Control of Oxygen Affinity in Mammalian Hemoglobins: Implications for a System Biology Description of the Respiratory Properties of the Red Blood Cell

Author(s): Andrea Bellelli*, Maurizio Brunori

Journal Name: Current Protein & Peptide Science

Volume 21 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Hemoglobin and myoglobin have been considered for a long time the paradigmatic model systems for protein function, to the point of being defined the “hydrogen atom[s] of biology”. Given this privileged position and the huge amount of quantitative information available on these proteins, the red blood cell might appear as the model system and“hydrogen atom” of system biology. Indeed, since the red cell's main function is O2 transport by hemoglobin, the gap between the protein and the cell may appear quite small. Yet, a surprisingly large amount of detailed biochemical information is required for the modelization of the respiratory properties of the erythrocyte. This problem is compounded if modelization aims at uncovering or explaining evolutionarily selected functional properties of hemoglobin. The foremost difficulty lies in the fact that hemoglobins having different intrinsic properties and relatively ancient evolutionary divergence may behave similarly in the complex milieu of blood, whereas very similar hemoglobins sharing a substantial sequence similarity may present important functional differences because of the mutation of a few key residues. Thus, the functional properties of hemoglobin and blood may reflect more closely the recent environmental challenges than the remote evolutionary history of the animal. We summarize in this review the case of hemoglobins from mammals, in an attempt to provide a reasoned summary of their complexity that, we hope, may be of help to scientists interested in the quantitative exploration of the evolutionary physiology of respiration. Indeed the basis of a meaningful modelization of the red cell requires a large amount of information collected in painstaking and often forgotten studies of the biochemical properties of hemoglobin carried out over more than a century.

Keywords: Hemoglobin, allostery, allosteric effectors, oxygen transport, blood, respiration.

[1]
Frauenfelder, H.; McMahon, B.H.; Fenimore, P.W. Myoglobin: the hydrogen atom of biology and a paradigm of complexity. Proc. Natl. Acad. Sci. USA, 2003, 100(15), 8615-8617.
[http://dx.doi.org/10.1073/pnas.1633688100] [PMID: 12861080]
[2]
Schmidt-Neilsen, K.; Larimer, J.L.O. Oxygen dissociation curves of mammalian blood in relation to body size. Am. J. Physiol., 1958, 195(2), 424-428.
[http://dx.doi.org/10.1152/ajplegacy.1958.195.2.424] [PMID: 13583188]
[3]
Riggs, A. Factors in the evolution of hemoglobin function. Fed. Proc., 1976, 35(10), 2115-2118..
[PMID: 7473]
[4]
Scott, A.F.; Bunn, H.F.; Brush, A.H. Functional aspects of hemoglobin evolution in the mammals. J. Mol. Evol., 1976, 8(4), 311-316.
[http://dx.doi.org/10.1007/BF01739256] [PMID: 1011262]
[5]
Scott, A.F.; Bunn, H.F.; Brush, A.H. The phylogenetic distribution of red cell 2,3 diphosphoglycerate and its interaction with mammalian hemoglobins. J. Exp. Zool., 1977, 201(2), 269-288.
[http://dx.doi.org/10.1002/jez.1402010211] [PMID: 894234]
[6]
Schmidt-Nielsen, K. Comparative Animal Physiology; Cambridge University Press: Cambridge, UK, 1975.
[7]
Bunn, H.F.; Forget, B.G. Hemoglobin: molecular, genetic and clinical aspects; W.B. Saunders: Philadelphia, PA, USA, 1986.
[8]
Bristow, J.D.; Metcalfe, J.; Krall, M.A.; Welch, J.E.; Black, J.A.; Dhindsa, D.S. Reduction of blood oxygen affinity in dogs by infusion of glycolytic intermediates. J. Appl. Physiol., 1977, 43(1), 102-106.
[http://dx.doi.org/10.1152/jappl.1977.43.1.102] [PMID: 893250]
[9]
Winslow, R.M. The role of hemoglobin oxygen affinity in oxygen transport at high altitude. Respir. Physiol. Neurobiol., 2007, 158(2-3), 121-127.
