Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Epidermal Growth Factor Receptor and its Trafficking Regulation by Acetylation: Implication in Resistance and Exploring the Newer Therapeutic Avenues in Cancer

Author(s): Manvendra Kumar, Gaurav Joshi, Joydeep Chatterjee and Raj Kumar*

Volume 20, Issue 12, 2020

Page: [1105 - 1123] Pages: 19

DOI: 10.2174/1568026620666200207100227

Price: $65

Abstract

Background: The EGFR is overexpressed in numerous cancers. So, it becomes one of the most favorable drug targets. Single-acting EGFR inhibitors on prolong use induce resistance and side effects. Inhibition of EGFR and/or its interacting proteins by dual/combined/multitargeted therapies can deliver more efficacious drugs with less or no resistance.

Objective: The review delves deeper to cover the aspects of EGFR mediated endocytosis, leading to its trafficking, internalization, and crosstalk(s) with HDACs.

Methods and Results: This review is put forth to congregate relevant literature evidenced on EGFR, its impact on cancer prognosis, inhibitors, and its trafficking regulation by acetylation along with the current strategies involved in targeting these proteins (EGFR and HDACs) successfully by involving dual/hybrid/combination chemotherapy.

Conclusion: The current information on cross-talk of EGFR and HDACs would likely assist researchers in designing and developing dual or multitargeted inhibitors through combining the required pharmacophores.

Keywords: Cancer, EGFR, HDAC, Drug resistance, Endocytosis, Dual/multi inhibitor, Chemotherapy.

Graphical Abstract
[1]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[2]
Zhao, Z.; Bourne, P.E. Progress with covalent small-molecule kinase inhibitors. Drug Discov. Today, 2018, 23(3), 727-735.
[http://dx.doi.org/10.1016/j.drudis.2018.01.035] [PMID: 29337202]
[3]
Wu, P.; Clausen, M.H.; Nielsen, T.E. Allosteric small-molecule kinase inhibitors. Pharmacol. Ther., 2015, 156, 59-68.
[http://dx.doi.org/10.1016/j.pharmthera.2015.10.002] [PMID: 26478442]
[4]
Josso, N.; di Clemente, N. Serine/threonine kinase receptors and ligands. Curr. Opin. Genet. Dev., 1997, 7(3), 371-377.
[http://dx.doi.org/10.1016/S0959-437X(97)80151-7] [PMID: 9229113]
[5]
Ullrich, A.; Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell, 1990, 61(2), 203-212.
[http://dx.doi.org/10.1016/0092-8674(90)90801-K] [PMID: 2158859]
[6]
Capdevila, J.; Elez, E.; Macarulla, T.; Ramos, F.J.; Ruiz-Echarri, M.; Tabernero, J. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat. Rev., 2009, 35(4), 354-363.
[http://dx.doi.org/10.1016/j.ctrv.2009.02.001] [PMID: 19269105]
[7]
Joshi, G.; Singh, P.K.; Negi, A.; Rana, A.; Singh, S.; Kumar, R. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents. Chem. Biol. Interact., 2015, 240, 120-133.
[http://dx.doi.org/10.1016/j.cbi.2015.08.009] [PMID: 26297992]
[8]
Thorne, A.H.; Zanca, C.; Furnari, F. Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro-oncol., 2016, 18(7), 914-918.
[http://dx.doi.org/10.1093/neuonc/nov319] [PMID: 26755074]
[9]
Schiff, B.A.; McMurphy, A.B.; Jasser, S.A.; Younes, M.N.; Doan, D.; Yigitbasi, O.G.; Kim, S.; Zhou, G.; Mandal, M.; Bekele, B.N. Erratum: Epidermal Growth Factor Receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin. Cancer Res., 2004, 10(24), 8594-8602.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2052] [PMID: 31371312]
[10]
Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell. Mol. Life Sci., 2008, 65(10), 1566-1584.
[http://dx.doi.org/10.1007/s00018-008-7440-8] [PMID: 18259690]
[11]
Reynolds, A.R.; Kyprianou, N. Growth factor signalling in prostatic growth: significance in tumour development and therapeutic targeting. Br. J. Pharmacol., 2006, 147(S2)(Suppl. 2), S144-S152.
[http://dx.doi.org/10.1038/sj.bjp.0706635] [PMID: 16465179]
[12]
Tomas, A.; Futter, C.E.; Eden, E.R. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol., 2014, 24(1), 26-34.
[http://dx.doi.org/10.1016/j.tcb.2013.11.002] [PMID: 24295852]
[13]
Bianco, R.; Gelardi, T.; Damiano, V.; Ciardiello, F.; Tortora, G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int. J. Biochem. Cell Biol., 2007, 39(7-8), 1416-1431.
[http://dx.doi.org/10.1016/j.biocel.2007.05.008] [PMID: 17596994]
[14]
Zhang, L.; Zhou, F.; ten Dijke, P. Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer. Trends Biochem. Sci., 2013, 38(12), 612-620.
[http://dx.doi.org/10.1016/j.tibs.2013.10.001] [PMID: 24239264]
[15]
Tournier, C. The 2 faces of JNK signaling in cancer. Genes Cancer, 2013, 4(9-10), 397-400.
[http://dx.doi.org/10.1177/1947601913486349] [PMID: 24349637]
[16]
Rauhala, L.; Hämäläinen, L.; Salonen, P.; Bart, G.; Tammi, M.; Pasonen-Seppänen, S.; Tammi, R. Low dose ultraviolet B irradiation increases hyaluronan synthesis in epidermal keratinocytes via sequential induction of hyaluronan synthases Has1-3 mediated by p38 and Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling. J. Biol. Chem., 2013, 288(25), 17999-18012.
[http://dx.doi.org/10.1074/jbc.M113.472530] [PMID: 23645665]
[17]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[18]
Tebbutt, N.; Pedersen, M.W.; Johns, T.G. Targeting the ERBB family in cancer: couples therapy. Nat. Rev. Cancer, 2013, 13(9), 663-673.
[http://dx.doi.org/10.1038/nrc3559] [PMID: 23949426]
[19]
Eberhard, D.A.; Giaccone, G.; Johnson, B.E. Non-Small-Cell Lung Cancer Working Group. Biomarkers of response to epidermal growth factor receptor inhibitors in Non-Small-Cell Lung Cancer Working Group: standardization for use in the clinical trial setting. J. Clin. Oncol., 2008, 26(6), 983-994.
[http://dx.doi.org/10.1200/JCO.2007.12.9858] [PMID: 18281673]
[20]
Engelman, J.A.; Cantley, L.C. A sweet new role for EGFR in cancer. Cancer Cell, 2008, 13(5), 375-376.
