Perspectives on the Role of the Frontier Effective-for-Reaction Molecular Orbital (FERMO) in the Study of Chemical Reactivity: An Updated Review

Author(s): Letícia S. Braga, Daniel H. S. Leal, Kamil Kuca*, Teodorico C. Ramalho*

Journal Name: Current Organic Chemistry

Volume 24 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Molecular orbitals are critical in the rationalization of several chemical reactions. Thus, the frontier molecular orbital theory, proposed by Fukui's group, postulated the importance of the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) for chemical reactions. It should be kept in mind, however, that there are limitations of this theory and new perspectives about the chemical reactivity have recently been arisen based on composition and location of other frontier molecular orbitals. In this review, we have reported the development and the most recent applications of the Frontier Effective-for-Reaction Molecular Orbital (FERMO) concept, which describes the breaking and formation of new chemical bonds and can in turn, provide important clues that modulate chemical reactivity of atoms and molecules.

Keywords: FMO, FERMO, HOMO-LUMO, theoretical calculations, reactivity, molecular orbital.

[1]
Lewis, G.N. Valence and tautomerism. J. Am. Chem. Soc., 1913, 35(10), 1448-1455.
[http://dx.doi.org/10.1021/ja02199a004]
[2]
Lewis, G.N. The atom and the molecule. J. Am. Chem. Soc., 1916, 38(4), 762-785.
[http://dx.doi.org/10.1021/ja02261a002]
[3]
Morgon, N.H.; Custodio, R. Teoria do funcional de densidade. Quim. Nova, 1995, 18(1), 44-55.
[4]
Jensen, F. Introduction to Computational Chemistry, 2nd ed; Wiley & Sons: West Sussex, 2007.
[5]
Schrödinger, E. Quantizierung als eigenwertproblem. Ann. Phys., 1926, 384(4), 361-376.
[http://dx.doi.org/10.1002/andp.19263840404]
[6]
Allinger, N.L. Organic Chemistry, 2nd ed; Worth Publishers: New York, 1976.
[7]
Atkins, P.W.; Friedman, R.S. Molecular Quantum Mechanics, 3rd ed; Oxford University Press: Oxford, 1997.
[8]
Hoffmann, R.; Shaik, S.; Hiberty, P.C. A conversation on VB vs MO theory: a never-ending rivalry? Acc. Chem. Res., 2003, 36(10), 750-756.
[http://dx.doi.org/10.1021/ar030162a] [PMID: 14567708]
[9]
Atkins, P.W.; Jones, L. Chemistry: Molecules, Matter and Change, 3rd ed; Freeman: New York, 1997.
[10]
Solomons, T.W.G.; Fryhle, C.B. Organic Chemistry, 8th ed; Willey, 2003.
[11]
Rauk, A. Orbital Interaction Theory of Organic Chemistry, 2nd ed; Wiley-Interscience: New York, 2000.
[http://dx.doi.org/10.1002/0471220418]
[12]
Da Silva, R.R. O Papel dos Orbitais Moleculares na Química: Sobre os Limites dos Argumentos HOMO-LUMO para a Reatividade., MSc Dissertation, Instituto Militar de Engenharia: Rio de Janeiro,. 2006.
[13]
Web of Science [v.5.33].. apps.webofknowledge.com (Accessed July 15, 2019)
[14]
Pauling, L. The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc., 1931, 53(4), 1367-1400.
[http://dx.doi.org/10.1021/ja01355a027]
[15]
Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals; An Introduction to Modern Structural Chemistry, 3rd ed.; . Cornell University Press: Ithaca, , 1960.
[16]
Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys., 1952, 20(4), 722-725.
[http://dx.doi.org/10.1063/1.1700523]
[17]
Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules. J. Chem. Phys., 1954, 22(8), 1433-1442.
[http://dx.doi.org/10.1063/1.1740412]
[18]
Fukui, K. The role of frontier orbitals in chemical reactions (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 1982, 21(11), 801-809.
