Therapeutic Effects of Curcumin against Bladder Cancer: A Review of Possible Molecular Pathways

Author(s): Milad Ashrafizadeh, Habib Yaribeygi*, Amirhossein Sahebkar*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

There are concerns about the increased incidence of cancer both in developing and developed countries. In spite of recent progress in cancer therapy, this disease is still one of the leading causes of death worldwide. Consequently, there have been rigorous attempts to improve cancer therapy by looking at nature as a rich source of naturally occurring anti-tumor drugs. Curcumin is a well-known plant-derived polyphenol found in turmeric. This compound has numerous pharmacological effects such as antioxidant, anti-inflammatory, antidiabetic and anti-tumor properties. Curcumin is capable of suppressing the growth of a variety of cancer cells including those of bladder cancer. Given the involvement of various signaling pathways such as PI3K, Akt, mTOR and VEGF in the progression and malignancy of bladder cancer, and considering the potential of curcumin in targeting signaling pathways, it seems that curcumin can be considered as a promising candidate in bladder cancer therapy. In the present review, we describe the molecular signaling pathways through which curcumin inhibits invasion and metastasis of bladder cancer cells.

Keywords: Curcumin, bladder cancer, signaling pathway, cancer therapy, herbal medicine, polyphenol.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Szabo, C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat. Rev. Drug Discov., 2016, 15(3), 185-203.
[http://dx.doi.org/10.1038/nrd.2015.1] [PMID: 26678620]
[3]
DeSantis, C.; Naishadham, D.; Jemal, A. Cancer statistics for African Americans, 2013. CA Cancer J. Clin., 2013, 63(3), 151-166.
[http://dx.doi.org/10.3322/caac.21173] [PMID: 23386565]
[4]
DeSantis, C.E.; Siegel, R.L.; Sauer, A.G.; Miller, K.D.; Fedewa, S.A.; Alcaraz, K.I.; Jemal, A. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities. CA Cancer J. Clin., 2016, 66(4), 290-308.
[http://dx.doi.org/10.3322/caac.21340] [PMID: 26910411]
[5]
Ghafoor, A.; Jemal, A.; Cokkinides, V.; Cardinez, C.; Murray, T.; Samuels, A.; Thun, M.J. Cancer statistics for African Americans. CA Cancer J. Clin., 2002, 52(6), 326-341.
[http://dx.doi.org/10.3322/canjclin.52.6.326] [PMID: 12469762]
[6]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[7]
Kouhpeikar, H.; Butler, A.E.; Bamian, F.; Barreto, G.E.; Majeed, M.; Sahebkar, A. Curcumin as a therapeutic agent in leukemia. J. Cell. Physiol., 2019, 234(8), 12404-12414.
[http://dx.doi.org/10.1002/jcp.28072] [PMID: 30609023]
[8]
Ghanaatian, N.; Lashgari, N.A.; Abdolghaffari, A.H.; Rajaee, S.M.; Panahi, Y.; Barreto, G.E.; Butler, A.E.; Sahebkar, A. Curcumin as a therapeutic candidate for multiple sclerosis: Molecular mechanisms and targets. J. Cell. Physiol., 2019, 234(8), 12237-12248.
[http://dx.doi.org/10.1002/jcp.27965] [PMID: 30536381]
[9]
Moghaddam, N.S.A.; Oskouie, M.N.; Butler, A.E.; Petit, P.X.; Barreto, G.E.; Sahebkar, A. Hormetic effects of curcumin: What is the evidence? J. Cell. Physiol., 2019, 234(7), 10060-10071.
[http://dx.doi.org/10.1002/jcp.27880] [PMID: 30515809]
[10]
Aggarwal, B.B.; Surh, Y-J.; Shishodia, S. The molecular targets and therapeutic uses of curcumin in health and disease; Springer Science & Business Media, 2007.
[http://dx.doi.org/10.1007/978-0-387-46401-5]
[11]
Mortezaee, K.; Salehi, E.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12537-12550.
[http://dx.doi.org/10.1002/jcp.28122] [PMID: 30623450]
[12]
Ipar, V.S.; Dsouza, A.; Devarajan, P.V. Enhancing curcumin oral bioavailability through nanoformulations. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(4), 459-480.
[http://dx.doi.org/10.1007/s13318-019-00545-z] [PMID: 30771095]
[13]
Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res., 2013, 57(9), 1529-1542.
[http://dx.doi.org/10.1002/mnfr.201200838] [PMID: 23847105]
[14]
Sahebkar, A.; Serban, M-C.; Ursoniu, S.; Banach, M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods, 2015, 18, 898-909.
[15]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[16]
Karimian, M.S.; Pirro, M.; Majeed, M.; Sahebkar, A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev., 2017, 33, 55-63.
[http://dx.doi.org/10.1016/j.cytogfr.2016.10.001] [PMID: 27743775]
[17]
Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertility. Sterility., 2010, 94, e75-e76.
[http://dx.doi.org/10.1016/j.fertnstert.2010.07.1071]
[18]
Boarescu, P-M.; Chirilă, I.; Bulboacă, A.E.; Bocșan, I.C.; Pop, R.M.; Gheban, D.; Bolboacă, S.D. Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxid. Med. Cellular. Longev., 2019, 2019
[http://dx.doi.org/10.1155/2019/7847142]
[19]
Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients, 2019, 11(8), 1837.
[http://dx.doi.org/10.3390/nu11081837] [PMID: 31398884]
[20]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: A randomized controlled trial. Drug Res. (Stuttg.), 2017, 67(4), 244-251.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[21]
Rezaee, R.; Momtazi, A.A.; Monemi, A.; Sahebkar, A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol. Res., 2017, 117, 218-227.
[http://dx.doi.org/10.1016/j.phrs.2016.12.037] [PMID: 28042086]
[22]
Golonko, A.; Lewandowska, H.; Świsłocka, R.; Jasińska, U.T.; Priebe, W.; Lewandowski, W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur. J. Med. Chem., 2019, 181, 111512
[http://dx.doi.org/10.1016/j.ejmech.2019.07.015] [PMID: 31404861]
[23]
Silva, T.A.L.; Medeiros, D.C.; Medeiros, G.C.B.S.; Medeiros, R.C.S.C.; de Souza Araújo, J.; Medeiros, J.A.; Ururahy, M.A.G.; Santos, R.V.T.; Medeiros, R.M.V.; Leite-Lais, L.; Dantas, P.M.S. Influence of curcumin supplementation on metabolic and lipid parameters of people living with HIV/AIDS: a randomized controlled trial. BMC Complement. Altern. Med., 2019, 19(1), 202.