[http://dx.doi.org/10.1016/j.resp.2007.03.011] [PMID: 17449336]
[10]
Storz, J.F. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J. Exp. Biol., 2016, 219(Pt 20), 3190-3203.
[http://dx.doi.org/10.1242/jeb.127134] [PMID: 27802149]
[11]
Fisher, E.W.; Dalton, R.G. Cardiac output in horses. Nature, 1959, 184(Suppl. 26), 2020-2021.
[http://dx.doi.org/10.1038/1842020b0] [PMID: 13823210]
[12]
Janssen, B.; Debets, J.; Leenders, P.; Smits, J. Chronic measurement of cardiac output in conscious mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282(3), R928-R935.
[http://dx.doi.org/10.1152/ajpregu.00406.2001] [PMID: 11832416]
[13]
Bellelli, A.; Brunori, M.; Miele, A.E.; Panetta, G.; Vallone, B. The allosteric properties of hemoglobin: insights from natural and site directed mutants. Curr. Protein Pept. Sci., 2006, 7(1), 17-45.
[http://dx.doi.org/10.2174/138920306775474121] [PMID: 16472167]
[14]
Natarajan, C.; Hoffmann, F.G.; Weber, R.E.; Fago, A.; Witt, C.C.; Storz, J.F. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science, 2016, 354(6310), 336-339.
[http://dx.doi.org/10.1126/science.aaf9070] [PMID: 27846568]
[15]
Bellelli, A. Hemoglobin and cooperativity: Experiments and theories. Curr. Protein Pept. Sci., 2010, 11(1), 2-36.
[http://dx.doi.org/10.2174/138920310790274653] [PMID: 20201805]
[16]
Storz, J.F. Hemoglobin. Insightsinto protein structure, function and evolution; Oxford University Press: Oxford, UK, 2019.
[17]
Hill, A.V. XLVII. The combinations of haemoglobin with oxygen and carbon monoxide. I. Biochem. J., 1913, 7(5), 471-480.
[PMID: 16742267]
[18]
Bellelli, A.; Caglioti, E. On the measurement of cooperativity and the physico-chemical meaning of the Hill coefficient. Curr. Protein Pept. Sci., 2019, 20(9), 861-872.
[http://dx.doi.org/10.2174/1389203720666190718122404] [PMID: 31441724]
[19]
Adair, G.S. The hemoglobin system. VI The oxygen dissociation curve of hemoglobin. J. Biol. Chem., 1925, 63, 529-545.
[20]
Monod, J.; Wyman, J.; Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol., 1965, 12, 88-118.
[http://dx.doi.org/10.1016/S0022-2836(65)80285-6] [PMID: 14343300]
[21]
Perutz, M.F. Stereochemistry of cooperative effects in haemoglobin. Nature, 1970, 228(5273), 726-739.
[http://dx.doi.org/10.1038/228726a0] [PMID: 5528785]
[22]
Brunori, M.; Noble, R.W.; Antonini, E.; Wyman, J. The reactions of the isolated alpha and beta chains of human hemoglobin with oxygen and carbon monoxide. J. Biol. Chem., 1966, 241(22), 5238-5243.
[PMID: 5928000]
[23]
Imai, K. Allosteric Effects in Haemoglobin; Cambridge University Press: Cambridge, UK, 1982.
[24]
Shulman, R.G.; Hopfield, J.J.; Ogawa, S. Allosteric interpretation of haemoglobin properties. Q. Rev. Biophys., 1975, 8(3), 325-420.
[http://dx.doi.org/10.1017/S0033583500001840] [PMID: 726]
[25]
Cui, Q.; Karplus, M. Allostery and cooperativity revisited. Protein Sci., 2008, 17(8), 1295-1307.
[http://dx.doi.org/10.1110/ps.03259908] [PMID: 18560010]
[26]
Bellelli, A. Non-Allosteric Cooperativity in Hemoglobin. Curr. Protein Pept. Sci., 2018, 19(6), 573-588.
[http://dx.doi.org/10.2174/1389203718666171030103310] [PMID: 29086690]
[27]
Wyman, J.; Gill, S.J. Binding and linkage; University Science Books: Mill Valley, CA, USA, 1990.