[http://dx.doi.org/10.1002/anie.198208013]
[19]
Hoffmann, R.; Woodward, R.B. Selection rules for concerted cycloaddition reactions. J. Am. Chem. Soc., 1965, 87(9), 2046-2048.
[http://dx.doi.org/10.1021/ja01087a034]
[20]
Hoffmann, R.; Woodward, R.B. Selection rules for sigmatropic reactions. J. Am. Chem. Soc., 1965, 87(11), 2511-2513.
[http://dx.doi.org/10.1021/ja01089a050]
[21]
Hoffmann, R.; Woodward, R.B. Orbital symmetries and endo-exo relationships in concerted cycloaddition reactions. J. Am. Chem. Soc., 1965, 87(19), 4388-4389.
[http://dx.doi.org/10.1021/ja00947a033]
[22]
Hoffmann, R.; Woodward, R.B. Orbital symmetries and orientational effects in a sigmatropic reaction. J. Am. Chem. Soc., 1965, 87(19), 4389-4390.
[http://dx.doi.org/10.1021/ja00947a034]
[23]
Bruice, P.Y. Organic Chemistry, 4th ed; Prentice Hall: Upper Saddle River, 2003.
[24]
Pereira, D.H.; La Porta, F.A.; Santiago, R.T.; Garcia, D.R.; Ramalho, T.C. Novas perspectivas sobre o papel dos orbitais moleculares de fronteira no estudo da reatividade química: uma revisão. Rev. Virtual Quim., 2016, 8(2), 425-453.
[http://dx.doi.org/10.5935/1984-6835.20160032]
[25]
da Silva, R.R.; Ramalho, T.C.; Santos, J.M.; Figueroa-Villar, J.D. On the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept. J. Phys. Chem. A, 2006, 110(3), 1031-1040.
[http://dx.doi.org/10.1021/jp054434y] [PMID: 16420004]
[26]
Rhyman, L.; Abdallah, H.H.; Jhaumeer-Laulloo, S.; Domingo, L.R.; Joule, J.A.; Ramasami, P. 1,3-Dipolar cycloaddition of 1H-pyrazinium-3-olate and N1- and C-methyl substituted pyrazinium-3-olates with methyl acrylate: a density functional theory study. Tetrahedron, 2011, 67(43), 8383-8391.
[http://dx.doi.org/10.1016/j.tet.2011.08.021]
[27]
Klopman, G. Chemical reactivity and the concept of charge and frontier-controlled reactions. J. Am. Chem. Soc., 1968, 90(2), 223-224.
[http://dx.doi.org/10.1021/ja01004a002]
[28]
Domingo, L.R.; Arno, M.; Andrés, J. Toward an understanding of molecular mechanism of domino cycloadditions. Density functional theory study of the reaction between hexafluorobut-2-yne and N,N-dipyrrolylmethane. J. Am. Chem. Soc., 1998, 120(7), 1617-1618.
[http://dx.doi.org/10.1021/ja972887d]
[29]
Dewar, M.J.S. Aromaticity and pericyclic reactions. Angew. Chem. Int. Ed. Engl., 1971, 10(11), 761-776.
[http://dx.doi.org/10.1002/anie.197107611]
[30]
Pearson, R.G. Symmetry rules for chemical reactions. Comp. Maths. Appls., 1976, 12B(1-2), 229-236.
[31]
Berski, S.; Andrés, J.; Silvi, B.; Domingo, L.R. New findings on the Diels-Alder reactions. An analysis based on the bonding evolution theory. J. Phys. Chem. A, 2006, 110(51), 13939-13947.
[http://dx.doi.org/10.1021/jp068071t] [PMID: 17181354]
[32]
Birney, D.M.; Houk, K.N. Transition structures of the lewis-acid catalyzed Diels-Alder reaction of butadiene with acrolein. The origins of selectivity. J. Am. Chem. Soc., 1990, 112(11), 4127-4133.