[http://dx.doi.org/10.1016/j.ccr.2008.04.008] [PMID: 18455118]
[21]
Ren, J.; Bollu, L.R.; Su, F.; Gao, G.; Xu, L.; Huang, W.C.; Hung, M.C.; Weihua, Z. EGFR-SGLT1 interaction does not respond to EGFR modulators, but inhibition of SGLT1 sensitizes prostate cancer cells to EGFR tyrosine kinase inhibitors. Prostate, 2013, 73(13), 1453-1461.
[http://dx.doi.org/10.1002/pros.22692] [PMID: 23765757]
[22]
Chauhan, M.; Joshi, G.; Kler, H.; Kashyap, A.; Amrutkar, S.M.; Sharma, P.; Bhilare, K.D.; Banerjee, U.C.; Singh, S.; Kumar, R. Dual inhibitors of epidermal growth factor receptor and topoisomerase IIα derived from a quinoline scaffold. RSC Advances, 2016, 6(81), 77717-77734.
[http://dx.doi.org/10.1039/C6RA15118C]
[23]
Bean, J.; Brennan, C.; Shih, J-Y.; Riely, G.; Viale, A.; Wang, L.; Chitale, D.; Motoi, N.; Szoke, J.; Broderick, S.; Balak, M.; Chang, W.C.; Yu, C.J.; Gazdar, A.; Pass, H.; Rusch, V.; Gerald, W.; Huang, S.F.; Yang, P.C.; Miller, V.; Ladanyi, M.; Yang, C.H.; Pao, W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20932-20937.
[http://dx.doi.org/10.1073/pnas.0710370104] [PMID: 18093943]
[24]
Yun, C-H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K-K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[25]
Wakeling, A.E. Epidermal growth factor receptor tyrosine kinase inhibitors. Curr. Opin. Pharmacol., 2002, 2(4), 382-387.
[http://dx.doi.org/10.1016/S1471-4892(02)00183-2] [PMID: 12127870]
[26]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; Louis, D.N.; Christiani, D.C.; Settleman, J.; Haber, D.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[http://dx.doi.org/10.1056/NEJMoa040938] [PMID: 15118073]
[27]
Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7(3), 169-181.
[http://dx.doi.org/10.1038/nrc2088] [PMID: 17318210]
[28]
Pao, W.; Miller, V.A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol., 2005, 23(11), 2556-2568.
[http://dx.doi.org/10.1200/JCO.2005.07.799] [PMID: 15767641]
[29]
Nurwidya, F.; Murakami, A.; Takahashi, F.; Takahashi, K. Molecular mechanisms contributing to resistance to tyrosine kinase-targeted therapy for non-small cell lung cancer. Cancer Biol. Med., 2012, 9(1), 18-22.
[PMID: 23691449]
[30]
Santini, D.; Loupakis, F.; Vincenzi, B.; Floriani, I.; Stasi, I.; Canestrari, E.; Rulli, E.; Maltese, P.E.; Andreoni, F.; Masi, G.; Graziano, F.; Baldi, G.G.; Salvatore, L.; Russo, A.; Perrone, G.; Tommasino, M.R.; Magnani, M.; Falcone, A.; Tonini, G.; Ruzzo, A. High concordance of KRAS status between primary colorectal tumors and related metastatic sites: implications for clinical practice. Oncologist, 2008, 13(12), 1270-1275.
[http://dx.doi.org/10.1634/theoncologist.2008-0181] [PMID: 19056857]
[31]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[32]
Daub, H.; Specht, K.; Ullrich, A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nat. Rev. Drug Discov., 2004, 3(12), 1001-1010.
[http://dx.doi.org/10.1038/nrd1579] [PMID: 15573099]
[33]
Joshi, G.; Nayyar, H.; Kalra, S.; Sharma, P.; Munshi, A.; Singh, S.; Kumar, R. Pyrimidine containing epidermal growth factor receptor kinase inhibitors: Synthesis and biological evaluation. Chem. Biol. Drug Des., 2017, 90(5), 995-1006.
[http://dx.doi.org/10.1111/cbdd.13027] [PMID: 28544624]
[34]
Takeda, M.; Nakagawa, K. First-and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-naive EGFR mutation-positive non-small cell lung cancer? Int. J. Mol. Sci., 2019, 20(1), 146.
[http://dx.doi.org/10.3390/ijms20010146] [PMID: 30609789]
[35]
Liao, B-C.; Lin, C-C.; Yang, J.C-H. Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr. Opin. Oncol., 2015, 27(2), 94-101.
[http://dx.doi.org/10.1097/CCO.0000000000000164] [PMID: 25611025]
[36]
Tan, C-S.; Kumarakulasinghe, N.B.; Huang, Y-Q.; Ang, Y.L.E.; Choo, J.R-E.; Goh, B-C.; Soo, R.A. Third generation EGFR TKIs: current data and future directions. Mol. Cancer, 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12943-018-0778-0] [PMID: 29455654]
[37]
McCarthy, M.J.; Pagba, C.V.; Prakash, P.; Naji, A.K.; van der Hoeven, D.; Liang, H.; Gupta, A.K.; Zhou, Y.; Cho, K-J.; Hancock, J.F.; Gorfe, A.A. Discovery of high-affinity noncovalent allosteric KRAS inhibitors that disrupt effector binding. ACS Omega, 2019, 4(2), 2921-2930.
[http://dx.doi.org/10.1021/acsomega.8b03308] [PMID: 30842983]
[38]
Gupta, A.K.; Wang, X.; Pagba, C.V.; Prakash, P.; Sarkar-Banerjee, S.; Putkey, J.; Gorfe, A.A. Multi-target, ensemble-based virtual screening yields novel allosteric KRAS inhibitors at high success rate. Chem. Biol. Drug Des., 2019, 94(2), 1441-1456.
[http://dx.doi.org/10.1111/cbdd.13519] [PMID: 30903639]
[39]
Bery, N.; Legg, S.; Debreczeni, J.; Breed, J.; Embrey, K.; Stubbs, C.; Kolasinska-Zwierz, P.; Barrett, N.; Marwood, R.; Watson, J.; Tart, J.; Overman, R.; Miller, A.; Phillips, C.; Minter, R.; Rabbitts, T.H. KRAS-specific inhibition using a DARPin binding to a site in the allosteric lobe. Nat. Commun., 2019, 10(1), 2607.
[http://dx.doi.org/10.1038/s41467-019-10419-2] [PMID: 31197133]
[40]
Karamouzis, M.V.; Konstantinopoulos, P.A.; Papavassiliou, A.G. Targeting MET as a strategy to overcome crosstalk-related resistance to EGFR inhibitors. Lancet Oncol., 2009, 10(7), 709-717.