[http://dx.doi.org/10.1186/s12906-019-2620-7] [PMID: 31387592]
[24]
Liu, D.; Schwimer, J.; Liu, Z.; Woltering, E.A.; Greenway, F.L. Antiangiogenic effect of curcumin in pure versus in extract forms. Pharm. Biol., 2008, 46, 677-682.
[http://dx.doi.org/10.1080/13880200802215826]
[25]
Priyadarsini, K.I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[26]
Popat, A.; Karmakar, S.; Jambhrunkar, S.; Xu, C.; Yu, C. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf. B Biointerfaces, 2014, 117, 520-527.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.005] [PMID: 24698148]
[27]
Hjorth Tønnesen, H. Solubility and stability of curcumin in solutions containing alginate and other viscosity modifying macromolecules-Studies of curcumin and curcuminoids. Die Pharmazie- Int. J. Pharmaceut. Sci., 2006, 61, 696-700.
[28]
Chuah, A.M.; Jacob, B.; Jie, Z.; Ramesh, S.; Mandal, S.; Puthan, J.K.; Deshpande, P.; Vaidyanathan, V.V.; Gelling, R.W.; Patel, G.; Das, T.; Shreeram, S. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem., 2014, 156, 227-233.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.108] [PMID: 24629962]
[29]
Ajay, S.; Harita, D.; Tarique, M.; Amin, P. Solubility and dissolution rate enhancement of curcumin using kollidon VA64 by solid dispersion technique. Int. J. Pharm. Tech. Res., 2012, 4, 1055-1064.
[30]
Liu, C.H.; Lee, G.W.; Wu, W.C.; Wang, C.C. Encapsulating curcumin in ethylene diamine-β-cyclodextrin nanoparticle improves topical cornea delivery. Colloids Surf. B Biointerfaces, 2019, 186, 110726
[http://dx.doi.org/10.1016/j.colsurfb.2019.110726] [PMID: 31862560]
[31]
Ternullo, S.; Schulte Werning, L.V.; Holsæter, A.M.; Škalko-Basnet, N. Curcumin-in-deformable liposomes-in-chitosan-hydrogel as a novel wound dressing. Pharmaceutics, 2019, 12(1), 12.
[http://dx.doi.org/10.3390/pharmaceutics12010008] [PMID: 31861794]
[32]
Jiang, L.; Wang, J.; Jiang, J.; Zhang, C.; Zhao, M.; Chen, Z.; Wang, N.; Hu, D.; Liu, X.; Peng, H.; Lian, M. Sonodynamic therapy in atherosclerosis by curcumin nanosuspensions: Preparation design, efficacy evaluation, and mechanisms analysis. Eur. J. Pharm. Biopharm., 2020, 146, 101-110.
[PMID: 31841689]
[33]
Yan, F.; Li, H.; Zhong, Z.; Zhou, M.; Lin, Y.; Tang, C.; Li, C. Co-delivery of prednisolone and curcumin in human serum albumin nanoparticles for effective treatment of rheumatoid arthritis. Int. J. Nanomedicine, 2019, 14, 9113-9125.
[http://dx.doi.org/10.2147/IJN.S219413] [PMID: 31819422]
[34]
Ma, Q.; Qian, W.; Tao, W.; Zhou, Y.; Xue, B. Delivery of curcumin nanoliposomes using surface modified with CD133 aptamers for prostate cancer. Drug Des. Devel. Ther., 2019, 13, 4021-4033.
[http://dx.doi.org/10.2147/DDDT.S210949] [PMID: 31819373]
[35]
Yuan, Y.; Li, H.; Zhu, J.; Liu, C.; Sun, X.; Wang, D.; Xu, Y. Fabrication and characterization of zein nanoparticles by dextran sulfate coating as vehicles for delivery of curcumin. Int. J. Biol. Macromol., 2019, pii: S0141-8130(19), 36024-36026.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.149] [PMID: 31739020]
[36]
Shi, L.; Qu, Y.; Li, Z.; Fan, B.; Xu, H.; Tang, J. In vitro permeability and bioavailability enhancement of curcumin by nanoemulsion via pulmonary administration. Curr. Drug Deliv., 2019, 16(8), 751-758.
[http://dx.doi.org/10.2174/1567201816666190717125622] [PMID: 31722658]
[37]
Yang, B.; Yin, C.; Zhou, Y.; Wang, Q.; Jiang, Y.; Bai, Y.; Qian, H.; Xing, G.; Wang, S.; Li, F.; Feng, Y.; Zhang, Y.; Cai, J.; Aschner, M.; Lu, R. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology, 2019, 425, 152248
[http://dx.doi.org/10.1016/j.tox.2019.152248] [PMID: 31330227]
[38]
Macías-Pérez, J.R.; Aldaba-Muruato, L.R.; Martínez-Hernández, S.L.; Muñoz-Ortega, M.H.; Pulido-Ortega, J.; Ventura-Juárez, J. Curcumin provides hepatoprotection against amoebic liver abscess induced by Entamoeba histolytica in hamster: Involvement of Nrf2/HO-1 and NF-κB/IL-1β signaling pathways. J. Immunol. Res., 2019, 2019, Article ID 7431652
[39]
Shakeri, A.; Cicero, A.F.G.; Panahi, Y.; Mohajeri, M.; Sahebkar, A. Curcumin: A naturally occurring autophagy modulator. J. Cell. Physiol., 2019, 234(5), 5643-5654.
[http://dx.doi.org/10.1002/jcp.27404] [PMID: 30239005]
[40]
Shakeri, A.; Zirak, M.R.; Wallace Hayes, A.; Reiter, R.; Karimi, G. Curcumin and its analogues protect from endoplasmic reticulum stress: Mechanisms and pathways. Pharmacol. Res., 2019, 146, 104335
[http://dx.doi.org/10.1016/j.phrs.2019.104335] [PMID: 31265891]
[41]
Barati, N.; Momtazi-Borojeni, A.A.; Majeed, M.; Sahebkar, A. Potential therapeutic effects of curcumin in gastric cancer. J. Cell. Physiol., 2019, 234(3), 2317-2328.
[http://dx.doi.org/10.1002/jcp.27229] [PMID: 30191991]
[42]
Yu, Y.; Shao, B.; Gan, N.; Chen, L.; Yang, D. Osthole improves therapy for osteoporosis through increasing autophagy of mesenchymal stem cells. Exp. Anim., 2019, 68(4), 453-463.
[43]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, CA Cancer J. Clin., 2019, 69(5), 363-385.