[28]
Edsall, J.T. Blood and hemoglobin: the evolution of knowledge of functional adaptation in a biochemical system, part I: The adaptation of chemical structure to function in hemoglobin. J. Hist. Biol., 1972, 5(2), 205-257.
[http://dx.doi.org/10.1007/BF00346659] [PMID: 11610121]
[29]
Street, D.; Bangsbo, J.; Juel, C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J. Physiol., 2001, 537(Pt 3), 993-998.
[http://dx.doi.org/10.1113/jphysiol.2001.012954] [PMID: 11744771]
[30]
Antonini, E.; Wyman, J.; Brunori, M.; Fronticelli, C.; Bucci, E.; Rossi-Fanelli, A. Studies on the relations between molecular and functional properties of hemoglobin.V. The influence of temperature on the Bohr effect in human and in horse hemoglobin. J. Biol. Chem., 1965, 240, 1096-1103.
[PMID: 14284708]
[31]
Wyman, J. Jr Heme proteins. Adv. Protein Chem., 1948, 4, 407-531.
[http://dx.doi.org/10.1016/S0065-3233(08)60011-X] [PMID: 18884352]
[32]
Wyman, J., Jr Linked functions and reciprocal effects in hemoglobin: A second look. Adv. Protein Chem., 1964, 19, 223-286.
[http://dx.doi.org/10.1016/S0065-3233(08)60190-4] [PMID: 14268785]
[33]
Riggs, A. The Nature and Significance of the Bohr Effect in Mammalian Hemoglobins. J. Gen. Physiol., 1960, 43(4), 737-752.
[http://dx.doi.org/10.1085/jgp.43.4.737] [PMID: 19873527]
[34]
Tomita, S.; Riggs, A. Studies of the interaction of 2,3-diphosphoglycerate and carbon dioxide with hemoglobins from mouse, man, and elephant. J. Biol. Chem., 1971, 246(3), 547-554.
[PMID: 5542668]
[35]
Perutz, M.F.; Kilmartin, J.V.; Nishikura, K.; Fogg, J.H.; Butler, P.J.; Rollema, H.S. Identification of residues contributing to the Bohr effect of human haemoglobin. J. Mol. Biol., 1980, 138(3), 649-668.
[http://dx.doi.org/10.1016/S0022-2836(80)80022-2] [PMID: 7411620]
[36]
Fang, T.Y.; Zou, M.; Simplaceanu, V.; Ho, N.T.; Ho, C. Assessment of roles of surface histidyl residues in the molecular basis of the Bohr effect and of beta 143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin. Biochemistry, 1999, 38(40), 13423-13432.
[http://dx.doi.org/10.1021/bi9911379] [PMID: 10529219]
[37]
Russu, I.M.; Wu, S.S.; Ho, N.T.; Kellogg, G.W.; Ho, C. A proton nuclear magnetic resonance investigation of the anion Bohr effect of human normal adult hemoglobin. Biochemistry, 1989, 28(12), 5298-5306.
[http://dx.doi.org/10.1021/bi00438a057] [PMID: 2765535]
[38]
Lundberg, P.; Vogel, H.; Drakenberg, T.; Forsén, S.; Amiconi, G.; Forlani, L.; Chiancone, E.A. 35Cl(-)-NMR study of the singular anion-binding properties of dromedary hemoglobin. Biochim. Biophys. Acta, 1989, 999(1), 12-18.
[http://dx.doi.org/10.1016/0167-4838(89)90022-8] [PMID: 2804135]
[39]
Amiconi, G.; Antonini, E.; Brunori, M.; Wyman, J.; Zolla, L. Interaction of hemoglobin with salts. Effects on the functional properties of human hemoglobin. J. Mol. Biol., 1981, 152(1), 111-129.
[http://dx.doi.org/10.1016/0022-2836(81)90097-8] [PMID: 7338905]
[40]
Kilmartin, J.V.; Rossi-Bernardi, L. Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates. Physiol. Rev., 1973, 53(4), 836-890.
[http://dx.doi.org/10.1152/physrev.1973.53.4.836] [PMID: 4593770]
[41]
Chanutin, A.; Curnish, R.R. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys., 1967, 121(1), 96-102.