[http://dx.doi.org/10.1016/S1470-2045(09)70137-8] [PMID: 19573800]
[41]
Zucali, P.A.; Ruiz, M.G.; Giovannetti, E.; Destro, A.; Varella-Garcia, M.; Floor, K.; Ceresoli, G.L.; Rodriguez, J.A.; Garassino, I.; Comoglio, P.; Roncalli, M.; Santoro, A.; Giaccone, G. Role of cMET expression in non-small-cell lung cancer patients treated with EGFR tyrosine kinase inhibitors. Ann. Oncol., 2008, 19(9), 1605-1612.
[http://dx.doi.org/10.1093/annonc/mdn240] [PMID: 18467317]
[42]
Wang, Q.; Yang, S.; Wang, K.; Sun, S-Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol., 2019, 12(1), 63.
[http://dx.doi.org/10.1186/s13045-019-0759-9] [PMID: 31227004]
[43]
Cheng, M.; Yu, X.; Lu, K.; Xie, L.; Wang, L.; Meng, F.; Han, X.; Chen, X.; Liu, J.; Xiong, Y.; Jin, J. Discovery of Potent and Selective Epidermal Growth Factor Receptor (EGFR) Bifunctional Small-Molecule Degraders. J. Med. Chem., 2020.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01566] [PMID: 31895569]
[44]
Li, D.; Shimamura, T.; Ji, H.; Chen, L.; Haringsma, H.J.; McNamara, K.; Liang, M-C.; Perera, S.A.; Zaghlul, S.; Borgman, C.L.; Kubo, S.; Takahashi, M.; Sun, Y.; Chirieac, L.R.; Padera, R.F.; Lindeman, N.I.; Jänne, P.A.; Thomas, R.K.; Meyerson, M.L.; Eck, M.J.; Engelman, J.A.; Shapiro, G.I.; Wong, K.K. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell, 2007, 12(1), 81-93.
[http://dx.doi.org/10.1016/j.ccr.2007.06.005] [PMID: 17613438]
[45]
Nakagawa, T.; Takeuchi, S.; Yamada, T.; Nanjo, S.; Ishikawa, D.; Sano, T.; Kita, K.; Nakamura, T.; Matsumoto, K.; Suda, K.; Mitsudomi, T.; Sekido, Y.; Uenaka, T.; Yano, S. Combined therapy with mutant-selective EGFR inhibitor and Met kinase inhibitor for overcoming erlotinib resistance in EGFR-mutant lung cancer. Mol. Cancer Ther., 2012, 11(10), 2149-2157.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0195] [PMID: 22844075]
[46]
Goudar, R.K.; Shi, Q.; Hjelmeland, M.D.; Keir, S.T.; McLendon, R.E.; Wikstrand, C.J.; Reese, E.D.; Conrad, C.A.; Traxler, P.; Lane, H.A.; Reardon, D.A.; Cavenee, W.K.; Wang, X.F.; Bigner, D.D.; Friedman, H.S.; Rich, J.N. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol. Cancer Ther., 2005, 4(1), 101-112.
[PMID: 15657358]
[47]
Doherty, L.; Gigas, D.C.; Kesari, S.; Drappatz, J.; Kim, R.; Zimmerman, J.; Ostrowsky, L.; Wen, P.Y. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology, 2006, 67(1), 156-158.
[http://dx.doi.org/10.1212/01.wnl.0000223844.77636.29] [PMID: 16832099]
[48]
Takabatake, D.; Fujita, T.; Shien, T.; Kawasaki, K.; Taira, N.; Yoshitomi, S.; Takahashi, H.; Ishibe, Y.; Ogasawara, Y.; Doihara, H. Tumor inhibitory effect of gefitinib (ZD1839, Iressa) and taxane combination therapy in EGFR-overexpressing breast cancer cell lines (MCF7/ADR, MDA-MB-231). Int. J. Cancer, 2007, 120(1), 181-188.
[http://dx.doi.org/10.1002/ijc.22187] [PMID: 17036319]
[49]
Tong, C.W.S.; Wu, W.K.K.; Loong, H.H.F.; Cho, W.C.S.; To, K.K.W. Drug combination approach to overcome resistance to EGFR tyrosine kinase inhibitors in lung cancer. Cancer Lett., 2017, 405, 100-110.
[http://dx.doi.org/10.1016/j.canlet.2017.07.023] [PMID: 28774798]
[50]
Park, J.H.; Choi, Y.J.; Kim, S.Y.; Lee, J-E.; Sung, K.J.; Park, S.; Kim, W.S.; Song, J.S.; Choi, C-M.; Sung, Y.H.; Rho, J.K.; Lee, J.C. Activation of the IGF1R pathway potentially mediates acquired resistance to mutant-selective 3rd-generation EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget, 2016, 7(16), 22005-22015.
[http://dx.doi.org/10.18632/oncotarget.8013] [PMID: 26980747]
[51]
Reddy, P.S.; Lokhande, K.B.; Nagar, S.; Reddy, V.D.; Murthy, P.S.; Swamy, K.V. Molecular modeling, docking, dynamics and simulation of Gefitinib and its derivatives with EGFR in non-small cell lung cancer. Curr Comput Aided Drug Des, 2018, 14(3), 246-252.
[http://dx.doi.org/10.2174/1573409914666180228111433] [PMID: 29493460]
[52]
Chauhan, J.S.; Dhanda, S.K.; Singla, D.; Agarwal, S.M.; Raghava, G.P.; Consortium, O.S.D.D. Open Source Drug Discovery Consortium. QSAR-based models for designing quinazoline/imidazothiazoles/pyrazolopyrimidines based inhibitors against wild and mutant EGFR. PLoS One, 2014, 9(7) e101079
[http://dx.doi.org/10.1371/journal.pone.0101079] [PMID: 24992720]
[53]
Tantry, S.J.; Markad, S.D.; Shinde, V.; Bhat, J.; Balakrishnan, G.; Gupta, A.K.; Ambady, A.; Raichurkar, A.; Kedari, C.; Sharma, S.; Mudugal, N.V.; Narayan, A.; Naveen Kumar, C.N.; Nanduri, R.; Bharath, S.; Reddy, J.; Panduga, V.; Prabhakar, K.R.; Kandaswamy, K.; Saralaya, R.; Kaur, P.; Dinesh, N.; Guptha, S.; Rich, K.; Murray, D.; Plant, H.; Preston, M.; Ashton, H.; Plant, D.; Walsh, J.; Alcock, P.; Naylor, K.; Collier, M.; Whiteaker, J.; McLaughlin, R.E.; Mallya, M.; Panda, M.; Rudrapatna, S.; Ramachandran, V.; Shandil, R.; Sambandamurthy, V.K.; Mdluli, K.; Cooper, C.B.; Rubin, H.; Yano, T.; Iyer, P.; Narayanan, S.; Kavanagh, S.; Mukherjee, K.; Balasubramanian, V.; Hosagrahara, V.P.; Solapure, S.; Ravishankar, S.; Hameed P, S.S. Discovery of imidazo [1, 2-a] pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J. Med. Chem., 2017, 60(4), 1379-1399.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01358] [PMID: 28075132]
[54]
Gupta, A.K.; Bhunia, S.S.; Balaramnavar, V.M.; Saxena, A.K. Pharmacophore modelling, molecular docking and virtual screening for EGFR (HER 1) tyrosine kinase inhibitors. SAR QSAR Environ. Res., 2011, 22(3), 239-263.