[44]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[45]
Noone, A.; Howlader, N.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D. SEER cancer statistics review, 1975-2015; National Cancer Institute: Bethesda, MD, 2018.
[46]
Kim, Y.S.; Maruvada, P.; Milner, J.A. Metabolomics in biomarker discovery: future uses for cancer prevention. Future Oncol., 2008, 4(1)
[http://dx.doi.org/10.2217/14796694.4.1.93]
[47]
Zhu, C-Z.; Ting, H-N.; Ng, K-H.; Ong, T-A. A review on the accuracy of bladder cancer detection methods. J. Cancer, 2019, 10(17), 4038-4044.
[http://dx.doi.org/10.7150/jca.28989] [PMID: 31417648]
[48]
Witjes, J.A.; Compérat, E.; Cowan, N.C.; De Santis, M.; Gakis, G.; Lebret, T.; Ribal, M.J.; Van der Heijden, A.G.; Sherif, A. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur. Urol., 2014, 65(4), 778-792.
[http://dx.doi.org/10.1016/j.eururo.2013.11.046] [PMID: 24373477]
[49]
Cheung, G.; Sahai, A.; Billia, M.; Dasgupta, P.; Khan, M.S. Recent advances in the diagnosis and treatment of bladder cancer. BMC Med., 2013, 11, 13.
[http://dx.doi.org/10.1186/1741-7015-11-13] [PMID: 23327481]
[50]
Mak, R.H.; Hunt, D.; Shipley, W.U.; Efstathiou, J.A.; Tester, W.J.; Hagan, M.P.; Kaufman, D.S.; Heney, N.M.; Zietman, A.L. Long-term outcomes in patients with muscle-invasive bladder cancer after selective bladder-preserving combined-modality therapy: a pooled analysis of Radiation Therapy Oncology Group protocols 8802, 8903, 9506, 9706, 9906, and 0233. J. Clin. Oncol., 2014, 32(34), 3801-3809.
[http://dx.doi.org/10.1200/JCO.2014.57.5548] [PMID: 25366678]
[51]
Mitin, T.; Hunt, D.; Shipley, W.U.; Kaufman, D.S.; Uzzo, R.; Wu, C-L.; Buyyounouski, M.K.; Sandler, H.; Zietman, A.L. Transurethral surgery and twice-daily radiation plus paclitaxel-cisplatin or fluorouracil-cisplatin with selective bladder preservation and adjuvant chemotherapy for patients with muscle invasive bladder cancer (RTOG 0233): a randomised multicentre phase 2 trial. Lancet Oncol., 2013, 14(9), 863-872.
[http://dx.doi.org/10.1016/S1470-2045(13)70255-9] [PMID: 23823157]
[52]
Mirmomen, S.M.; Shinagare, A.B.; Williams, K.E.; Silverman, S.G.; Malayeri, A.A. Preoperative imaging for locoregional staging of bladder cancer. Abdom. Radiol. (N.Y.), 2019, 44(12), 3843-3857.
[http://dx.doi.org/10.1007/s00261-019-02168-z] [PMID: 31377833]
[53]
van der Pol, C.B.; Sahni, V.A.; Eberhardt, S.C.; Oto, A.; Akin, O.; Alexander, L.F.; Allen, B.C.; Coakley, F.V.; Froemming, A.T.; Fulgham, P.F.; Hosseinzadeh, K.; Maranchie, J.K.; Mody, R.N.; Schieda, N.; Schuster, D.M.; Venkatesan, A.M.; Wang, C.L.; Lockhart, M.E. ACR appropriateness criteria® pretreatment staging of muscle-invasive bladder cancer. J. Am. Coll. Radiol., 2018, 15(5S), S150-S159.
[http://dx.doi.org/10.1016/j.jacr.2018.03.020] [PMID: 29724418]
[54]
Wood, D.E. National Comprehensive Cancer Network (NCCN) clinical practice guidelines for lung cancer screening. Thorac. Surg. Clin., 2015, 25(2), 185-197.
[http://dx.doi.org/10.1016/j.thorsurg.2014.12.003] [PMID: 25901562]
[55]
Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol., 2017, 71(1), 96-108.
[http://dx.doi.org/10.1016/j.eururo.2016.06.010] [PMID: 27370177]
[56]
Sathe, A.; Nawroth, R. Targeting the PI3K/AKT/mTOR pathway in bladder cancer. In: Urothelial Carcinoma; Springer, 2018, pp. 335-350.
[57]
Xia, J.; Zeng, M.; Zhu, H.; Chen, X.; Weng, Z.; Li, S. Emerging role of Hippo signalling pathway in bladder cancer. J. Cell. Mol. Med., 2018, 22(1), 4-15.
[http://dx.doi.org/10.1111/jcmm.13293] [PMID: 28782275]
[58]
Mazzola, C.R.; Chin, J. Targeting the VEGF pathway in metastatic bladder cancer. Expert Opin. Investig. Drugs, 2015, 24(7), 913-927.
[http://dx.doi.org/10.1517/13543784.2015.1041588] [PMID: 26098435]
[59]
Mouw, K.W. DNA repair pathway alterations in bladder cancer. Cancers (Basel), 2017, 9(4), 28.
[http://dx.doi.org/10.3390/cancers9040028] [PMID: 28346378]
[60]
Saini, S.; Arora, S.; Majid, S.; Shahryari, V.; Chen, Y.; Deng, G.; Yamamura, S.; Ueno, K.; Dahiya, R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev. Res. (Phila.), 2011, 4(10), 1698-1709.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0267] [PMID: 21836020]
[61]
Nordin, M.; Bergman, D.; Halje, M.; Engström, W.; Ward, A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif., 2014, 47(3), 189-199.
[http://dx.doi.org/10.1111/cpr.12106] [PMID: 24738971]
[62]
Zamani, P.; Oskuee, R.K.; Atkin, S.L.; Navashenaq, J.G.; Sahebkar, A. MicroRNAs as important regulators of the NLRP3 inflammasome. Prog. Biophys. Mol. Biol., 2020, 150, 50-61.
[PMID: 31100298]
[63]
Mohajeri, M.; Banach, M.; Atkin, S.L.; Butler, A.E.; Ruscica, M.; Watts, G.F.; Sahebkar, A. MicroRNAs: Novel molecular targets and response modulators of statin therapy. Trends Pharmacol. Sci., 2018, 39(11), 967-981.