[http://dx.doi.org/10.1021/ja00167a005]
[33]
Polo, V.; Andres, J.; Castillo, R.; Berski, S.; Silvi, B. Understanding the molecular mechanism of the 1,3-dipolar cycloaddition between fulminic acid and acetylene in terms of the electron localization function and catastrophe theory. Chemistry, 2004, 10(20), 5165-5172.
[http://dx.doi.org/10.1002/chem.200400161] [PMID: 15372667]
[34]
Correia, C.R.D.; Costa, P.R.R.; Ferreira, V.F. Vinte e cinco anos de reações, estratégias e metodologias em química orgânica. Quim. Nova, 2002, 25(Suppl. 1), 74-81.
[http://dx.doi.org/10.1590/S0100-40422002000800012]
[35]
Fujimoto, H.; Mizutani, Y.; Iwase, K. An aspect of substituents and peripheral structures in chemical reactivities of molecules. J. Phys. Chem., 1986, 90(12), 2768-2772.
[http://dx.doi.org/10.1021/j100403a042]
[36]
Fujimoto, H. Paired interacting orbitals: a way of looking at chemical interactions. Acc. Chem. Res., 1987, 20(12), 448-453.
[http://dx.doi.org/10.1021/ar00144a004]
[37]
Fujimoto, H.; Satoh, S. Orbital interactions and chemical hardness. J. Phys. Chem., 1994, 98(5), 1436-1441.
[http://dx.doi.org/10.1021/j100056a011]
[38]
Hirao, H.; Ohwada, T. Theoretical study of reactivities in electrophilic aromatic substitution reactions: reactive hybrid orbital analysis. J. Phys. Chem. A, 2003, 107(16), 2875-2881.
[http://dx.doi.org/10.1021/jp027330l]
[39]
Ohwada, T.; Hirao, H.; Ogawa, A. Theoretical analysis of Lewis basicity based on local electron-donating ability. Origin of basic strength of cyclic amines. J. Org. Chem., 2004, 69(22), 7486-7494.
[http://dx.doi.org/10.1021/jo0486589] [PMID: 15497973]
[40]
Hirao, H.; Ohwada, T. Theoretical revisit of regioselectivities of diels-alder reactions: orbital-based reevaluation of multicentered reactivity in terms of reactive hybrid orbitals. J. Phys. Chem. A, 2005, 109(5), 816-824.
[http://dx.doi.org/10.1021/jp048111y] [PMID: 16838952]
[41]
Nakamura, S.; Hirao, H.; Ohwada, T. Rationale for the acidity of Meldrum’s acid. Consistent relation of C-H acidities to the properties of localized reactive orbital. J. Org. Chem., 2004, 69(13), 4309-4316.
[http://dx.doi.org/10.1021/jo049456f] [PMID: 15202884]
[42]
Vianello, R.; Maksić, Z.B. Triadic analysis of substituent effects-gas-phase acidity of para-substituted phenols. Tetrahedron, 2006, 62(14), 3402-3411.
[http://dx.doi.org/10.1016/j.tet.2006.01.049]
[43]
Vianello, R.; Peran, N.; Maksić, Z.B. Hydride affinities of substituted alkenes: their prediction by density functional calculations and rationalisation by triadic formula. Eur. J. Org. Chem., 2007, 2007(3), 526-539.
[http://dx.doi.org/10.1002/ejoc.200600640]
[44]
Vianello, R.; Peran, N.; Maksić, Z.B. Hydride affinities of some substituted alkynes: prediction by DFT calculations and rationalization by triadic formula. J. Phys. Chem. A, 2006, 110(47), 12870-12881.
[http://dx.doi.org/10.1021/jp064463o] [PMID: 17125303]
[45]
Da Silva, R.R.; Ramalho, T.C.; Santos, J.M.; Figueroa-Villar, J.D. Reply to “comment on the paper ‘on the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept’”. J. Phys. Chem. A, 2006, 110(36), 10653-10654.