[http://dx.doi.org/10.1080/1062936X.2010.548830] [PMID: 21400356]
[55]
Yadav, I.S.; Nandekar, P.P.; Srivastavaa, S.; Sangamwar, A.; Chaudhury, A.; Agarwal, S.M. Ensemble docking and molecular dynamics identify knoevenagel curcumin derivatives with potent anti-EGFR activity. Gene, 2014, 539(1), 82-90.
[http://dx.doi.org/10.1016/j.gene.2014.01.056] [PMID: 24491504]
[56]
Ansari, A.J.; Joshi, G.; Yadav, U.P.; Maurya, A.K.; Agnihotri, V.K.; Kalra, S.; Kumar, R.; Singh, S.; Sawant, D.M. Exploration of Pd-catalysed four-component tandem reaction for one-pot assembly of pyrazolo[1,5-c]quinazolines as potential EGFR inhibitors. Bioorg. Chem., 2019, 93 103314
[http://dx.doi.org/10.1016/j.bioorg.2019.103314] [PMID: 31590041]
[57]
Madshus, I.H.; Stang, E. Internalization and intracellular sorting of the EGF receptor: a model for understanding the mechanisms of receptor trafficking. J. Cell Sci., 2009, 122(Pt 19), 3433-3439.
[http://dx.doi.org/10.1242/jcs.050260] [PMID: 19759283]
[58]
Miaczynska, M. Effects of membrane trafficking on signaling by receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol., 2013, 5(11) a009035
[http://dx.doi.org/10.1101/cshperspect.a009035] [PMID: 24186066]
[59]
Jorissen, R.N.; Walker, F.; Pouliot, N. In: The EGF receptor family; Elsevier: Amsterdam, 2003; pp. 33-55.
[http://dx.doi.org/10.1016/B978-012160281-9/50004-9]
[60]
Deribe, Y.L.; Wild, P.; Chandrashaker, A.; Curak, J.; Schmidt, M.H.H.; Kalaidzidis, Y.; Milutinovic, N.; Kratchmarova, I.; Buerkle, L.; Fetchko, M.J.; Schmidt, P.; Kittanakom, S.; Brown, K.R.; Jurisica, I.; Blagoev, B.; Zerial, M.; Stagljar, I.; Dikic, I. Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Sci. Signal., 2009, 2(102), ra84-ra84.
[PMID: 20029029]
[61]
Sorkin, A.; von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol., 2009, 10(9), 609-622.
[http://dx.doi.org/10.1038/nrm2748] [PMID: 19696798]
[62]
Goh, L.K.; Sorkin, A. Endocytosis of receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol., 2013, 5(5) a017459
[http://dx.doi.org/10.1101/cshperspect.a017459] [PMID: 23637288]
[63]
Wei, T-T.; Lin, Y-C.; Lin, P-H.; Shih, J-Y.; Chou, C-W.; Huang, W-J.; Yang, Y-C.; Hsiao, P-W.; Chen, C-C. Induction of c-Cbl contributes to anti-cancer effects of HDAC inhibitor in lung cancer. Oncotarget, 2015, 6(14), 12481-12492.
[http://dx.doi.org/10.18632/oncotarget.3489] [PMID: 25980579]
[64]
Pickart, C.M.; Eddins, M.J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta, 2004, 1695(1-3), 55-72.
[http://dx.doi.org/10.1016/j.bbamcr.2004.09.019] [PMID: 15571809]
[65]
Wilkinson, K.D. The discovery of ubiquitin-dependent proteolysis. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15280-15282.
[http://dx.doi.org/10.1073/pnas.0504842102] [PMID: 16230621]
[66]
Kerscher, O.; Felberbaum, R.; Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol., 2006, 22, 159-180.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010605.093503] [PMID: 16753028]
[67]
Boyault, C.; Sadoul, K.; Pabion, M.; Khochbin, S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene, 2007, 26(37), 5468-5476.
[http://dx.doi.org/10.1038/sj.onc.1210614] [PMID: 17694087]
[68]
Sigismund, S.; Argenzio, E.; Tosoni, D.; Cavallaro, E.; Polo, S.; Di Fiore, P.P. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev. Cell, 2008, 15(2), 209-219.
[http://dx.doi.org/10.1016/j.devcel.2008.06.012] [PMID: 18694561]
[69]
Hanada, M.; Feng, J.; Hemmings, B.A. Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim. Biophys. Acta, 2004, 1697(1-2), 3-16.
[http://dx.doi.org/10.1016/j.bbapap.2003.11.009] [PMID: 15023346]
[70]
Jiang, X.; Huang, F.; Marusyk, A.; Sorkin, A. Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol. Biol. Cell, 2003, 14(3), 858-870.
[http://dx.doi.org/10.1091/mbc.e02-08-0532] [PMID: 12631709]
[71]
Alwan, H.A.; van Zoelen, E.J.; van Leeuwen, J.E. Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J. Biol. Chem., 2003, 278(37), 35781-35790.
[http://dx.doi.org/10.1074/jbc.M301326200] [PMID: 12829707]
[72]
Lo, H.W.; Hung, M-C. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br. J. Cancer, 2006, 94(2), 184-188.
[http://dx.doi.org/10.1038/sj.bjc.6602941] [PMID: 16434982]
[73]
Soppa, J. Protein acetylation in archaea, bacteria, and eukaryotes. Archaea, 2010, 2010, 1-9.