[http://dx.doi.org/10.1016/j.tips.2018.09.005] [PMID: 30249403]
[64]
Mirzaei, H.; Masoudifar, A.; Sahebkar, A.; Zare, N.; Sadri Nahand, J.; Rashidi, B.; Mehrabian, E.; Mohammadi, M.; Mirzaei, H.R.; Jaafari, M.R. MicroRNA: A novel target of curcumin in cancer therapy. J. Cell. Physiol., 2018, 233(4), 3004-3015.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[65]
Lelli, D.; Pedone, C.; Majeed, M.; Sahebkar, A. Curcumin and lung cancer: The role of microRNAs. Curr. Pharm. Des., 2017, 23(23), 3440-3444.
[http://dx.doi.org/10.2174/1381612823666170109144818] [PMID: 28067164]
[66]
Lelli, D.; Pedone, C.; Sahebkar, A. Curcumin and treatment of melanoma: The potential role of microRNAs. Biomed. Pharmacother., 2017, 88, 832-834.
[http://dx.doi.org/10.1016/j.biopha.2017.01.078] [PMID: 28167449]
[67]
Momtazi, A.A.; Derosa, G.; Maffioli, P.; Banach, M.; Sahebkar, A. Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol. Diagn. Ther., 2016, 20(4), 335-345.
[http://dx.doi.org/10.1007/s40291-016-0202-7] [PMID: 27241179]
[68]
Xu, R.; Li, H.; Wu, S.; Qu, J.; Yuan, H.; Zhou, Y.; Lu, Q. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53. Int. Urol. Nephrol., 2019, 51(10), 1771-1779.
[http://dx.doi.org/10.1007/s11255-019-02210-5] [PMID: 31236854]
[69]
Papadogianni, D.; Soulitzis, N.; Delakas, D.; Spandidos, D.A. Expression of p53 family genes in urinary bladder cancer: correlation with disease aggressiveness and recurrence. Tumour Biol., 2014, 35(3), 2481-2489.
[http://dx.doi.org/10.1007/s13277-013-1328-4] [PMID: 24213852]
[70]
Wang, K.; Tan, S-L.; Lu, Q.; Xu, R.; Cao, J.; Wu, S-Q.; Wang, Y-H.; Zhao, X-K.; Zhong, Z-H. Curcumin suppresses microRNA-7641-mediated regulation of p16 expression in bladder cancer. Am. J. Chin. Med., 2018, 46(6), 1357-1368.
[http://dx.doi.org/10.1142/S0192415X18500714] [PMID: 30149755]
[71]
Yang, D-G.; Liu, L.; Zheng, X-Y. Cyclin-dependent kinase inhibitor p16(INK4a) and telomerase may co-modulate endothelial progenitor cells senescence. Ageing Res. Rev., 2008, 7(2), 137-146.
[http://dx.doi.org/10.1016/j.arr.2008.02.001] [PMID: 18343732]
[72]
Roos, F.; Binder, K.; Rutz, J.; Maxeiner, S.; Bernd, A.; Kippenberger, S.; Zöller, N.; Chun, F.K-H.; Juengel, E.; Blaheta, R.A. The antitumor effect of curcumin in urothelial cancer cells is enhanced by light exposure in vitro. Evid. Based Complement. Alternat. Med., 2019, 2019, 6374940
[http://dx.doi.org/10.1155/2019/6374940]
[73]
Hesari, A.; Ghasemi, F.; Cicero, A.F.G.; Mohajeri, M.; Rezaei, O.; Hayat, S.M.G.; Sahebkar, A. Berberine: A potential adjunct for the treatment of gastrointestinal cancers? J. Cell. Biochem., 2018, 119(12), 9655-9663.
[http://dx.doi.org/10.1002/jcb.27392] [PMID: 30125974]
[74]
Herr, H.W.; Morales, A. History of bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J. Urol., 2008, 179(1), 53-56.
[http://dx.doi.org/10.1016/j.juro.2007.08.122] [PMID: 17997439]
[75]
Morales, A.; Eidinger, D.; Bruce, A.W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol., 1976, 116(2), 180-183.
[http://dx.doi.org/10.1016/S0022-5347(17)58737-6] [PMID: 820877]
[76]
Kamat, A.M.; Tharakan, S.T.; Sung, B.; Aggarwal, B.B. Curcumin potentiates the antitumor effects of Bacillus Calmette-Guerin against bladder cancer through the downregulation of NF-kappaB and upregulation of TRAIL receptors. Cancer Res., 2009, 69(23), 8958-8966.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2045] [PMID: 19903839]
[77]
Zong, H.; Wang, F.; Fan, Q.X.; Wang, L.X. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol. Biol. Rep., 2012, 39(4), 4803-4808.
[http://dx.doi.org/10.1007/s11033-011-1273-5] [PMID: 21947854]
[78]
Gonçalves, Vde.P.; Ortega, A.A.C.; Guimarães, M.R.; Curylofo, F.A.; Rossa Junior, C.; Ribeiro, D.A.; Spolidorio, L.C. Chemopreventive activity of systemically administered curcumin on oral cancer in the 4-nitroquinoline 1-oxide model. J. Cell. Biochem., 2015, 116(5), 787-796.
[http://dx.doi.org/10.1002/jcb.25035] [PMID: 25510836]
[79]
Lipinski, M.; Parks, D.R.; Rouse, R.V.; Herzenberg, L.A. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc. Natl. Acad. Sci. USA, 1981, 78(8), 5147-5150.
[http://dx.doi.org/10.1073/pnas.78.8.5147] [PMID: 7029529]
[80]
McDougall, A.R.; Tolcos, M.; Hooper, S.B.; Cole, T.J.; Wallace, M.J. Trop2: from development to disease. Dev. Dyn., 2015, 244(2), 99-109.
[http://dx.doi.org/10.1002/dvdy.24242] [PMID: 25523132]
[81]
Cubas, R.; Li, M.; Chen, C.; Yao, Q. Trop2: a possible therapeutic target for late stage epithelial carcinomas. Biochim. Biophys. Acta, 2009, 1796(2), 309-314.
[PMID: 19683559]
[82]
Ning, S.; Liang, N.; Liu, B.; Chen, X.; Pang, Q.; Xin, T. TROP2 expression and its correlation with tumor proliferation and angiogenesis in human gliomas. Neurol. Sci., 2013, 34(10), 1745-1750.
[http://dx.doi.org/10.1007/s10072-013-1326-8] [PMID: 23397225]
[83]
Fong, D.; Moser, P.; Krammel, C.; Gostner, J.M.; Margreiter, R.; Mitterer, M.; Gastl, G.; Spizzo, G. High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br. J. Cancer, 2008, 99(8), 1290-1295.