[http://dx.doi.org/10.1021/jp068065x]
[46]
Da Silva, R.R.; Santos, J.M.; Ramalho, T.C.; Figueroa-Villar, J.D. Concerning the FERMO concept and Pearson’s hard and soft acid-base principle. J. Braz. Chem. Soc., 2006, 17(2), 223-226.
[http://dx.doi.org/10.1590/S0103-50532006000200002]
[47]
Ramalho, T.C.; Pereira, D.H. Understanding the substituent effect on the acidity of alcohols and para-substituted phenols. Mol. Simul., 2009, 35(15), 1269-1278.
[http://dx.doi.org/10.1080/08927020903015387]
[48]
La Porta, F.A.; Santiago, R.T.; Ramalho, T.C.; Freitas, M.P.; Da Cunha, E.F.F. The role of the frontier orbitals in acid-base chemistry of organic amines probed by ab initio and chemometric techniques. Int. J. Quantum Chem., 2010, 110(11), 2015-2023.
[http://dx.doi.org/10.1002/qua.22676]
[49]
Santiago, R.T.; La Porta, F.A.; Rocha, M.V.J.; Ramalho, T.C.; Freitas, M.P.; Cunha, E.F.F. Description of the acid/base behavior of organic phosphines using ab initio and chemometric approaches. Lett. Org. Chem., 2010, 7(7), 552-556.
[http://dx.doi.org/10.2174/157017810793362253]
[50]
La Porta, F.A.; Ramalho, T.C.; Santiago, R.T.; Rocha, M.V.J.; da Cunha, E.F. Orbital signatures as a descriptor of regioselectivity and chemical reactivity: the role of the frontier orbitals on 1,3-dipolar cycloadditions. J. Phys. Chem. A, 2011, 115(5), 824-833.
[http://dx.doi.org/10.1021/jp108790w] [PMID: 21222451]
[51]
da Costa, E.B.; Trsic, M. A quantum chemical study on a set of non-imidazole H3 antihistamine molecules. J. Mol. Graph. Model., 2010, 28(7), 657-663.
[http://dx.doi.org/10.1016/j.jmgm.2010.01.003] [PMID: 20138791]
[52]
La Porta, F.L.; Giacoppo, J.O.S.; Ramos, P.H.; Guerreiro, M.C.; Ramalho, T.C. Computational insights into the role of the frontiers orbital in the chemistry of tridentate ligands. Am. J. Chem., 2012, 2(5), 255-262.
[http://dx.doi.org/10.5923/j.chemistry.20120205.03]
[53]
Almeida, K.J.; Ramalho, T.C.; Neto, J.L.; Santiago, R.T.; Felicíssimo, V.C.; Duarte, H.A. Methane dehydrogenation by niobium ions: a first-principles study of the gas-phase catalytic reactions. Organometal., 2013, 32(4), 989-999.
[http://dx.doi.org/10.1021/om300856c]
[54]
La Porta, F.A.; Ramos, P.H.; Resende, E.C.; Guerreiro, M.C.; Giacoppo, J.O.S.; Ramalho, T.C.; Sambrano, J.R.; Andrés, J.; Longo, E. Structural, electronic and optical properties of Fe (III) complex with pyridine-2,6-dicarboxylic acid: a combined experimental and theoretical study. Inorg. Chim. Acta, 2014, 416, 200-206.
[http://dx.doi.org/10.1016/j.ica.2014.03.007]
[55]
Soleymani, M.; Khavidaki, H.D. Inactivation possibility of pyrene by C 20 fullerene via cycloaddition reactions: a theoretical study. Comput. Theor. Chem., 2017, 1112, 37-45.
[http://dx.doi.org/10.1016/j.comptc.2017.04.014]
[56]
Soleymani, M. DFT study of double 1,3-dipolar cycloaddition of nitrilimines with allenoates. Monatsh. Chem., 2018, 149(12), 2183-2193.
[http://dx.doi.org/10.1007/s00706-018-2311-y]
[57]
Li, J.N.; Fu, Y.; Liu, L.; Guo, Q.X. First-principle predictions of basicity of organic amines and phosphines in acetonitrile. Tetrahedron, 2006, 62(50), 11801-11813.