[http://dx.doi.org/10.1016/0003-9861(67)90013-6] [PMID: 6035074]
[42]
Benesch, R.; Benesch, R.E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun., 1967, 26(2), 162-167.
[http://dx.doi.org/10.1016/0006-291X(67)90228-8] [PMID: 6030262]
[43]
Antonini, E.; Condò, S.G.; Giardina, B.; Ioppolo, C.; Bertollini, A. The effect of pH and D-glycerate 2,3-bisphosphate on the O2 equilibrium of normal and SH(β 93)-modified human hemoglobin. Eur. J. Biochem., 1982, 121(2), 325-328.
[http://dx.doi.org/10.1111/j.1432-1033.1982.tb05789.x] [PMID: 7060552]
[44]
Arnone, A. X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature, 1972, 237(5351), 146-149.
[http://dx.doi.org/10.1038/237146a0] [PMID: 4555506]
[45]
Richard, V.; Dodson, G.G.; Mauguen, Y. Human deoxyhaemoglobin-2,3-diphosphoglycerate complex low-salt structure at 2.5 A resolution. J. Mol. Biol., 1993, 233(2), 270-274.
[http://dx.doi.org/10.1006/jmbi.1993.1505] [PMID: 8377203]
[46]
Nakashima, M.; Noda, H.; Hasegaea, M.; Ikai, A. The oxygen affinity of mammalian hemoglobins in the absence of 2,3-diphosphoglycerate in relation to body weight. Comp. Biochem. Physiol. A Comp. Physiol., 1985, 82(3), 583-589.
[http://dx.doi.org/10.1016/0300-9629(85)90437-2] [PMID: 2866879]
[47]
Antonini, E.; Brunori, M. Hemoglobin and myoglobin in their reactions with ligands; North Holland: Amsterdam, 1971.
[48]
Collman, J.P. Synthetic models for the O2-binding hemoproteins. Acc. Chem. Res., 1977, 10, 265-272.
[http://dx.doi.org/10.1021/ar50115a006]
[49]
Razynska, A.; Fronticelli, C.; Di Cera, E.; Gryczynski, Z.; Bucci, E. Effect of temperature on oxygen affinity and anion binding of bovine hemoglobin. Biophys. Chem., 1990, 38(1-2), 111-115.
[http://dx.doi.org/10.1016/0301-4622(90)80045-9] [PMID: 2085646]
[50]
Nelson, D.P.; Miller, W.D.; Kiesow, L.A. Calorimetric studies of hemoglobin function, the binding of 2,3-diphosphoglycerate and inositol hexaphosphate to human hemoglobin A. J. Biol. Chem., 1974, 249(15), 4770-4775.
[PMID: 4846747]
[51]
Bårdgard, AJ; Strand, I; Nuutinen, M; Jul, E Brix, O Functional characterisation of Eskimo dog hemoglobin: I. Interaction of Cl- and 2,3- DPG and its importance to O2 unloading at low temperature. Comp. Biochem. Physiol. A Physiol.,, 1997, 117, 367-73..
[52]
Clerbaux, T.; Gustin, P.; Detry, B.; Cao, M.L.; Frans, A. Comparative study of the oxyhaemoglobin dissociation curve of four mammals: man, dog, horse and cattle. Comp. Biochem. Physiol. Part A. Physiol., 1993, 106(4), 687-694.
[http://dx.doi.org/10.1016/0300-9629(93)90382-E] [PMID: 7906628]
[53]
Reeves, R.B.; Park, J.S.; Lapennas, G.N.; Olszowka, A.J.O. Oxygen affinity and Bohr coefficients of dog blood. J. Appl. Physiol., 1982, 53(1), 87-95.
[http://dx.doi.org/10.1152/jappl.1982.53.1.87] [PMID: 7118650]
[54]
Bårdgard, AJ Brix, O Functional characterisation of Eskimo dog hemoglobin: II. The interplay of HCO3- and Cl-. Comp. Biochem.Physiol. A Physiol., 1997, 117, 375-81.
[55]
Salhany, J.M. The effects of 2,3-diphosphoglycerate on native and chemically modified horse hemoglobin. FEBS Lett., 1971, 14(1), 11-13.