[http://dx.doi.org/10.1038/sj.bjc.6604677] [PMID: 18813308]
[84]
Pau Ni, I.B.; Zakaria, Z.; Muhammad, R.; Abdullah, N.; Ibrahim, N.; Aina Emran, N.; Hisham Abdullah, N.; Syed Hussain, S.N. Gene expression patterns distinguish breast carcinomas from normal breast tissues: the Malaysian context. Pathol. Res. Pract., 2010, 206(4), 223-228.
[http://dx.doi.org/10.1016/j.prp.2009.11.006] [PMID: 20097481]
[85]
Ohmachi, T.; Tanaka, F.; Mimori, K.; Inoue, H.; Yanaga, K.; Mori, M. Clinical significance of TROP2 expression in colorectal cancer. Clin. Cancer Res., 2006, 12(10), 3057-3063.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1961] [PMID: 16707602]
[86]
Trerotola, M.; Jernigan, D.L.; Liu, Q.; Siddiqui, J.; Fatatis, A.; Languino, L.R. Trop-2 promotes prostate cancer metastasis by modulating β(1) integrin functions. Cancer Res., 2013, 73(10), 3155-3167.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3266] [PMID: 23536555]
[87]
Zhang, L.; Yang, G.; Zhang, R.; Dong, L.; Chen, H.; Bo, J.; Xue, W.; Huang, Y. Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells. Int. J. Oncol., 2018, 53(2), 515-526.
[http://dx.doi.org/10.3892/ijo.2018.4423] [PMID: 29901071]
[88]
Afsharmoghadam, N.; Haghighatian, Z.; Mazdak, H.; Mirkheshti, N.; Mehrabi Koushki, R.; Alavi, S.A. Concentration-dependent effects of Curcumin on 5-fluorouracil efficacy in bladder cancer cells. Asian Pac. J. Cancer Prev., 2017, 18(12), 3225-3230.
[PMID: 29281876]
[89]
Suryawanshi, A.; Tadagavadi, R.K.; Swafford, D.; Manicassamy, S. Modulation of inflammatory responses by Wnt/β-catenin signaling in dendritic cells: A novel immunotherapy target for autoimmunity and cancer. Front. Immunol., 2016, 7, 460.
[http://dx.doi.org/10.3389/fimmu.2016.00460] [PMID: 27833613]
[90]
Rodriguez-Aznar, E.; Wiesmüller, L.; Sainz, B., Jr; Hermann, P.C. EMT and stemness-key players in pancreatic cancer stem cells. Cancers (Basel), 2019, 11(8), 1136.
[http://dx.doi.org/10.3390/cancers11081136] [PMID: 31398893]
[91]
Hsieh, S-L.; Hsieh, S.; Lai, P-Y.; Wang, J-J.; Li, C-C.; Wu, C-C. Carnosine suppresses human colorectal cell migration and intravasation by regulating EMT and MMP expression. Am. J. Chin. Med., 2019, 47(2), 477-494.
[http://dx.doi.org/10.1142/S0192415X19500241] [PMID: 30909731]
[92]
Basu, S.; Cheriyamundath, S.; Ben-Ze’ev, A. Cell-cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000 Res., 2018, 7, 7.
[http://dx.doi.org/10.12688/f1000research.15782.1] [PMID: 30271576]
[93]
Liang, Z.; Lu, L.; Mao, J.; Li, X.; Qian, H.; Xu, W. Curcumin reversed chronic tobacco smoke exposure induced urocystic EMT and acquisition of cancer stem cells properties via Wnt/β-catenin. Cell Death Dis., 2017, 8(10), e3066
[http://dx.doi.org/10.1038/cddis.2017.452] [PMID: 28981096]
[94]
Shi, J.; Wang, Y.; Jia, Z.; Gao, Y.; Zhao, C.; Yao, Y. Curcumin inhibits bladder cancer progression via regulation of β-catenin expression. Tumour Biol., 2017, 39(7), 1010428317702548
[http://dx.doi.org/10.1177/1010428317702548] [PMID: 28705118]
[95]
Chang, L.; Karin, M. Mammalian MAP kinase signalling cascades. Nature, 2001, 410(6824), 37-40.
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[96]
Zhong, C.Y.; Zhou, Y.M.; Douglas, G.C.; Witschi, H.; Pinkerton, K.E. MAPK/AP-1 signal pathway in tobacco smoke-induced cell proliferation and squamous metaplasia in the lungs of rats. Carcinogenesis, 2005, 26(12), 2187-2195.
[http://dx.doi.org/10.1093/carcin/bgi189] [PMID: 16051644]
[97]
Zhao, J.; Harper, R.; Barchowsky, A.; Di, Y.P. Identification of multiple MAPK-mediated transcription factors regulated by tobacco smoke in airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 293(2), L480-L490.
[http://dx.doi.org/10.1152/ajplung.00345.2006] [PMID: 17496060]
[98]
Geng, H.; Zhao, L.; Liang, Z.; Zhang, Z.; Xie, D.; Bi, L.; Wang, Y.; Zhang, T.; Cheng, L.; Yu, D.; Zhong, C. ERK5 positively regulates cigarette smoke-induced urocystic epithelial-mesenchymal transition in SV‑40 immortalized human urothelial cells. Oncol. Rep., 2015, 34(3), 1581-1588.
[http://dx.doi.org/10.3892/or.2015.4130] [PMID: 26177962]
[99]
Liu, Z.; Liu, J.; Zhao, L.; Geng, H.; Ma, J.; Zhang, Z.; Yu, D.; Zhong, C. Curcumin reverses benzidine-induced epithelial-mesenchymal transition via suppression of ERK5/AP-1 in SV-40 immortalized human urothelial cells. Int. J. Oncol., 2017, 50(4), 1321-1329.
[http://dx.doi.org/10.3892/ijo.2017.3887] [PMID: 28259934]
[100]
Tan, B.J.; Chiu, G.N. Role of oxidative stress, endoplasmic reticulum stress and ERK activation in triptolide-induced apoptosis. Int. J. Oncol., 2013, 42(5), 1605-1612.
[http://dx.doi.org/10.3892/ijo.2013.1843] [PMID: 23467622]
[101]
Zhuang, S.; Schnellmann, R.G. A death-promoting role for extracellular signal-regulated kinase. J. Pharmacol. Exp. Ther., 2006, 319(3), 991-997.
[http://dx.doi.org/10.1124/jpet.106.107367] [PMID: 16801453]
[102]
Park, B.H.; Lim, J.E.; Jeon, H.G.; Seo, S.I.; Lee, H.M.; Choi, H.Y.; Jeon, S.S.; Jeong, B.C. Curcumin potentiates antitumor activity of cisplatin in bladder cancer cell lines via ROS-mediated activation of ERK1/2. Oncotarget, 2016, 7(39), 63870-63886.