[http://dx.doi.org/10.1016/j.tet.2006.09.018]
[58]
Braga, L.S.; Moreira, R.A.; Leal, D.H.S.; Ramalho, T.C. Quantification of molecular orbitals based on projection operators: methodological development and applications to basicity prediction of organic compounds in the gas phase. Chem. Phys. Lett., 2019, 726, 87-92.
[http://dx.doi.org/10.1016/j.cplett.2019.04.023]
[59]
Moreira, R.A. Eletrônica Molecular: Estudo ab initio da Separabilidade Eletrodo/Molécula Orgânica. , MSc Dissertation, Universidade Federal de Pernambuco: Recife,. 2013.
[60]
Gonzalez-Baró, A.C.; Castellano, E.E.; Piro, O.E.; Parajón-Costa, B.S. Synthesis, crystal structure and spectroscopic characterization of a novel bis (oxo-bridged) dinuclear vanadium(V)-dipicolinic acid complex. Polyhedron, 2005, 24(1), 49-55.
[http://dx.doi.org/10.1016/j.poly.2004.09.032]
[61]
Lainé, P.; Gourdon, A.; Launay, J.P. Chemistry of iron with dipicolinic acid. 1. Mononuclear complexes of iron (II) or iron (III). Inorg. Chem., 1995, 34(21), 5129-5137.
[http://dx.doi.org/10.1021/ic00125a009]
[62]
Chatterjee, M.; Maji, M.; Ghosh, S.; Mak, T.C.W. Studies of V(III) complexes with selected α-N-heterocyclic carboxylato NO donor ligands: structure of a new seven-coordinated pentagonal bipyramidal complex containing picolinato ligands. J. Chem. Soc., Dalton Trans., 1998, 21, 3641-3646.
[http://dx.doi.org/10.1039/a804160a]
[63]
Wang, X.L.; Chao, H.; Li, H.; Hong, X.L.; Ji, L.N.; Li, X.Y. Synthesis, crystal structure and DNA cleavage activities of copper(II) complexes with asymmetric tridentate ligands. J. Inorg. Biochem., 2004, 98(3), 423-429.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.12.006] [PMID: 14987842]
[64]
Lima, P.P.; Malta, O.L.; Júnior, S.A. Estudo espectroscópico de complexos De Eu3+, Tb3+ E Gd3+ com ligantes derivados de ácidos dicarboxílicos. Quim. Nova, 2005, 28(5), 805-808.
[http://dx.doi.org/10.1590/S0100-40422005000500014]
[65]
Hseu, J.F.; Chen, J.J.; Chuang, C.C.; Wei, H.H.; Cheng, M.C.; Wang, Y.; Yao, Y.D. Crystal structure, magnetic property and mössbauer spectra of bis(pyridine-2,6-dicarboxylato) iron (III) dihydrate. Inorg. Chim. Acta, 1991, 184(1), 1-5.
[http://dx.doi.org/10.1016/S0020-1693(00)83037-6]
[66]
Khan, S.; Nami, S.A.A.; Siddiqi, K.S.; Husain, E.; Naseem, I. Synthesis and characterization of transition metal 2,6-pyridinedicarboxylic acid derivatives, interactions of Cu(II) and Ni(II) complexes with DNA in vitro. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 72(2), 421-428.
[http://dx.doi.org/10.1016/j.saa.2008.10.001] [PMID: 19046927]
[67]
Crans, D.C.; Yang, L.; Jakusch, T.; Kiss, T. Aqueous chemistry of ammonium (dipicolinato)oxovanadate(V): the first organic vanadium(V) insulin-mimetic compound. Inorg. Chem., 2000, 39(20), 4409-4416.
[http://dx.doi.org/10.1021/ic9908367]
[68]
Daniele, P.G.; De Stefano, C.; Prenesti, E.; Sammartano, S. Copper(II) complexes of N-(phosphonomethyl)glycine in aqueous solution: a thermodynamic and spectrophotometric study. Talanta, 1997, 45(2), 425-431.