[http://dx.doi.org/10.1016/0014-5793(71)80262-4] [PMID: 11945706]
[56]
Weber, R.E.; Fago, A.; Campbell, K.L. Enthalpic partitioning of the reduced temperature sensitivity of O2 binding in bovine hemoglobin. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2014, 176, 20-25.
[http://dx.doi.org/10.1016/j.cbpa.2014.06.012] [PMID: 24983927]
[57]
Perutz, M.F. Species adaptation in a protein molecule. Adv. Protein Chem., 1984, 36, 213-244.
[http://dx.doi.org/10.1016/S0065-3233(08)60298-3] [PMID: 6382963]
[58]
Fronticelli, C.; Bucci, E.; Orth, C. Solvent regulation of oxygen affinity in hemoglobin. Sensitivity of bovine hemoglobin to chloride ions. J. Biol. Chem., 1984, 259(17), 10841-10844.
[PMID: 6469985]
[59]
Corda, M.; Tamburrini, M.; De Rosa, M.C.; Sanna, M.T.; Fais, A.; Olianas, A.; Pellegrini, M.; Giardina, B.; di Prisco, G. Whale (Balaenoptera physalus) haemoglobin: primary structure, functional characterisation and computer modelling studies. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2003, 134(1), 53-62.
[http://dx.doi.org/10.1016/S1096-4959(02)00229-4] [PMID: 12524033]
[60]
Milo, R.; Hou, J.H.; Springer, M.; Brenner, M.P.; Kirschner, M.W. The relationship between evolutionary and physiological variation in hemoglobin. Proc. Natl. Acad. Sci. USA, 2007, 104(43), 16998-17003.
[http://dx.doi.org/10.1073/pnas.0707673104] [PMID: 17942680]
[61]
Edelstein, S.J. Cooperative interactions of hemoglobin. Annu. Rev. Biochem., 1975, 44, 209-232.
[http://dx.doi.org/10.1146/annurev.bi.44.070175.001233] [PMID: 237460]
[62]
Condò, S.G.; Giardina, B.; Barra, D.; Gill, S.J.; Brunori, M. Purification and functional properties of the hemoglobin components from the rat (Wistar). Eur. J. Biochem., 1981, 116(2), 243-247.
[http://dx.doi.org/10.1111/j.1432-1033.1981.tb05325.x] [PMID: 7250126]
[63]
Bonaventura, C.; Sullivan, B.; Bonaventura, J. Effect of pH and anions on functional properties of hemoglobin from Lemur fulvus fulvus. J. Biol. Chem., 1974, 249(12), 3768-3775.
[PMID: 4833745]
[64]
Amiconi, G.; Bertollini, A.; Bellelli, A.; Coletta, M.; Condò, S.G.; Brunori, M. Evidence for two oxygen-linked binding sites for polyanions in dromedary hemoglobin. Eur. J. Biochem., 1985, 150(2), 387-393.
[http://dx.doi.org/10.1111/j.1432-1033.1985.tb09032.x] [PMID: 4018090]
[65]
Riggs, A.F. Self-association, cooperativity and supercooperativity of oxygen binding by hemoglobins. J. Exp. Biol., 1998, 201(Pt 8), 1073-1084.
[PMID: 9510521]
[66]
Dhindsa, D.S.; Metcalfe, J.; Hoversland, A.S. Comparative studies of the respiratory functions of mammalian blood. IX. Ring-tailed lemur(Lemur catta)and black lemur (Lemur macaco). Respir. Physiol., 1972, 15(3), 331-342.
[http://dx.doi.org/10.1016/0034-5687(72)90074-6] [PMID: 5050473]
[67]
Bellelli, A.; Carey, J. Reversible Ligand Binding; Wiley & Sons: Hoboken, NJ, USA, 2018.
[68]
Riggs, A. Hemoglobin polymerization in mice. Science, 1965, 147(3658), 621-623.
[http://dx.doi.org/10.1126/science.147.3658.621-a] [PMID: 14241412]
[69]
Bonaventura, J.; Riggs, A. Polymerization of hemoglobins of mouse and man: structural basis. Science, 1967, 158(3802), 800-802.