[http://dx.doi.org/10.18632/oncotarget.11563] [PMID: 27564099]
[103]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), 5.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[104]
Li, M.; Cai, Y.; Zhao, H.; Xu, Z.; Sun, Q.; Luo, M.; Gu, L.; Meng, M.; Han, X.; Sun, H. Overexpression of HMGB3 protein promotes cell proliferation, migration and is associated with poor prognosis in urinary bladder cancer patients. Tumour Biol., 2015, 36(6), 4785-4792.
[http://dx.doi.org/10.1007/s13277-015-3130-y] [PMID: 25647262]
[105]
Sun, X.; Deng, Q.F.; Liang, Z.F.; Zhang, Z.Q.; Zhao, L.; Geng, H.; Xie, D.D.; Wang, Y.; Yu, D.X.; Zhong, C.Y. Curcumin reverses benzidine-induced cell proliferation by suppressing ERK1/2 pathway in human bladder cancer T24 cells. Exp. Toxicol. Pathol., 2016, 68(4), 215-222.
[http://dx.doi.org/10.1016/j.etp.2015.12.003] [PMID: 26776764]
[106]
Takebe, N.; Harris, P.J.; Warren, R.Q.; Ivy, S.P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol., 2011, 8(2), 97-106.
[http://dx.doi.org/10.1038/nrclinonc.2010.196] [PMID: 21151206]
[107]
Karamboulas, C.; Ailles, L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim. Biophys. Acta, 2013, 1830(2), 2481-2495.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.008] [PMID: 23196196]
[108]
Wang, D.; Kong, X.; Li, Y.; Qian, W.; Ma, J.; Wang, D.; Yu, D.; Zhong, C. Curcumin inhibits bladder cancer stem cells by suppressing Sonic Hedgehog pathway. Biochem. Biophys. Res. Commun., 2017, 493(1), 521-527.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.158] [PMID: 28870814]
[109]
Nakanishi, M.; Rosenberg, D.W. Roles of cPLA2α and arachidonic acid in cancer. Biochim. Biophys. Acta BBA)-. Mol. Cell Biol. Lipids, 2006, 1761, 1335-1343.
[http://dx.doi.org/10.1016/j.bbalip.2006.09.005]
[110]
Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer, 2007, 121(11), 2381-2386.
[http://dx.doi.org/10.1002/ijc.23192] [PMID: 17893868]
[111]
Marks, F.; Müller-Decker, K.; Fürstenberger, G. A causal relationship between unscheduled eicosanoid signaling and tumor development: cancer chemoprevention by inhibitors of arachidonic acid metabolism. Toxicology, 2000, 153(1-3), 11-26.
[http://dx.doi.org/10.1016/S0300-483X(00)00301-2] [PMID: 11090944]
[112]
Matsuo, T.; Miyata, Y.; Mitsunari, K.; Yasuda, T.; Ohba, K.; Sakai, H. Pathological significance and prognostic implications of heme oxygenase 1 expression in non-muscle-invasive bladder cancer: Correlation with cell proliferation, angiogenesis, lymphangiogenesis and expression of VEGFs and COX-2. Oncol. Lett., 2017, 13(1), 275-280.
[http://dx.doi.org/10.3892/ol.2016.5416] [PMID: 28123555]
[113]
Wan, G-X.; Chen, P.; Yu, X-J.; Di, Q-S.; Yu, Y-D.; Lei, J-H.; Tai, Y-Y.; Cao, F-J. Cyclooxygenase-2 polymorphisms and bladder cancer risk: a meta-analysis based on case-control studies. Int. J. Clin. Exp. Med., 2015, 8(3), 3935-3945.
[PMID: 26064295]
[114]
Park, E-J.; Cheenpracha, S.; Chang, L.C.; Kondratyuk, T.P.; Pezzuto, J.M. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2′-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera. Nutr. Cancer, 2011, 63(6), 971-982.
[http://dx.doi.org/10.1080/01635581.2011.589960] [PMID: 21774591]
[115]
Asting, A.G.; Carén, H.; Andersson, M.; Lönnroth, C.; Lagerstedt, K.; Lundholm, K. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status. BMC Cancer, 2011, 11, 238.
[http://dx.doi.org/10.1186/1471-2407-11-238] [PMID: 21668942]
[116]
Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-[κ]B activity. Annu. Rev. Immunol., 2000, 18, 621-663.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.621] [PMID: 10837071]
[117]
Xia, Y.; Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res., 2014, 2(9), 823-830.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0112] [PMID: 25187272]
[118]
Shrestha, S.; Zhu, J.; Wang, Q.; Du, X.; Liu, F.; Jiang, J.; Song, J.; Xing, J.; Sun, D.; Hou, Q.; Peng, Y.; Zhao, J.; Sun, X.; Song, X. Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKβ/NF-κB/COX-2 signaling pathway. Int. J. Oncol., 2017, 51(4), 1249-1260.
[http://dx.doi.org/10.3892/ijo.2017.4097] [PMID: 28849163]
[119]
Wang, W.; Li, D.; Xiang, L.; Lv, M.; Tao, L.; Ni, T.; Deng, J.; Gu, X.; Masatara, S.; Liu, Y.; Zhou, Y. TIMP-2 inhibits metastasis and predicts prognosis of colorectal cancer via regulating MMP-9. Cell Adhes. Migr., 2019, 13(1), 273-284.
[http://dx.doi.org/10.1080/19336918.2019.1639303] [PMID: 31293204]
[120]
Shi, J.; Zhang, X.; Shi, T.; Li, H. Antitumor effects of curcumin in human bladder cancer in vitro. Oncol. Lett., 2017, 14(1), 1157-1161.
[http://dx.doi.org/10.3892/ol.2017.6205] [PMID: 28693289]
[121]
Giet, R.; Petretti, C.; Prigent, C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol., 2005, 15(5), 241-250.
[http://dx.doi.org/10.1016/j.tcb.2005.03.004] [PMID: 15866028]
[122]
Fraizer, G.C.; Diaz, M.F.; Lee, I.L.; Grossman, H.B.; Sen, S. Aurora-A/STK15/BTAK enhances chromosomal instability in bladder cancer cells. Int. J. Oncol., 2004, 25(6), 1631-1639.
[http://dx.doi.org/10.3892/ijo.25.6.1631] [PMID: 15547700]
[123]
Sen, S.; Zhou, H.; Zhang, R.D.; Yoon, D.S.; Vakar-Lopez, F.; Ito, S.; Jiang, F.; Johnston, D.; Grossman, H.B.; Ruifrok, A.C.; Katz, R.L.; Brinkley, W.; Czerniak, B. Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J. Natl. Cancer Inst., 2002, 94(17), 1320-1329.