[http://dx.doi.org/10.1016/S0039-9140(97)00156-2] [PMID: 18967022]
[69]
Comba, P.; Hambley, T.W.; Martin, B. Molecular Modeling of Inorganic Compounds; John Wiley & Sons, 2009.
[http://dx.doi.org/10.1002/9783527628124]
[70]
Nakamura, E.; Yamago, S. Thermal reactions of dipolar trimethylenemethane species. Acc. Chem. Res., 2002, 35(10), 867-877.
[http://dx.doi.org/10.1021/ar0100935] [PMID: 12379139]
[71]
Almeida, K.J.; Silva, T.C.; Neto, J.L.; Rocha, M.V.J.; Ramalho, T.C.; Miranda, M.N.; Duarte, H.A. Methane C-H bond activation by niobium oxides: theoretical analyses of the bonding and reactivity properties of Nbon+m (m = 1, 2; n = 0, 1, 2). J. Organomet. Chem., 2016, 802, 49-59.
[http://dx.doi.org/10.1016/j.jorganchem.2015.11.015]
[72]
Crabtree, R.H. Aspects of methane chemistry. Chem. Rev., 1995, 95(4), 987-1007.
[http://dx.doi.org/10.1021/cr00036a005]
[73]
Gothelf, K.V.; Jørgensen, K.A. Asymmetric 1,3-dipolar cycloaddition reactions. Chem. Rev., 1998, 98(2), 863-910.
[http://dx.doi.org/10.1021/cr970324e] [PMID: 11848917]
[74]
Ess, D.H.; Houk, K.N. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. J. Am. Chem. Soc., 2008, 130(31), 10187-10198.
[http://dx.doi.org/10.1021/ja800009z] [PMID: 18613669]
[75]
Aurell, M.J.; Domingo, L.R.; Pérez, P.; Contreras, R. A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using DFT-based reactivity indexes. Tetrahedron, 2004, 60(50), 11503-11509.
[http://dx.doi.org/10.1016/j.tet.2004.09.057]
[76]
Marcus, R.A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys., 1993, 65(3), 599-610.
[http://dx.doi.org/10.1103/RevModPhys.65.599]
[77]
Oliveira, B.G.; Araújo, R.C.M.U. Relação entre transferência de carga e as interações intermoleculares em complexos de hidrogênio heterocíclicos. Quim. Nova, 2007, 30(4), 791-796.
[http://dx.doi.org/10.1590/S0100-40422007000400007]
[78]
Williams, D.E. Rev. Comput. Chem; Lipkowitz, K.B; Boyd, D.B., Ed.; Wiley-VCH: New York, 1991, Vol. 2, pp. 219-271.
[79]
Cormanich, R.A.; Freitas, M.P. A theoretical view on the conformer stabilization of butane. J. Org. Chem., 2009, 74(21), 8384-8387.
[http://dx.doi.org/10.1021/jo901705p] [PMID: 19799397]
[80]
de Oliveira, B.G. Structure, energy, vibrational spectrum, and Bader’s analysis of π···H hydrogen bonds and H(-δ)···H(+δ) dihydrogen bonds. Phys. Chem. Chem. Phys., 2013, 15(1), 37-79.
[http://dx.doi.org/10.1039/C2CP41749A] [PMID: 23138158]
[81]
Sáez, J.A.; Arnó, M.; Domingo, L.R. A DFT study for the regioselective 1,3-dipolar cycloadditions of nitrile N-oxides toward alkynylboronates. Tetrahedron, 2003, 59(46), 9167-9171.
[http://dx.doi.org/10.1016/j.tet.2003.09.050]
[82]
Georgescu, V.; Gérard, C. On the virial theorem in quantum mechanics. Commun. Math. Phys., 1999, 208(2), 275-281.