[http://dx.doi.org/10.1126/science.158.3802.800-a] [PMID: 6048124]
[70]
Brunori, M.; Condò, S.G.; Bellelli, A.; Giardina, B. Hemoglobins from Wistar rat: crystallization of components and intraerythrocytic crystals. Eur. J. Biochem., 1982, 129(2), 459-463.
[http://dx.doi.org/10.1111/j.1432-1033.1982.tb07071.x] [PMID: 7151808]
[71]
Brunori, M. Molecular adaptation to physiological requirements: the hemoglobin system of trout. Curr. Top. Cell. Regul., 1975, 9, 1-39.
[http://dx.doi.org/10.1016/B978-0-12-152809-6.50008-1] [PMID: 235405]
[72]
Kitchen, H.; Putnam, F.W.; Taylor, W.J. Hemoglobin polymorphism: its relation to sickling of erythrocytes in white tailed deer. Science, 1964, 144(3623), 1237-1239.
[http://dx.doi.org/10.1126/science.144.3623.1237] [PMID: 14150331]
[73]
Jensen, B.; Storz, J.F.; Fago, A. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2016, 195, 10-14.
[http://dx.doi.org/10.1016/j.cbpa.2016.01.018] [PMID: 26808972]
[74]
Storz, J.F.; Runck, A.M.; Moriyama, H.; Weber, R.E.; Fago, A. Genetic differences in hemoglobin function between highland and lowland deer mice. J. Exp. Biol., 2010, 213(Pt 15), 2565-2574.
[http://dx.doi.org/10.1242/jeb.042598] [PMID: 20639417]
[75]
Hamilton, M.N.; Edelstein, S.J. Cat hemoglobin. pH dependence of cooperativity and ligand binding. J. Biol. Chem., 1974, 249(5), 1323-1329.
[PMID: 4817749]
[76]
Huisman, T.H.; Reynolds, C.A.; Dozy, A.M.; Wilson, J.B. The structure of sheep hemoglobins. The amino acid compositions of the alpha and beta chains of the hemoglobins, A, B, and C. J. Biol. Chem., 1965, 240, 2455-2460.
[PMID: 14304852]
[77]
Zaldívar-López, S.; Rowell, J.L.; Fiala, E.M.; Zapata, I.; Couto, C.G.; Alvarez, C.E. Comparative genomics of canine hemoglobin genes reveals primacy of beta subunit delta in adult carnivores. BMC Genomics, 2017, 18(1), 141.
[http://dx.doi.org/10.1186/s12864-017-3513-0] [PMID: 28178945]
[78]
Dresler, S.L.; Brimhall, B.; Jones, R.T. Multiple structural genes for the alpha chain of canine (Canis familiaris) hemoglobin. Biochem. Genet., 1976, 14(11-12), 1065-1070.
[http://dx.doi.org/10.1007/BF00485137] [PMID: 1016221]
[79]
Clementi, M.E.; Condò, S.G.; Castagnola, M.; Giardina, B. Hemoglobin function under extreme life conditions. Eur. J. Biochem., 1994, 223(2), 309-317.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18996.x] [PMID: 7519981]
[80]
Giardina, B.; Mosca, D.; De Rosa, M.C. The Bohr effect of haemoglobin in vertebrates: an example of molecular adaptation to different physiological requirements. Acta Physiol. Scand., 2004, 182(3), 229-244.
[http://dx.doi.org/10.1111/j.1365-201X.2004.01360.x] [PMID: 15491403]
[81]
Brix, O.; Condò, S.G.; Bardgard, A.; Tavazzi, B.; Giardina, B. Temperature modulation of oxygen transport in a diving mammal (Balaenoptera acutorostrata). Biochem. J., 1990, 271(2), 509-513.
[http://dx.doi.org/10.1042/bj2710509] [PMID: 2122890]
[82]
Weber, R.E. Enthalpic consequences of reduced chloride binding in Andean frog (Telmatobius peruvianus) hemoglobin. J. Comp. Physiol. B, 2014, 184(5), 613-621.