[http://dx.doi.org/10.1155/2010/820681] [PMID: 20885971]
[74]
Song, H.; Li, C-W.; Labaff, A.M.; Lim, S-O.; Li, L-Y.; Kan, S-F.; Chen, Y.; Zhang, K.; Lang, J.; Xie, X.; Wang, Y.; Huo, L.F.; Hsu, S.C.; Chen, X.; Zhao, Y.; Hung, M.C. Acetylation of EGF receptor contributes to tumor cell resistance to histone deacetylase inhibitors. Biochem. Biophys. Res. Commun., 2011, 404(1), 68-73.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.064] [PMID: 21094134]
[75]
Gao, Y.S.; Hubbert, C.C.; Yao, T-P. The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J. Biol. Chem., 2010, 285(15), 11219-11226.
[http://dx.doi.org/10.1074/jbc.M109.042754] [PMID: 20133936]
[76]
Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363, 15-23.
[http://dx.doi.org/10.1016/j.gene.2005.09.010] [PMID: 16289629]
[77]
Liu, W.; Fan, L.X.; Zhou, X.; Sweeney, W.E., Jr; Avner, E.D.; Li, X. HDAC6 regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation in renal epithelial cells. PLoS One, 2012, 7(11) e49418
[http://dx.doi.org/10.1371/journal.pone.0049418] [PMID: 23152903]
[78]
Science’s, STKE. Acetylation versus ubiquitination. Sci. Signal., 2003, 2003(175), tw117-TW117.
[http://dx.doi.org/10.1126/stke.2003.175.tw117]
[79]
Song, H. Defining the Role of EGFR Acetylation in Cellular Processes: Clinical Implications. PhD Thesis, University of Texas Graduate School of Biomedical Sciences at Houston: Texas, May. 2011.
[80]
Pflum, M.K.H.; Tong, J.K.; Lane, W.S.; Schreiber, S.L. Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J. Biol. Chem., 2001, 276(50), 47733-47741.
[http://dx.doi.org/10.1074/jbc.M105590200] [PMID: 11602581]
[81]
Tsuda, M.; Takahashi, S.; Takahashi, Y.; Asahara, H. Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J. Biol. Chem., 2003, 278(29), 27224-27229.
[http://dx.doi.org/10.1074/jbc.M303471200] [PMID: 12732631]
[82]
Wei, J.; Dong, S.; Bowser, R.K.; Khoo, A.; Zhang, L.; Jacko, A.M.; Zhao, Y.; Zhao, J. Regulation of the ubiquitylation and deubiquitylation of CREB-binding protein modulates histone acetylation and lung inflammation. Sci. Signal., 2017, 10(483) eaak9660
[http://dx.doi.org/10.1126/scisignal.aak9660] [PMID: 28611184]
[83]
Marks, P.A.; Xu, W.; Namdar, M. U.S. Patent No. 9,539,272. 2017.
[84]
Li, G.; Jiang, H.; Chang, M.; Xie, H.; Hu, L. HDAC6 α-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J. Neurol. Sci., 2011, 304(1-2), 1-8.
[http://dx.doi.org/10.1016/j.jns.2011.02.017] [PMID: 21377170]
[85]
Miaczynska, M.; Pelkmans, L.; Zerial, M. Not just a sink: endosomes in control of signal transduction. Curr. Opin. Cell Biol., 2004, 16(4), 400-406.
[http://dx.doi.org/10.1016/j.ceb.2004.06.005] [PMID: 15261672]
[86]
de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[87]
Soumyanarayanan, U.; Ramanujulu, P.M.; Mustafa, N.; Haider, S.; Fang Nee, A.H.; Tong, J.X.; Tan, K.S.W.; Chng, W.J.; Dymock, B.W. Discovery of a potent histone deacetylase (HDAC) 3/6 selective dual inhibitor. Eur. J. Med. Chem., 2019, 184 111755
[http://dx.doi.org/10.1016/j.ejmech.2019.111755] [PMID: 31627059]
[88]
Hai, Y.; Christianson, D.W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol., 2016, 12(9), 741-747.
[http://dx.doi.org/10.1038/nchembio.2134] [PMID: 27454933]
[89]
Williams, K.A.; Zhang, M.; Xiang, S.; Hu, C.; Wu, J-Y.; Zhang, S.; Ryan, M.; Cox, A.D.; Der, C.J.; Fang, B.; Koomen, J.; Haura, E.; Bepler, G.; Nicosia, S.V.; Matthias, P.; Wang, C.; Bai, W.; Zhang, X. Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration. J. Biol. Chem., 2013, 288(46), 33156-33170.
[http://dx.doi.org/10.1074/jbc.M113.472506] [PMID: 24089523]
[90]
Yang, X-J.; Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol., 2008, 9(3), 206-218.
[http://dx.doi.org/10.1038/nrm2346] [PMID: 18292778]
[91]
Witt, O.; Deubzer, H.E.; Milde, T.; Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett., 2009, 277(1), 8-21.
[http://dx.doi.org/10.1016/j.canlet.2008.08.016] [PMID: 18824292]
[92]
Peserico, A.; Simone, C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J. Biomed. Biotechnol., 2011, 2011 371832
[http://dx.doi.org/10.1155/2011/371832] [PMID: 21151613]
[93]
Santos‐Barriopedro, I.; Raurell‐Vila, H.; Vaquero, A. The role of hats and hdacs in cell physiology and disease. In: Gene Regul, Epigenet. Horm. Signaling; Wiley-Blackwel: Hoboken, 2017; pp. 101-136.
[http://dx.doi.org/10.1002/9783527697274.ch4]
[94]
Buendia Duque, M.; Pinheiro, K.V.; Thomaz, A.; da Silva, C.A.; Freire, N.H.; Brunetto, A.T.; Schwartsmann, G.; Jaeger, M.; de Farias, C.B.; Roesler, R. Combined inhibition of hdac and egfr reduces viability and proliferation and enhances stat3 mrna expression in glioblastoma cells. J. Mol. Neurosci., 2019, 68(1), 49-57.
[http://dx.doi.org/10.1007/s12031-019-01280-5] [PMID: 30887411]
[95]
Ahsan, A.; Ramanand, S.G.; Whitehead, C.; Hiniker, S.M.; Rehemtulla, A.; Pratt, W.B.; Jolly, S.; Gouveia, C.; Truong, K.; Van Waes, C.; Ray, D.; Lawrence, T.S.; Nyati, M.K. Wild-type EGFR is stabilized by direct interaction with HSP90 in cancer cells and tumors. Neoplasia, 2012, 14(8), 670-677.
[http://dx.doi.org/10.1593/neo.12986] [PMID: 22952420]
[96]
Zhang, W.; Peyton, M.; Xie, Y.; Soh, J.; Minna, J.D.; Gazdar, A.F.; Frenkel, E.P. Histone deacetylase inhibitor romidepsin enhances anti-tumor effect of erlotinib in non-small cell lung cancer (NSCLC) cell lines. J. Thorac. Oncol., 2009, 4(2), 161-166.
