.; Poser, S.; Kretzschmar, H.; Hunsmann, G.; Bodemer, W. Prion disease associated with a novel nine octapeptide repeat insertion in the PRNP gene. Brain Res. Mol. Brain Res., 1995, 34(1), 173-176.
[http://dx.doi.org/10.1016/0169-328X(95)00175-R ] [PMID: 8750875]
[235]
Baybutt, H.; Manson, J. Characterisation of two promoters for prion protein (PrP) gene expression in neuronal cells. Gene, 1997, 184(1), 125-131.
[http://dx.doi.org/10.1016/S0378-1119(96)00600-2 ] [PMID: 9016962]
[236]
Boakye, P.A.; Olechowski, C.; Rashiq, S.; Verrier, M.J.; Kerr, B.; Witmans, M.; Baker, G.; Joyce, A.; Dick, B.D. A critical review of neurobiological factors involved in the interactions between chronic pain, depression, and sleep disruption. Clin. J. Pain, 2016, 32(4), 327-336.
[http://dx.doi.org/10.1097/AJP.0000000000000260 ] [PMID: 26035521]
[237]
Burak, K.; Lamoureux, L.; Boese, A.; Majer, A.; Saba, R.; Niu, Y.; Frost, K.; Booth, S.A. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptomatic prion disease. Neurobiol. Dis., 2018, 112, 1-13.
[http://dx.doi.org/10.1016/j.nbd.2017.12.011 ] [PMID: 29277556 ]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 10
Year: 2020
Published on: 07 February, 2020
Page: [918 - 935]
Pages: 18
DOI: 10.2174/1570159X18666200207120949

Article Metrics

PDF: 28
HTML: 5
EPUB: 1
PRC: 1