[http://dx.doi.org/10.1007/s002200050758]
[83]
Liu, H.; Jia, H.; Wang, B.; Xiao, Y.; Guo, H. Synthesis of spirobidihydropyrazole through double 1,3-dipolar cycloaddition of nitrilimines with allenoates. Org. Lett., 2017, 19(18), 4714-4717.
[http://dx.doi.org/10.1021/acs.orglett.7b01961] [PMID: 28858517]
[84]
Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789.
[http://dx.doi.org/10.1016/S0968-0896(03)00493-0] [PMID: 14556794]
[85]
Maccioni, E.; Cardia, M.C.; Bonsignore, L.; Plumitallo, A.; Pellerano, M.L.; De Logu, A. Synthesis and anti-microbial activity of isothiosemicarbazones and cyclic analogues. Farmaco, 2002, 57(10), 809-817.
[http://dx.doi.org/10.1016/S0014-827X(02)01288-0] [PMID: 12420876]
[86]
Holla, B.S.; Malini, K.V.; Rao, B.S.; Sarojini, B.K.; Kumari, N.S. Synthesis of some new 2,4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2003, 38(3), 313-318.
[http://dx.doi.org/10.1016/S0223-5234(02)01447-2] [PMID: 12667698]
[87]
Funakoshi, T.; Chaki, S.; Kawahima, N.; Suzuki, Y.; Yoshikawa, R.; Kumagai, T.; Nazakato, A.; Kameo, K.; Goto, M.; Okuyama, S. In vitro and in vivo pharmacological profile of 5-2-[4-(6-fluoro-1H-indole-3-yl) piperidin-1-yl] ethyl-4-(4-fluorophenyl) thiazole-2-carboxylic acid amide (NRA0562), a novel and putative atypical antipsychotic. Life Sci., 2002, 71(12), 1371-1384.
[http://dx.doi.org/10.1016/S0024-3205(02)01863-5] [PMID: 12127158]
[88]
Harnett, J.J.; Roubert, V.; Dolo, C.; Charnet, C.; Spinnewyn, B.; Cornet, S.; Rolland, A.; Marin, J.G.; Bigg, D.; Chabrier, P.E. Phenolic thiazoles as novel orally-active neuroprotective agents. Bioorg. Med. Chem. Lett., 2004, 14(1), 157-160.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.077] [PMID: 14684319]
[89]
Ingelman, S.M.; Simi, A.; Tindberg, N. Treatment of disorders mediated by p38 MAP kinase, e.g., inflammation or neurological disorders, using a thiazole derivative such as 5-(2-chloroethyl)-4-methylthiazole. WO Patent 0135959, CA Patent 134361399. 2001.
[90]
Laber, B.; Usunow, G.; Wiecko, E.; Franke, W.; Franke, H.; Köhn, A. Inhibition of Narcissus pseudonarcissus phytoene desaturase by herbicidal 3-trifluoromethyl-1,1′-biphenyl derivatives. Pestic. Biochem. Physiol., 1999, 63(3), 173-184.
[http://dx.doi.org/10.1006/pest.1999.2401]
[91]
Kamath, K.; Jordan, M.A. Suppression of microtubule dynamics by epothilone B is associated with mitotic arrest. Cancer Res., 2003, 63(18), 6026-6031.
[PMID: 14522931]
[92]
Storer, R.I.; Takemoto, T.; Jackson, P.S.; Ley, S.V. A total synthesis of epothilones using solid-supported reagents and scavengers. Angew. Chem. Int. Ed. Engl., 2003, 42(22), 2521-2525.
[http://dx.doi.org/10.1002/anie.200351413] [PMID: 12800176]
[93]
Nicolaou, K.C.; Roschangar, F.; Vourloumis, D. Chemical biology of epothilones. Angew. Chem. Int. Ed. Engl., 1998, 37(15), 2014-2045.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2014:AID-ANIE2014>3.0.CO;2-2] [PMID: 29711063]
[94]
Balog, A.; Meng, D.; Kamenecka, T.; Bertinato, P.; Su, D.S.; Sorensen, E.J.; Danishefsky, S.J. Total synthesis of (–)-epothilone A. Angew. Chem. Int. Ed. Engl., 1996, 35(23-24), 2801-2803.