[http://dx.doi.org/10.1097/JTO.0b013e318194fae7] [PMID: 19179890]
[97]
Gilbert, R.E.; Huang, Q.; Thai, K.; Advani, S.L.; Lee, K.; Yuen, D.A.; Connelly, K.A.; Advani, A. Histone deacetylase inhibition attenuates diabetes-associated kidney growth: potential role for epigenetic modification of the epidermal growth factor receptor. Kidney Int., 2011, 79(12), 1312-1321.
[http://dx.doi.org/10.1038/ki.2011.39] [PMID: 21389970]
[98]
Chou, C-W.; Wu, M-S.; Huang, W-C.; Chen, C-C. HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PLoS One, 2011, 6(3) e18087
[http://dx.doi.org/10.1371/journal.pone.0018087] [PMID: 21464950]
[99]
Zhu, J.; Shimizu, E.; Zhang, X.; Partridge, N.C.; Qin, L. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix. J. Cell. Biochem., 2011, 112(7), 1749-1760.
[http://dx.doi.org/10.1002/jcb.23094] [PMID: 21381079]
[100]
Xu, Y.; Shi, Y.; Yuan, Q.; Liu, X.; Yan, B.; Chen, L.; Tao, Y.; Cao, Y. Epstein-Barr Virus encoded LMP1 regulates cyclin D1 promoter activity by nuclear EGFR and STAT3 in CNE1 cells. J. Exp. Clin. Cancer Res., 2013, 32(1), 90.
[http://dx.doi.org/10.1186/1756-9966-32-90] [PMID: 24499623]
[101]
Kim, Y.; Kim, H.; Park, D.; Lee, H.; Lee, Y.S.; Choe, J.; Kim, Y.M.; Jeon, D.; Jeoung, D. The pentapeptide Gly-Thr-Gly-Lys-Thr confers sensitivity to anti-cancer drugs by inhibition of CAGE binding to GSK3β and decreasing the expression of cyclinD1. Oncotarget, 2017, 8(8), 13632-13651.
[http://dx.doi.org/10.18632/oncotarget.14621] [PMID: 28099142]
[102]
Por, E.; Byun, H-J.; Lee, E-J.; Lim, J-H.; Jung, S-Y.; Park, I.; Kim, Y-M.; Jeoung, D-I.; Lee, H. The cancer/testis antigen CAGE with oncogenic potential stimulates cell proliferation by up-regulating cyclins D1 and E in an AP-1- and E2F-dependent manner. J. Biol. Chem., 2010, 285(19), 14475-14485.
[http://dx.doi.org/10.1074/jbc.M109.084400] [PMID: 20220142]
[103]
Kim, H.; Kim, Y.; Goh, H.; Jeoung, D. Histone Deacetylase-3/CAGE Axis targets EGFR signaling and regulates the response to anti-Cancer drugs. Mol. Cells, 2016, 39(3), 229-241.
[http://dx.doi.org/10.14348/molcells.2016.2244] [PMID: 26883907]
[104]
Caron, C.; Boyault, C.; Khochbin, S. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. BioEssays, 2005, 27(4), 408-415.
[http://dx.doi.org/10.1002/bies.20210] [PMID: 15770681]
[105]
Wang, Z.; Hu, P.; Tang, F.; Xie, C. HDAC6-mediated EGFR stabilization and activation restrict cell response to sorafenib in non-small cell lung cancer cells. Med. Oncol., 2016, 33(5), 50.
[http://dx.doi.org/10.1007/s12032-016-0765-5] [PMID: 27090797]
[106]
Reguart, N.; Rosell, R.; Cardenal, F.; Cardona, A.F.; Isla, D.; Palmero, R.; Moran, T.; Rolfo, C.; Pallarès, M.C.; Insa, A.; Carcereny, E.; Majem, M.; De Castro, J.; Queralt, C.; Molina, M.A.; Taron, M. Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression. Lung Cancer, 2014, 84(2), 161-167.
[http://dx.doi.org/10.1016/j.lungcan.2014.02.011] [PMID: 24636848]
[107]
Dong, H.; Yin, H.; Zhao, C.; Cao, J.; Xu, W.; Zhang, Y. Design, Synthesis and Biological Evaluation of Novel Osimertinib-Based HDAC and EGFR Dual Inhibitors. Molecules, 2019, 24(13), 2407.
[http://dx.doi.org/10.3390/molecules24132407] [PMID: 31261881]
[108]
Dirks, A.J.; Hofer, T.; Marzetti, E.; Pahor, M.; Leeuwenburgh, C. Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res. Rev., 2006, 5(2), 179-195.
[http://dx.doi.org/10.1016/j.arr.2006.03.002] [PMID: 16647308]
[109]
Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim. Biophys. Acta, 2006, 1757(5-6), 639-647.
[http://dx.doi.org/10.1016/j.bbabio.2006.03.016] [PMID: 16678785]
[110]
Ghibelli, L.; Diederich, M. Multistep and multitask Bax activation. Mitochondrion, 2010, 10(6), 604-613.
[http://dx.doi.org/10.1016/j.mito.2010.08.003] [PMID: 20709625]
[111]
Chavan, A.V.; Somani, R.R. HDAC inhibitors - new generation of target specific treatment. Mini Rev. Med. Chem., 2010, 10(13), 1263-1276.
[http://dx.doi.org/10.2174/13895575110091263] [PMID: 20701588]
[112]
Castle, V.; Kwok, R.; Opipari, A.; Subramanian, C. Ku70 acetylation in neuroblastoma pathogenesis and therapy. Trans. Am. Clin. Climatol. Assoc., 2010, 121, 183-191.
[PMID: 20697560]
[113]
Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[114]
Busser, B.; Sancey, L.; Josserand, V.; Niang, C.; Khochbin, S.; Favrot, M.C.; Coll, J-L.; Hurbin, A. Amphiregulin promotes resistance to gefitinib in nonsmall cell lung cancer cells by regulating Ku70 acetylation. Mol. Ther., 2010, 18(3), 536-543.
[http://dx.doi.org/10.1038/mt.2009.227] [PMID: 19826407]
[115]
Cohen, H.Y.; Lavu, S.; Bitterman, K.J.; Hekking, B.; Imahiyerobo, T.A.; Miller, C.; Frye, R.; Ploegh, H.; Kessler, B.M.; Sinclair, D.A. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell, 2004, 13(5), 627-638.
[http://dx.doi.org/10.1016/S1097-2765(04)00094-2] [PMID: 15023334]
[116]
Sawada, M.; Sun, W.; Hayes, P.; Leskov, K.; Boothman, D.A.; Matsuyama, S. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat. Cell Biol., 2003, 5(4), 320-329.