[http://dx.doi.org/10.1093/jnci/94.17.1320] [PMID: 12208897]
[124]
Liu, H.S.; Ke, C.S.; Cheng, H.C.; Huang, C.Y.; Su, C.L. Curcumin-induced mitotic spindle defect and cell cycle arrest in human bladder cancer cells occurs partly through inhibition of aurora A. Mol. Pharmacol., 2011, 80(4), 638-646.
[http://dx.doi.org/10.1124/mol.111.072512] [PMID: 21757545]
[125]
Zhang, S.N.; Yong, Q.; Wu, X.L.; Liu, X.P. [Synergism inhibition of curcumin combined with cisplatin on T24 bladder carcinoma cells and its related mechanism]. Zhong Yao Cai, 2014, 37(11), 2043-2046.
[PMID: 26027129]
[126]
Pichu, S.; Krishnamoorthy, S.; Shishkov, A.; Zhang, B.; McCue, P.; Ponnappa, B.C. Knockdown of Ki-67 by dicer-substrate small interfering RNA sensitizes bladder cancer cells to curcumin-induced tumor inhibition. PLoS One, 2012, 7(11), e48567-e48567.
[http://dx.doi.org/10.1371/journal.pone.0048567] [PMID: 23152782]
[127]
Park, C.; Kim, G.Y.; Kim, G.D.; Choi, B.T.; Park, Y.M.; Choi, Y.H. Induction of G2/M arrest and inhibition of cyclooxygenase-2 activity by curcumin in human bladder cancer T24 cells. Oncol. Rep., 2006, 15(5), 1225-1231.
[http://dx.doi.org/10.3892/or.15.5.1225] [PMID: 16596191]
[128]
Wang, J.; Wang, Z.; Wang, H.; Zhao, J.; Zhang, Z. Curcumin induces apoptosis in EJ bladder cancer cells via modulating c-Myc and PI3K/Akt signaling pathway. World J. Oncol., 2011, 2(3), 113-122.
[http://dx.doi.org/10.4021/wjon335w] [PMID: 29147235]
[129]
Tønnesen, H.H.; Másson, M.; Loftsson, T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int. J. Pharm., 2002, 244(1-2), 127-135.
[http://dx.doi.org/10.1016/S0378-5173(02)00323-X] [PMID: 12204572]
[130]
Rocks, N.; Bekaert, S.; Coia, I.; Paulissen, G.; Guéders, M.; Evrard, B.; Van Heugen, J-C.; Chiap, P.; Foidart, J-M.; Noël, A.; Cataldo, D. Curcumin-cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. Br. J. Cancer, 2012, 107(7), 1083-1092.
[http://dx.doi.org/10.1038/bjc.2012.379] [PMID: 22929882]
[131]
Thuillier, R.; Allain, G.; Giraud, S.; Saintyves, T.; Delpech, P.O.; Couturier, P.; Billault, C.; Marchand, E.; Vaahtera, L.; Parkkinen, J.; Hauet, T. Cyclodextrin curcumin formulation improves outcome in a preclinical pig model of marginal kidney transplantation. Am. J. Transplant., 2014, 14(5), 1073-1083.
[http://dx.doi.org/10.1111/ajt.12661] [PMID: 24618351]
[132]
Falke, J.; Parkkinen, J.; Vaahtera, L.; Hulsbergen-van de Kaa, C.; Oosterwijk, E.; Witjes, J. Curcumin as treatment for bladder cancer: A preclinical study of cyclodextrin-curcumin complex and BCG as intravesical treatment in an orthotopic bladder cancer rat model. BioMed Res. Int., 2018, 2018, Article ID 9634902
[http://dx.doi.org/10.1155/2018/9634902]
[133]
Byun, H.M.; Wong, H.L.; Birnstein, E.A.; Wolff, E.M.; Liang, G.; Yang, A.S. Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res., 2007, 67(22), 10753-10758.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0329] [PMID: 18006818]
[134]
Weischenfeldt, J.; Dubash, T.; Drainas, A.P.; Mardin, B.R.; Chen, Y.; Stütz, A.M.; Waszak, S.M.; Bosco, G.; Halvorsen, A.R.; Raeder, B.; Efthymiopoulos, T.; Erkek, S.; Siegl, C.; Brenner, H.; Brustugun, O.T.; Dieter, S.M.; Northcott, P.A.; Petersen, I.; Pfister, S.M.; Schneider, M.; Solberg, S.K.; Thunissen, E.; Weichert, W.; Zichner, T.; Thomas, R.; Peifer, M.; Helland, A.; Ball, C.R.; Jechlinger, M.; Sotillo, R.; Glimm, H.; Korbel, J.O. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat. Genet., 2017, 49(1), 65-74.
[http://dx.doi.org/10.1038/ng.3722] [PMID: 27869826]
[135]
Dong, Y.; Li, J.; Han, F.; Chen, H.; Zhao, X.; Qin, Q.; Shi, R.; Liu, J. High IGF2 expression is associated with poor clinical outcome in human ovarian cancer. Oncol. Rep., 2015, 34(2), 936-942.
[http://dx.doi.org/10.3892/or.2015.4048] [PMID: 26063585]
[136]
Brouwer-Visser, J.; Huang, G.S. IGF2 signaling and regulation in cancer. Cytokine Growth Factor Rev., 2015, 26(3), 371-377.
[http://dx.doi.org/10.1016/j.cytogfr.2015.01.002] [PMID: 25704323]
[137]
Tian, B.; Zhao, Y.; Liang, T.; Ye, X.; Li, Z.; Yan, D.; Fu, Q.; Li, Y. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. J. Drug Target., 2017, 25(7), 626-636.
[http://dx.doi.org/10.1080/1061186X.2017.1306535] [PMID: 28286973]
[138]
Pan, Z.J.; Deng, N.; Zou, Z.H.; Chen, G.X. The effect of curcumin on bladder tumor in rat model. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(4), 884-889.
[PMID: 28272691]
[139]
Liang, Z.; Xie, W.; Wu, R.; Geng, H.; Zhao, L.; Xie, C.; Li, X.; Zhu, M.; Zhu, W.; Zhu, J.; Huang, C.; Ma, X.; Wu, J.; Geng, S.; Zhong, C.; Han, H. Inhibition of tobacco smoke-induced bladder MAPK activation and epithelial-mesenchymal transition in mice by curcumin. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4503-4513.