[http://dx.doi.org/10.1007/s00360-014-0823-2] [PMID: 24677177]
[83]
Huicho, L.; Pawson, I.G.; León-Velarde, F.; Rivera-Chira, M.; Pacheco, A.; Muro, M.; Silva, J. Oxygen saturation and heart rate in healthy school children and adolescents living at high altitude. Am. J. Hum. Biol., 2001, 13(6), 761-770.
[http://dx.doi.org/10.1002/ajhb.1122] [PMID: 11748815]
[84]
Lenfant, C.; Sullivan, K. Adaptation to high altitude. N. Engl. J. Med., 1971, 284(23), 1298-1309.
[http://dx.doi.org/10.1056/NEJM197106102842305] [PMID: 4930601]
[85]
Winslow, R.M.; Chapman, K.W.; Gibson, C.C.; Samaja, M.; Monge, C.C.; Goldwasser, E.; Sherpa, M.; Blume, F.D.; Santolaya, R. Different hematologic responses to hypoxia in Sherpas and Quechua Indians. J. Appl. Physiol., 1989, 66(4), 1561-1569.
[http://dx.doi.org/10.1152/jappl.1989.66.4.1561] [PMID: 2732148]
[86]
Winslow, R.M.; Monge, C.C.; Statham, N.J.; Gibson, C.G.; Charache, S.; Whittembury, J.; Moran, O.; Berger, R.L. Variability of oxygen affinity of blood: human subjects native to high altitude. J. Appl. Physiol., 1981, 51(6), 1411-1416.
[http://dx.doi.org/10.1152/jappl.1981.51.6.1411] [PMID: 7319874]
[87]
Winslow, R.M.; Samaja, M.; West, J.B. Red cell function at extreme altitude on Mount Everest. J. Appl. Physiol., 1984, 56(1), 109-116.
[http://dx.doi.org/10.1152/jappl.1984.56.1.109] [PMID: 6693310]
[88]
Winslow, R.M.; Monge, C.; Winslow, N.J.; Gibson, C.G.; Whittembury, J. Normal whole blood Bohr effect in Peruvian natives of high altitude. Respir. Physiol., 1985, 61(2), 197-208.
[http://dx.doi.org/10.1016/0034-5687(85)90126-4] [PMID: 4048670]
[89]
Scott, G.R.; Hawkes, L.A.; Frappell, P.B.; Butler, P.J.; Bishop, C.M.; Milsom, W.K. How bar-headed geese fly over the Himalayas. Physiology (Bethesda), 2015, 30(2), 107-115.
[http://dx.doi.org/10.1152/physiol.00050.2014] [PMID: 25729056]
[90]
Lorenzo, F.R.; Huff, C.; Myllymäki, M.; Olenchock, B.; Swierczek, S.; Tashi, T.; Gordeuk, V.; Wuren, T.; Ri-Li, G.; McClain, D.A.; Khan, T.M.; Koul, P.A.; Guchhait, P.; Salama, M.E.; Xing, J.; Semenza, G.L.; Liberzon, E.; Wilson, A.; Simonson, T.S.; Jorde, L.B.; Kaelin, W.G., Jr; Koivunen, P.; Prchal, J.T. A genetic mechanism for Tibetan high-altitude adaptation. Nat. Genet., 2014, 46(9), 951-956.
[http://dx.doi.org/10.1038/ng.3067] [PMID: 25129147]
[91]
Campbell, K.L.; Gaudry, M.J.; He, K.; Suzuki, H.; Zhang, Y.P.; Jiang, X.L.; Weber, R.E. Altered hemoglobin co-factor sensitivity does not underlie the evolution of derived fossorial specializations in the family Talpidae. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2018, 224, 150-155.
[http://dx.doi.org/10.1016/j.cbpb.2018.01.001] [PMID: 29309911]
[92]
Bunn, H.F. Evolution of mammalian hemoglobin function. Blood, 1981, 58(2), 189-197.
[http://dx.doi.org/10.1182/blood.V58.2.189.189] [PMID: 7018619]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 6
Year: 2020
Page: [553 - 572]
Pages: 20
DOI: 10.2174/1389203721666200203151414
Price: $65

Article Metrics

PDF: 34
HTML: 3