[http://dx.doi.org/10.1038/ncb950] [PMID: 12652308]
[117]
Subramanian, C.; Jarzembowski, J.A.; Opipari, A.W., Jr; Castle, V.P.; Kwok, R.P. HDAC6 deacetylates Ku70 and regulates Ku70-Bax binding in neuroblastoma. Neoplasia, 2011, 13(8), 726-734.
[http://dx.doi.org/10.1593/neo.11558] [PMID: 21847364]
[118]
Lee, T.G.; Jeong, E.H.; Kim, S.Y.; Kim, H.R.; Kim, C.H. The combination of irreversible EGFR TKIs and SAHA induces apoptosis and autophagy-mediated cell death to overcome acquired resistance in EGFR T790M-mutated lung cancer. Int. J. Cancer, 2015, 136(11), 2717-2729.
[http://dx.doi.org/10.1002/ijc.29320] [PMID: 25382705]
[119]
Fung, C.; Chen, X.; Grandis, J.R.; Duvvuri, U. EGFR tyrosine kinase inhibition induces autophagy in cancer cells. Cancer Biol. Ther., 2012, 13(14), 1417-1424.
[http://dx.doi.org/10.4161/cbt.22002] [PMID: 22954701]
[120]
Henson, E.; Chen, Y.; Gibson, S. EGFR family members’ regulation of autophagy is at a crossroads of cell survival and death in cancer. Cancers (Basel), 2017, 9(4), 27.
[http://dx.doi.org/10.3390/cancers9040027] [PMID: 28338617]
[121]
Shao, Y.; Gao, Z.; Marks, P.A.; Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA, 2004, 101(52), 18030-18035.
[http://dx.doi.org/10.1073/pnas.0408345102] [PMID: 15596714]
[122]
Gammoh, N.; Lam, D.; Puente, C.; Ganley, I.; Marks, P.A.; Jiang, X. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc. Natl. Acad. Sci. USA, 2012, 109(17), 6561-6565.
[http://dx.doi.org/10.1073/pnas.1204429109] [PMID: 22493260]
[123]
Wu, N.; Zhu, Y.; Xu, X.; Zhu, Y.; Song, Y.; Pang, L.; Chen, Z. The anti-tumor effects of dual PI3K/mTOR inhibitor BEZ235 and histone deacetylase inhibitor Trichostatin A on inducing autophagy in esophageal squamous cell carcinoma. J. Cancer, 2018, 9(6), 987-997.
[http://dx.doi.org/10.7150/jca.22861] [PMID: 29581778]
[124]
Sequist, L.V.; Gettinger, S.; Senzer, N.N.; Martins, R.G.; Jänne, P.A.; Lilenbaum, R.; Gray, J.E.; Iafrate, A.J.; Katayama, R.; Hafeez, N.; Sweeney, J.; Walker, J.R.; Fritz, C.; Ross, R.W.; Grayzel, D.; Engelman, J.A.; Borger, D.R.; Paez, G.; Natale, R. Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(33), 4953-4960.
[http://dx.doi.org/10.1200/JCO.2010.30.8338] [PMID: 20940188]
[125]
Sawai, A.; Chandarlapaty, S.; Greulich, H.; Gonen, M.; Ye, Q.; Arteaga, C.L.; Sellers, W.; Rosen, N.; Solit, D.B. Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res., 2008, 68(2), 589-596.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1570] [PMID: 18199556]
[126]
Kobayashi, N.; Toyooka, S.; Soh, J.; Yamamoto, H.; Dote, H.; Kawasaki, K.; Otani, H.; Kubo, T.; Jida, M.; Ueno, T.; Ando, M.; Ogino, A.; Kiura, K.; Miyoshi, S. The anti-proliferative effect of heat shock protein 90 inhibitor, 17-DMAG, on non-small-cell lung cancers being resistant to EGFR tyrosine kinase inhibitor. Lung Cancer, 2012, 75(2), 161-166.
[http://dx.doi.org/10.1016/j.lungcan.2011.04.022] [PMID: 21767894]
[127]
Zhang, M.; Zhang, X.; Bai, C-X.; Chen, J.; Wei, M.Q. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells. Acta Pharmacol. Sin., 2004, 25(1), 61-67.
[PMID: 14704124]
[128]
Bruzzese, F.; Leone, A.; Rocco, M.; Carbone, C.; Piro, G.; Caraglia, M.; Di Gennaro, E.; Budillon, A. HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J. Cell. Physiol., 2011, 226(9), 2378-2390.
[http://dx.doi.org/10.1002/jcp.22574] [PMID: 21660961]
[129]
Leone, A.; Roca, M.S.; Ciardiello, C.; Terranova-Barberio, M.; Vitagliano, C.; Ciliberto, G.; Mancini, R.; Di Gennaro, E.; Bruzzese, F.; Budillon, A. Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway. Free Radic. Biol. Med., 2015, 89, 287-299.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.07.155] [PMID: 26409771]
[130]
Tanimoto, A.; Takeuchi, S.; Arai, S.; Fukuda, K.; Yamada, T.; Roca, X.; Ong, S.T.; Yano, S. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer. Clin. Cancer Res., 2017, 23(12), 3139-3149.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2271] [PMID: 27986747]
[131]
Nakagawa, T.; Takeuchi, S.; Yamada, T.; Ebi, H.; Sano, T.; Nanjo, S.; Ishikawa, D.; Sato, M.; Hasegawa, Y.; Sekido, Y.; Yano, S. EGFR-TKI resistance due to BIM polymorphism can be circumvented in combination with HDAC inhibition. Cancer Res., 2013, 73(8), 2428-2434.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3479] [PMID: 23382048]
[132]
Witta, S.E.; Gemmill, R.M.; Hirsch, F.R.; Coldren, C.D.; Hedman, K.; Ravdel, L.; Helfrich, B.; Dziadziuszko, R.; Chan, D.C.; Sugita, M.; Chan, Z.; Baron, A.; Franklin, W.; Drabkin, H.A.; Girard, L.; Gazdar, A.F.; Minna, J.D.; Bunn, P.A., Jr Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res., 2006, 66(2), 944-950.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1988] [PMID: 16424029]
[133]
Park, S.J.; Kim, S-M.; Moon, J-H.; Kim, J.H.; Shin, J-S.; Hong, S-W.; Shin, Y.J.; Lee, D-H.; Lee, E.Y.; Hwang, I-Y.; Kim, J.E.; Kim, K.P.; Hong, Y.S.; Lee, W.K.; Choi, E.K.; Lee, J.S.; Jin, D.H.; Kim, T.W. SAHA, an HDAC inhibitor, overcomes erlotinib resistance in human pancreatic cancer cells by modulating E-cadherin. Tumour Biol., 2016, 37(4), 4323-4330.