[PMID: 26191140]
[140]
Dong, J.T.; Chen, C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell. Mol. Life Sci., 2009, 66(16), 2691-2706.
[http://dx.doi.org/10.1007/s00018-009-0045-z] [PMID: 19448973]
[141]
Tetreault, M.P.; Yang, Y.; Katz, J.P. Krüppel-like factors in cancer. Nat. Rev. Cancer, 2013, 13(10), 701-713.
[http://dx.doi.org/10.1038/nrc3582] [PMID: 24060862]
[142]
Bell, S.M.; Zhang, L.; Mendell, A.; Xu, Y.; Haitchi, H.M.; Lessard, J.L.; Whitsett, J.A. Kruppel-like factor 5 is required for formation and differentiation of the bladder urothelium. Dev. Biol., 2011, 358(1), 79-90.
[http://dx.doi.org/10.1016/j.ydbio.2011.07.020] [PMID: 21803035]
[143]
Chen, C.; Benjamin, M.S.; Sun, X.; Otto, K.B.; Guo, P.; Dong, X.Y.; Bao, Y.; Zhou, Z.; Cheng, X.; Simons, J.W.; Dong, J.T. KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int. J. Cancer, 2006, 118(6), 1346-1355.
[http://dx.doi.org/10.1002/ijc.21533] [PMID: 16184550]
[144]
Zhao, D.; Zhi, X.; Zhou, Z.; Chen, C. TAZ antagonizes the WWP1-mediated KLF5 degradation and promotes breast cell proliferation and tumorigenesis. Carcinogenesis, 2012, 33(1), 59-67.
[http://dx.doi.org/10.1093/carcin/bgr242] [PMID: 22045023]
[145]
Zhi, X.; Zhao, D.; Zhou, Z.; Liu, R.; Chen, C. YAP promotes breast cell proliferation and survival partially through stabilizing the KLF5 transcription factor. Am. J. Pathol., 2012, 180(6), 2452-2461.
[http://dx.doi.org/10.1016/j.ajpath.2012.02.025] [PMID: 22632819]
[146]
Gao, Y.; Shi, Q.; Xu, S.; Du, C.; Liang, L.; Wu, K.; Wang, K.; Wang, X.; Chang, L.S.; He, D.; Guo, P. Curcumin promotes KLF5 proteasome degradation through downregulating YAP/TAZ in bladder cancer cells. Int. J. Mol. Sci., 2014, 15(9), 15173-15187.
[http://dx.doi.org/10.3390/ijms150915173] [PMID: 25170806]
[147]
Ahmadi, Z.; Ashrafizadeh, M. Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol., 2020, 34(1), 11-19.
[PMID: 31283051]
[148]
Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. NRF2 and the hallmarks of cancer. Cancer Cell, 2018, 34(1), 21-43.
[http://dx.doi.org/10.1016/j.ccell.2018.03.022] [PMID: 29731393]
[149]
Khor, T.O.; Huang, M.T.; Kwon, K.H.; Chan, J.Y.; Reddy, B.S.; Kong, A.N. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res., 2006, 66(24), 11580-11584.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3562] [PMID: 17178849]
[150]
Wu, S.Y.; Lee, Y.R.; Huang, C.C.; Li, Y.Z.; Chang, Y.S.; Yang, C.Y.; Wu, J.D.; Liu, Y.W. Curcumin-induced heme oxygenase-1 expression plays a negative role for its anti-cancer effect in bladder cancers. Food Chem. Toxicol., 2012, 50(10), 3530-3536.
[http://dx.doi.org/10.1016/j.fct.2012.06.045] [PMID: 22771723]
[151]
Watanabe, F.T.; Chade, D.C.; Reis, S.T.; Piantino, C.; Dall’ Oglio, M.F.; Srougi, M.; Leite, K.R. Curcumin, but not Prima-1, decreased tumor cell proliferation in the syngeneic murine orthotopic bladder tumor model. Clinics (São Paulo), 2011, 66(12), 2121-2124.
[http://dx.doi.org/10.1590/S1807-59322011001200019] [PMID: 22189739]
[152]
Leite, K.R.; Chade, D.C.; Sanudo, A.; Sakiyama, B.Y.; Batocchio, G.; Srougi, M. Effects of curcumin in an orthotopic murine bladder tumor model. Int. Braz J Urol, 2009, 35(5), 599-606.
[http://dx.doi.org/10.1590/S1677-55382009000500012] [PMID: 19860939]
[153]
Chintharlapalli, S.; Papineni, S.; Ramaiah, S.K.; Safe, S. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res., 2007, 67(6), 2816-2823.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3735] [PMID: 17363604]
[154]
Abdelrahim, M.; Baker, C.H.; Abbruzzese, J.L.; Safe, S. Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J. Natl. Cancer Inst., 2006, 98(12), 855-868.
[http://dx.doi.org/10.1093/jnci/djj232] [PMID: 16788159]
[155]
Abdelrahim, M.; Baker, C.H.; Abbruzzese, J.L.; Sheikh-Hamad, D.; Liu, S.; Cho, S.D.; Yoon, K.; Safe, S. Regulation of vascular endothelial growth factor receptor-1 expression by specificity proteins 1, 3, and 4 in pancreatic cancer cells. Cancer Res., 2007, 67(7), 3286-3294.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3831] [PMID: 17409437]
[156]
Chadalapaka, G.; Jutooru, I.; Chintharlapalli, S.; Papineni, S.; Smith, R., III; Li, X.; Safe, S. Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res., 2008, 68(13), 5345-5354.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6805] [PMID: 18593936]
[157]
Tian, B.; Wang, Z.; Zhao, Y.; Wang, D.; Li, Y.; Ma, L.; Li, X.; Li, J.; Xiao, N.; Tian, J.; Rodriguez, R. Effects of curcumin on bladder cancer cells and development of urothelial tumors in a rat bladder carcinogenesis model. Cancer Lett., 2008, 264(2), 299-308.
[http://dx.doi.org/10.1016/j.canlet.2008.01.041] [PMID: 18342436]
[158]
Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Control. Release, 2019, 316, 359-380.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.053] [PMID: 31682912]
[159]
Shen, L.; Ji, H.F. Bidirectional interactions between dietary curcumin and gut microbiota. Crit. Rev. Food Sci. Nutr., 2019, 59(18), 2896-2902.
[http://dx.doi.org/10.1080/10408398.2018.1478388] [PMID: 29781709]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 6
Year: 2020
Published on: 14 June, 2020
Page: [667 - 677]
Pages: 11
DOI: 10.2174/1871520620666200203143803
Price: $65

Article Metrics

PDF: 24
HTML: 2