[http://dx.doi.org/10.1002/anie.199628011] [PMID: 29711598]
[95]
Cane, D.E. Perspectives: biosynthetic pathways. Biosynthesis meets bioinformatics. Science, 2000, 287(5454), 818-819.
[http://dx.doi.org/10.1126/science.287.5454.818] [PMID: 10691559]
[96]
Svergun, D.I.; Petoukhov, M.V.; Koch, M.H.J.; König, S. Crystal versus solution structures of thiamine diphosphate-dependent enzymes. J. Biol. Chem., 2000, 275(1), 297-302.
[http://dx.doi.org/10.1074/jbc.275.1.297] [PMID: 10617618]
[97]
Leonardi, R.; Fairhurst, S.A.; Kriek, M.; Lowe, D.J.; Roach, P.L. Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex. FEBS Lett., 2003, 539(1-3), 95-99.
[http://dx.doi.org/10.1016/S0014-5793(03)00204-7] [PMID: 12650933]
[98]
Park, J.H.; Dorrestein, P.C.; Zhai, H.; Kinsland, C.; McLafferty, F.W.; Begley, T.P. Biosynthesis of the thiazole moiety of thiamin pyrophosphate (vitamin B1). Biochemistry, 2003, 42(42), 12430-12438.
[http://dx.doi.org/10.1021/bi034902z] [PMID: 14567704]
[99]
Melnick, J.S.; Sprinz, K.I.; Reddick, J.J.; Kinsland, C.; Begley, T.P. An efficient enzymatic synthesis of thiamin pyrophosphate. Bioorg. Med. Chem. Lett., 2003, 13(22), 4139-4141.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.026] [PMID: 14592524]
[100]
Souza, M.V.N.; Almeida, M.V. Drogas anti-VIH: passado, presente e perspectivas futuras. Quim. Nova, 2003, 26(3), 366-372.
[http://dx.doi.org/10.1590/S0100-40422003000300014]
[101]
Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5911), 832-837.
[http://dx.doi.org/10.1038/302832a0] [PMID: 6188956]
[102]
Martinez-Mir, M.I.; Pollard, H.; Moreau, J.; Arrang, J.M.; Ruat, M.; Traiffort, E.; Schwartz, J.C.; Palacios, J.M. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res., 1990, 526(2), 322-327.
[http://dx.doi.org/10.1016/0006-8993(90)91240-H] [PMID: 1979518]
[103]
Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci., 2003, 4(2), 121-130.
[http://dx.doi.org/10.1038/nrn1034] [PMID: 12563283]
[104]
Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Autoregulation of histamine release in brain by presynaptic H3-receptors. Neuroscience, 1985, 15(2), 553-562.
[http://dx.doi.org/10.1016/0306-4522(85)90233-7] [PMID: 4022339]
[105]
Nakamura, H.; Truhlar, D.G. The direct calculation of diabatic states based on configurational uniformity. J. Chem. Phys., 2001, 115(22), 10353-10372.
[http://dx.doi.org/10.1063/1.1412879]
[106]
Truhlar, D.G. Valence bond theory for chemical dynamics. J. Comput. Chem., 2007, 28(1), 73-86.
[http://dx.doi.org/10.1002/jcc.20529] [PMID: 17058184]
[107]
Brynda, M.; Gagliardi, L.; Widmark, P.O.; Power, P.P.; Roos, B.O. A quantum chemical study of the quintuple bond between two chromium centers in [PhCrCrPh]: trans-bent versus linear geometry. Angew. Chem. Int. Ed. Engl., 2006, 45(23), 3804-3807.
[http://dx.doi.org/10.1002/anie.200600110] [PMID: 16671122]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 3
Year: 2020
Page: [314 - 331]
Pages: 18
DOI: 10.2174/1385272824666200204121044
Price: $58

Article Metrics

PDF: 20
HTML: 2