[http://dx.doi.org/10.1007/s13277-015-4216-2] [PMID: 26493999]
[134]
Gujral, T.S.; Peshkin, L.; Kirschner, M.W. Exploiting polypharmacology for drug target deconvolution. Proc. Natl. Acad. Sci. USA, 2014, 111(13), 5048-5053.
[http://dx.doi.org/10.1073/pnas.1403080111] [PMID: 24707051]
[135]
Cai, X.; Zhai, H-X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C-J.; Bao, R.; Qian, C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J. Med. Chem., 2010, 53(5), 2000-2009.
[http://dx.doi.org/10.1021/jm901453q] [PMID: 20143778]
[136]
Denny, W.A.; Baguley, B.C. Dual topoisomerase I/II inhibitors in cancer therapy. Curr. Top. Med. Chem., 2003, 3(3), 339-353.
[http://dx.doi.org/10.2174/1568026033452555] [PMID: 12570767]
[137]
Gray, J.; Cubitt, C.L.; Zhang, S.; Chiappori, A. Combination of HDAC and topoisomerase inhibitors in small cell lung cancer. Cancer Biol. Ther., 2012, 13(8), 614-622.
[http://dx.doi.org/10.4161/cbt.19848] [PMID: 22441819]
[138]
Guerrant, W.; Patil, V.; Canzoneri, J.C.; Oyelere, A.K. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J. Med. Chem., 2012, 55(4), 1465-1477.
[http://dx.doi.org/10.1021/jm200799p] [PMID: 22260166]
[139]
Guerrant, W.; Patil, V.; Canzoneri, J.C.; Yao, L-P.; Hood, R.; Oyelere, A.K. Dual-acting histone deacetylase-topoisomerase I inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(11), 3283-3287.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.108] [PMID: 23622981]
[140]
He, S.; Dong, G.; Wang, Z.; Chen, W.; Huang, Y.; Li, Z.; Jiang, Y.; Liu, N.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Discovery of novel multiacting topoisomerase I/II and histone deacetylase inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 239-243.
[http://dx.doi.org/10.1021/ml500327q] [PMID: 25815139]
[141]
Seo, Y.H. Dual Inhibitors Against Topoisomerases and Histone Deacetylases. J. Cancer Prev., 2015, 20(2), 85-91.
[http://dx.doi.org/10.15430/JCP.2015.20.2.85] [PMID: 26151040]
[142]
Von Stein, O.; Zargari, A.; Karlsson, Å.; Von Stein, P.; Kouznetsov, N. U.S. Patent Application No. 12/999,395. 2009.
[143]
Riolo, M.T.; Cooper, Z.A.; Holloway, M.P.; Cheng, Y.; Bianchi, C.; Yakirevich, E.; Ma, L.; Chin, Y.E.; Altura, R.A. Histone deacetylase 6 (HDAC6) deacetylates survivin for its nuclear export in breast cancer. J. Biol. Chem., 2012, 287(14), 10885-10893.
[http://dx.doi.org/10.1074/jbc.M111.308791] [PMID: 22334690]
[144]
Wei, Y.; Zhou, F.; Lin, Z.; Shi, L.; Huang, A.; Liu, T.; Yu, D.; Wu, G. Antitumor effects of histone deacetylase inhibitor suberoylanilide hydroxamic acid in epidermal growth factor receptor-mutant non-small-cell lung cancer lines in vitro and in vivo. Anticancer Drugs, 2018, 29(3), 262-270.
[http://dx.doi.org/10.1097/CAD.0000000000000597] [PMID: 29356692]
[145]
Stazi, G.; Fioravanti, R.; Mai, A.; Mattevi, A.; Valente, S. Histone deacetylases as an epigenetic pillar for the development of hybrid inhibitors in cancer. Curr. Opin. Chem. Biol., 2019, 50, 89-100.
[http://dx.doi.org/10.1016/j.cbpa.2019.03.002] [PMID: 30986654]
[146]
Luan, Y.; Li, J.; Bernatchez, J.A.; Li, R. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J. Med. Chem., 2019, 62(7), 3171-3183.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00189] [PMID: 30418766]
[147]
Jin, F.; Gao, D.; Zhang, C.; Liu, F.; Chu, B.; Chen, Y.; Chen, Y.Z.; Tan, C.; Jiang, Y. Exploration of 1-(3-chloro-4-(4-oxo-4H-chromen-2-yl)phenyl)-3-phenylurea derivatives as selective dual inhibitors of Raf1 and JNK1 kinases for anti-tumor treatment. Bioorg. Med. Chem., 2013, 21(3), 824-831.
[http://dx.doi.org/10.1016/j.bmc.2012.04.006] [PMID: 23260578]
[148]
Zhang, Q.; Wen, C.; Xiang, Z.; Ma, J.; Wang, X. Determination of CUDC-101 in rat plasma by liquid chromatography mass spectrometry and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal., 2014, 90, 134-138.
[http://dx.doi.org/10.1016/j.jpba.2013.11.031] [PMID: 24366214]
[149]
Beckers, T.; Mahboobi, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Maier, T.; Ciossek, T.; Baer, T.; Kelter, G. Chimerically designed HDAC-and tyrosine kinase inhibitors. A series of erlotinib hybrids as dual-selective inhibitors of EGFR, HER2 and histone deacetylases. MedChemComm, 2012, 3(7), 829-835.
[http://dx.doi.org/10.1039/c2md00317a]
[150]
Mahboobi, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Ciossek, T.; Baer, T.; Maier, T.; Beckers, T. Novel chimeric histone deacetylase inhibitors: a series of lapatinib hybrides as potent inhibitors of epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and histone deacetylase activity. J. Med. Chem., 2010, 53(24), 8546-8555.
[http://dx.doi.org/10.1021/jm100665z] [PMID: 21080629]
[151]
Yun, C-H.; Boggon, T.J.; Li, Y.; Woo, M.S.; Greulich, H.; Meyerson, M.; Eck, M.J. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 2007, 11(3), 217-227.
[http://dx.doi.org/10.1016/j.ccr.2006.12.017] [PMID: 17349580]
[152]
Ding, C.; Chen, S.; Zhang, C.; Hu, G.; Zhang, W.; Li, L.; Chen, Y.Z.; Tan, C.; Jiang, Y. Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy. Bioorg. Med. Chem., 2017, 25(1), 27-37.
[http://dx.doi.org/10.1016/j.bmc.2016.10.006] [PMID: 27769671]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy