Artificial Polymers made of α-amino Acids - Poly(Amino Acid)s, Pseudo-Poly(Amino Acid)s, Poly(Depsipeptide)s, and Pseudo-Proteins

Author(s): Nino Zavradashvili, Jordi Puiggali, Ramaz Katsarava*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 5 , 2020

Become EABM
Become Reviewer

Abstract:

Degradable polymers (DPs) - “green materials” of the future, have an innumerable use in biomedicine, particularly in the fields of tissue engineering and drug delivery. Among these kind of materials naturally occurring polymers - proteins which constituted one of the most important “bricks of life” - α-amino acids (AAs) are highly suitable. A wide biomedical applicability of proteins is due to special properties such as a high affinity with tissues and releasing AAs upon biodegradation that means a nutritive potential for cells. Along with these positive characteristics proteins as biomedical materials they have some shortcomings, such as batch-to-batch variation, risk of disease transmission, and immune rejection. The last limitation is connected with the molecular architecture of proteins. Furthermore, the content of only peptide bonds in protein molecules significantly restricts their material properties. Artificial polymers with the composition of AAs are by far more promising as degradable biomaterials since they are free from the limitations of proteins retaining at the same time their positive features - a high tissue compatibility and nutritive potential. The present review deals with a brief description of different families of AA-based artificial polymers, such as poly(amino acid)s, pseudo-poly(amino acid)s, polydepsipeptides, and pseudo-proteins - relatively new and broad family of artificial AA-based DPs. Most of these polymers have a different macromolecular architecture than proteins and contain various types of chemical links along with NH-CO bonds that substantially expands properties of materials destined for sophisticated biomedical applications.

Keywords: α-amino acids, artificial polymers, degradable polymers, poly(amino acid)s, pseudo-poly(amino acid)s, polydepsipeptides, pseudo- proteins.

[1]
Luckachan GE, Pillai CK. Biodegradable polymers - a review on recent trends and emerging perspectives. J Polym Environ 2011; 19(3): 637-76.
[http://dx.doi.org/10.1007/s10924-011-0317-1]
[2]
Vert M, Doi Y, Hellwich KH, et al. Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem 2012; 84(2): 377-410.
[http://dx.doi.org/10.1351/PAC-REC-10-12-04]
[3]
Vroman I, Tighzert L. Biodegradable polymers. Materials (Basel) 2009; 2(2): 307-44.
[http://dx.doi.org/10.3390/ma2020307]
[4]
Vasanthi K. Biodegradable polymers - a review. Polym Sci 2017; 3: 1-7.
[5]
Kumar N, Ezra A, Ehrenfroind T, Krasko MY, Domb AJ. Biodegradable polymers, medical applications. In: encyclopedia of polymer science and technology 2003.
[http://dx.doi.org/10.1002/0471440264.pst027]
[6]
Kunduru KR, Basu A, Domb AJ. Biodegradable polymers: medical applications encyclopedia of polymer science and technology 2002 151-22.
[7]
Pişkin E. Biodegradable polymers in medicine Degradable polymers. Dordrecht: Springer 2002; pp. 321-77.
[http://dx.doi.org/10.1007/978-94-017-1217-0_10]
[8]
Guilbert S, Feuilloley P, Fontaine VB. Biodegradable polymers in agricultural applications Biodegradable polymers for industrial applications. CRC Press 2005.
[http://dx.doi.org/10.1533/9781845690762.4.494]
[9]
Bilhalva AF, Finger IS, Pereira RA, Corrêa MN, Burkert Del Pino FA. Utilization of biodegradable polymers in veterinary science and routes of administration: a literature review. J Appl Anim Res 2018; 46(1): 643-9.
[http://dx.doi.org/10.1080/09712119.2017.1378104]
[10]
Siracusa V, Rocculi P, Romani S, Dalla Rosa M. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 2008; 19(12): 634-43.
[http://dx.doi.org/10.1016/j.tifs.2008.07.003]
[11]
Rydz J, Musioł M, Zawidlak-Węgrzyńska B, Sikorska W. Present and Future of Biodegradable Polymers for Food progress Packaging Applications 2018.
[12]
Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, Thakur VK. Recent in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int J Polym Anal Characteriz 2018; 23(4): 383-95.
[http://dx.doi.org/10.1080/1023666X.2018.1455382]
[13]
Gross RA, Kalra B. Biodegradable polymers for the environment. Science 2002; 297(5582): 803-7.
[http://dx.doi.org/10.1126/science.297.5582.803]
[14]
Patel PN, Parmar KG, Nakum AN, et al. Biodegradable polymers: an ecofriendly approach in newer millenium. Asian J Biomed Pharm Sci 2011; 1(3): 1-7.
[15]
Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 2005; 6(1): 1-8.
[http://dx.doi.org/10.1021/bm049700c]
[16]
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000; 21(23): 2335-46.
[http://dx.doi.org/10.1016/S0142-9612(00)00101-0]
[17]
Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001; 221(1-2): 1-22.
[http://dx.doi.org/10.1016/S0378-5173(01)00691-3]
[18]
Ramshaw JA. Biomedical applications of collagens. J Biomed Mater Res B Appl Biomater 2016; 104(4): 665-75.
[http://dx.doi.org/10.1002/jbm.b.33541]
[19]
Muthukumar T, Sreekumar G, Sastry TP, Chamundeeswari M. Collagen as a potential biomaterial in biomedical applications. Rev Adv Mater Sci 2018; 53(1): 29-39.
[http://dx.doi.org/10.1515/rams-2018-0002]
[20]
Davison-Kotler E, Marshall WS, García-Gareta E. Sources of Collagen for biomaterials in skin wound healing. Bioengineering (Basel) 2019; 6: 56.
[http://dx.doi.org/10.3390/bioengineering6030056]
[21]
Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 2012; 37(2): 237-80.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.004]
[22]
Leja K, Lewandowicz G. Polymer biodegradation and biodegradable polymers-a review. Pol J Environ Stud 2010; 19(2)
[23]
Guo B, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 2014; 57(4): 490-500.
[http://dx.doi.org/10.1007/s11426-014-5086-y]
[24]
Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 2003; 5(1): 1-6.
[http://dx.doi.org/10.22203/eCM.v005a01]
[25]
Okada M. Chemical syntheses of biodegradable polymers. Prog Polym Sci 2002; 27(1): 87-133.
[http://dx.doi.org/10.1016/S0079-6700(01)00039-9]
[26]
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007; 32(8-9): 762-98.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017]
[27]
Gilding DK, Reed AM. Biodegradable polymers for use in surgery - polyglycolic/poly (actic acid) homo-and copolymers: 1. Polymer (Guildf) 1979; 20(12): 1459-64.
[http://dx.doi.org/10.1016/0032-3861(79)90009-0]
[28]
Benatti AC, Pattaro AF, Rodrigues AA, et al. Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers Materials for biomedical engineering. Elsevier 2019; pp. 83-116.
[http://dx.doi.org/10.1016/B978-0-12-816901-8.00004-3]
[29]
Katchalski E. Poly-α-amino acids. Adv Protein Chem 1951; 16: 123-85.
[http://dx.doi.org/10.1016/S0065-3233(08)60503-3]
[30]
Katchalski E, Sela M. Synthesis and chemical properties of poly-α-amino acids. Adv Protein Chem 1958; 113: 243-492.
[http://dx.doi.org/10.1016/S0065-3233(08)60600-2]
[31]
Katchalski E. Poly (amino acids): achievements and prospects InPeptides, polypeptides, and proteins-proceedings of the Rehovot symposium on poly (amino acids), polypeptides, and proteins and their biological implications. New York: Wiley 1974; pp. 1-13.
[32]
Khuphe M, Thornton PD. Poly (amino acids). Engineering of Biomaterials for drug delivery systems 2018; 14(8): 1359-74.
[33]
Nathan A, Kohn J. Amino acid derived polymers Biomedical polymers designed to degrade systems. New York: Hanser 1994; p. 117.
[34]
Bamford CH, Elliott A, Hanby WE. Synthetic Polypeptides New York: academic press 1956.
[35]
Kricheldorf HR. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew Chem Int Ed Engl 2006; 45(35): 5752-84.
[http://dx.doi.org/10.1002/anie.200600693]
[36]
Leuchs H. Ueber die Glycin carbonsäure. Ber Dtsch Chem Ges 1906; 39(1): 857-61.
[http://dx.doi.org/10.1002/cber.190603901133]
[37]
González-Aramundiz JV, Lozano MV, Sousa-Herves A, Fernandez-Megia E, Csaba N. Polypeptides and polyaminoacids in drug delivery. Expert Opin Drug Deliv 2012; 9(2): 183-201.
[http://dx.doi.org/10.1517/17425247.2012.647906]
[38]
Sekiguchi H. Mechanism of N-carboxy alpha-amino acid anhydride (NCA) polymerization. Pure Appl Chem 1981; 53(9): 1689-714.
[http://dx.doi.org/10.1351/pac198153091689]
[39]
Puska M, Yli-Urpo A, Vallittu P, Airola K. Synthesis and characterization of polyamide of trans-4-hydroxy-L-proline used as porogen filler in acrylic bone cement. J Biomater Appl 2005; 19(4): 287-301.
[http://dx.doi.org/10.1177/0885328205048044]
[40]
Sidman KR, Schwope AD, Steber WD, Rudolph SE, Poulin SB. Biodegradable, implantable sustained release systems based on glutamic acid copolymers. J Membr Sci 1980; 7(3): 277-91.
[http://dx.doi.org/10.1016/S0376-7388(00)80473-1]
[41]
Sidman KR, Steber WD, Schwope AD, Schnaper GR. Controlled release of macromolecules and pharmaceuticals from synthetic polypeptides based on glutamic acid. Biopolymers 1983; 22(1): 547-56.
[http://dx.doi.org/10.1002/bip.360220167]
[42]
Hu W, Ying M, Zhang S, Wang J. Poly(amino acid)-Based Carrier for Drug Delivery Systems. J Biomed Nanotechnol 2018; 14: 1359-74.
[http://dx.doi.org/10.1166/jbn.2018.2590]
[43]
Yoshida T, Nagasawa T. ε-Poly-L-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 2003; 62(1): 21-6.
[http://dx.doi.org/10.1007/s00253-003-1312-9]
[44]
Kunioka M. Biosynthesis of poly (γ-glutamic acid) from l-glutamine, citric acid and ammonium sulfate in Bacillus subtilis IFO3335. Appl Microbiol Biotechnol 1995; 44(3-4): 501-6.
[http://dx.doi.org/10.1007/BF00169951]
[45]
Wang LL, Chen JT, Wang LF, et al. Conformations and molecular interactions of poly-γ-glutamic acid as a soluble microbial product in aqueous solutions. Sci Rep 2017; 7(1): 12787.
[http://dx.doi.org/10.1038/s41598-017-13152-2]
[46]
Kohn J, Langer R. A new approach to the development of bioerodible polymers for controlled release applications employing naturally occurring amino acids Rutgers: 119-21 Available at: https://www.researchwithrutgers.com/en/publications/newapproach-to-the-development-of-bioerodible-polymers-for-contr
[47]
Zhou QX, Kohn J. Preparation of poly (L-serine ester): a structural analog of conventional poly (L-serine). Macromolecules 1990; 23(14): 3399-406.
[http://dx.doi.org/10.1021/ma00216a002]
[48]
Kohn J, Langer R. Polymerization reactions involving the side chains of alpha-L-amino acids. J Am Chem Soc 1987; 109(3): 817-20.
[http://dx.doi.org/10.1021/ja00237a030]
[49]
Kwon HY, Langer R. Pseudopoly (amino acids): a study of the synthesis and characterization of poly (trans-4-hydroxy-N-acyl-L-proline esters). Macromolecules 1989; 22(8): 3250-5.
[http://dx.doi.org/10.1021/ma00198a010]
[50]
Fiétier I, Le Borgne A, Spassky N. Synthesis of functional polyesters derived from serine. Polym Bull 1990; 24(4): 349-53.
[http://dx.doi.org/10.1007/BF00294086]
[51]
Lim YB, Choi YH, Park JS. A self-destroying polycationic polymer: biodegradable poly (4-hydroxy-L-proline ester). J Am Chem Soc 1999; 121(24): 5633-9.
[http://dx.doi.org/10.1021/ja984012k]
[52]
Brandl H, Gross RA, Lenz RW, Fuller RC. Pseudomonas oleovorans as a source of poly (β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 1988; 54(8): 1977-82.
[http://dx.doi.org/10.1128/AEM.54.8.1977-1982.1988]
[53]
Doi Y, Tamaki A, Kunioka M, Soga K. Biosynthesis of an unusual copolyester (10 mol% 3-hydroxybutyrate and 90 mol% 3-hydroxyvalerate units) in Alcaligenes eutrophus from pentanoic acid. J Chem Soc Chem Commun 1987; (21): 1635-6.
[http://dx.doi.org/10.1039/c39870001635]
[54]
Katsarava R, Gomurashvili Z. Biodegradable Polymers composed of naturally occurring α-amino acids Handbook of biodegradable polymers-isolation, synthesis, characterization and applications Wiley-VCH: Verlag GmbH & Co KGaA 2011.
[http://dx.doi.org/10.1002/9783527635818.ch5]
[55]
Katsarava R. Active polycondensation: from peptide chemistry to amino acid based biodegradable polymers 2003 199(1): 419-30. Weinheim: WILEY‐VCH Verlag.
[http://dx.doi.org/10.1002/masy.200350935]
[56]
Katsarava R, Kharadze D, Avalishvili L. Synthesis of polyamides based on aspartic and glutamic acids. Vysokomolek Soed Ser B 1986; 27: 518-23.
[57]
Greenstein JP, Winitz M. Chemistry of the amino acids. New York, London: John Wiley & Sons, Inc. 1961.
[58]
Katsarava RD, Kharadze DP, Japaridze NS, Omiadze TN, Avalishvili LM, Zaalishvili MM. Hetero chain polymers based on natural amino acids. Synthesis of polyamides from Nα, Nε bis (trimethylsilyl) lysine alkyl esters. Die Makromolekulare Chemie. Macromol Chem Phys 1985; 186(5): 939-54.
[http://dx.doi.org/10.1002/macp.1985.021860506]
[59]
Katsarava R, Vygodsky YS. Silylation in the chemistry of polymers. Poly Yearbook Harwood Pub London 1994; 11: 193-228.
[60]
Morgan PW. Condensation polymers: by interfacial and solution methods. Interscience Publishers: John Wiley & Sons New York, London, Sydney 1965.
[61]
Bou JJ, Munoz-Guerra S. Synthesis and characterization of a polytartaramide based on L-lysine. Polymer (Guildf) 1995; 36(1): 181-6.
[http://dx.doi.org/10.1016/0032-3861(95)90690-4]
[62]
Couffin Hoarau AC, Boustta M, Vert M. Enlarging the library of poly (llysine citramide) polyelectrolytic drug carriers. J Polym Sci A Polym Chem 2001; 39(20): 3475-84.
[http://dx.doi.org/10.1002/pola.1329]
[63]
Boustta M, Huguet J, Vert M. New functional polyamides derived from citric acid and llysine: synthesis and characterization. Makromolekulare Chemie Macromol Symposia 1991; 47(1): 345-55.
[64]
Chu CC, Katsarava R. inventors; Cornell Research Foundation Inc., assignee. Elastomeric functional biodegradable copolyester amides and copolyester urethanes. United States patents US 6503538 2003 Jan 7, US 7304122 2007 Dec 4, US 7408018 2008 Aug 5.
[65]
Jokhadze G, Machaidze M, Panosyan H, Chu CC, Katsarava R. Synthesis and characterization of functional elastomeric poly (ester amide) co-polymers. J Biomater Sci Polym Ed 2007; 18(4): 411-38.
[http://dx.doi.org/10.1163/156856207780425031]
[66]
Katsarava R, Tugushi D, Gomurashvili ZD. inventors; MediVas LLC., assignee. Poly (ester urea) polymers and methods of use. United States patent US 8765164 2014 Jan.
[67]
Katsarava R, Kharadze D, Avalishvili L, Omiadze T. Synthesis of polyamides with dipeptides fragments formed during the polymeric chain growth. Bull Acad Sci Georgia 1988; 134: 121-4.
[68]
Bechaouch S, Coutin B, Sekiguchi H. Novel polyamides from Lcystine. Macromol Rapid Commun 1994; 15(2): 125-31.
[http://dx.doi.org/10.1002/marc.1994.030150206]
[69]
Espartero JL, Coutin B, Sekiguchi H. Synthesis of a polyamide from L-aspartic acid and L-lysine. Polym Bull 1993; 30(5): 495-500.
[http://dx.doi.org/10.1007/BF00296466]
[70]
Sekiguchi H, Coutin B, And SB, Gachard I. Synthesis and structure of polyisopeptides. Macromol Symp 1994; 84(1): 55-64.
[http://dx.doi.org/10.1002/masy.19940840109]
[71]
Bechaouch S, Coutin B, Sekiguchi H. Improvement of the synthesis of poly (Lcystyl Lcystine): a new biodegradable polymer. Macromol Chem Phys 1996; 197(5): 1661-8.
[http://dx.doi.org/10.1002/macp.1996.021970508]
[72]
Katsarava RD, Kharadze DP, Avalishvili LM, Zaalishvili MM. Synthesis of polyamides from active bis (pentafluorophenyl) esters of dicarboxylic acids and diamines. Makromol Chem, Rapid Commun 1984; 5(9): 585-91.
[http://dx.doi.org/10.1002/marc.1984.030050917]
[73]
Sun H, Cheng R, Deng C, et al. Enzymatically and reductively degradable α-amino acid-based poly (ester amide) s: synthesis, cell compatibility, and intracellular anticancer drug delivery. Biomacromolecules 2015; 16(2): 597-605.
[http://dx.doi.org/10.1021/bm501652d]
[74]
Katsarava R, Kharadze D, Kirmelashvili L, Medzmariashvili N, Goguadze T, Tsitlanadze G. Polyamides from 2, 2′pphenylenebis (Δ25oxazolone) s and N, N′bistrimethylsilylated diamines. Synthesis of polyamides containing dipeptide links in the main chains. Die Makromolekulare Chemie Macromol Chem Phys 1993; 194(1): 143-50.
[http://dx.doi.org/10.1002/macp.1993.021940111]
[75]
Cohen T, Lipowitz J. Acid-catalyzed amide hydrolysis assisted by a neighboring amide group. J Am Chem Soc 1964; 86(24): 5611-6.
[http://dx.doi.org/10.1021/ja01078a041]
[76]
Calvaresi M, Rinaldi S, Arcelli A, Garavelli M. Computational DFT investigation of vicinal amide group anchimeric assistance in ether cleavage. J Org Chem 2008; 73(6): 2066-73.
[http://dx.doi.org/10.1021/jo701394z]
[77]
Katsarava RD, Kharadze DP, Avalishvili LM. Synthesis of highmolecular weight polysuccinamides by polycondensation of active succinates with diamines. Die Makromolekulare Chemie Macromol Chem Phys 1986; 187(9): 2053-62.
[http://dx.doi.org/10.1002/macp.1986.021870902]
[78]
Sentsova TN, Butaeva VI, Davidovich YA, Rogozhin SV, Korshak VV. Synthesis of optically active polyureas from natural dia-min oca-rbox-y-lic-acids
[79]
Katsarava RD, Kartvelishvili TM, Davidovich IA, Zaalischvili M, Rogozhin SV. A new method of the synthesis of polyureas by the interaction of activated diphenylcarbonates with diamines and their n, n′-bis-trimethylsilyl derivatives. Dokl Akad Nauk SSSR 1982; 266(2): 363-6.
[80]
Katsarava RD, Kartvelishvili TM, Japaridze NN, et al. Synthesis of polyureas by polycondensation of diamines with active derivatives of carbonic acid. Die Makromolekulare Chemie. Macromol Chem Phys 1993; 194(12): 3209-28.
[http://dx.doi.org/10.1002/macp.1993.021941201]
[81]
Katsarava R, Timofeeva GI, Toidze P, et al. Heterochain polymers based on natural α-amino acids. On microstructure of polyurea based on L-lysine. Vysokomolek Soed Ser B 1985; 27: 483-4.
[82]
Katsarava RD, Kharadze DP, Toidze PL, Omiadze TN, Japaridze NN, Pirtskhalava MK. Some physicochemical properties of biocompatible and biodegradable heterochain polymers based on Llysine. Acta Polym 1991; 42(2-3): 95-9.
[http://dx.doi.org/10.1002/actp.1991.010420212]
[83]
Pirtskhalava MK, Toidze PL, Kharadze DP, Timofeyeva GI, Katsarava RD. Conformational analysis of polyurea based on the ethyl ester of L-lysine. Calculation of the geometry of the elements of the microstructure of the chain. Polymer Sci USSR 1988; 30(11): 2419-27.
[http://dx.doi.org/10.1016/0032-3950(88)90005-6]
[84]
Katsarava R, Kartvelishvili T, Zaalishvili M. Heterochain polymers based on natural amino acids. Synthesis of new, optically active polyurethanes by the interaction of Nα, Nɛ-bis-carbonyl lysine ethyl ester with diols. Dokl Akad Nauk SSSR 1985; 281(3): 591-6.
[85]
Katsarava R, Kartvelishvili T. A new method for the synthesis of polyurethanes by the interaction of bis- hloroformates of diols with N, N-bis-trimethylsilylated diamines. Vysokomolek Soed Ser B 1986; 28: 377-9.
[86]
Katsarava R, Kartvelishvili T, Khosruashvili T, Beridze V. Synthesis of polyurethanes by polycondensation of active biscarbonates of diols with hexamethylenediamine and its derivatives. Macromol Chem Phys 1995; 196(9): 3061-74.
[http://dx.doi.org/10.1002/macp.1995.021960928]
[87]
Bruin P, Veenstra GJ, Nijenhuis AJ, Pennings AJ. Design and synthesis of biodegradable poly (ester-urethane) elastomer networks composed of non-toxic building blocks. Makromol Chem, Rapid Commun 1988; 9(8): 589-94.
[http://dx.doi.org/10.1002/marc.1988.030090814]
[88]
Storey RF, Wiggins JS, Puckett AD. Hydrolyzable poly (ester-urethane) networks from L-lysine diisocyanate and D, L-lactide/ε−caprolactone homo-and copolyester triols. J Polym Sci A Polym Chem 1994; 32(12): 2345-63.
[http://dx.doi.org/10.1002/pola.1994.080321216]
[89]
Hassan MK, Mauritz KA, Storey RF, Wiggins JS. Biodegradable aliphatic thermoplastic polyurethane based on poly (ε-caprolactone) and l-lysine diisocyanate. J Polym Sci A Polym Chem 2006; 44(9): 2990-3000.
[http://dx.doi.org/10.1002/pola.21373]
[90]
Marcos-Fernández A, Abraham GA, Valentín JL, San Román J. Synthesis and characterization of biodegradable non-toxic poly (ester-urethane-urea)s based on poly (ε-caprolactone) and amino acid derivatives. Polymer (Guildf) 2006; 47(3): 785-98.
[http://dx.doi.org/10.1016/j.polymer.2005.12.007]
[91]
Nathan A, Bolikal D, Vyavahare N, Zalipsky S, Kohn J. Hydrogels based on water-soluble poly (ether urethanes) derived from L-lysine and poly (ethylene glycol). Macromolecules 1992; 25(18): 4476-84.
[http://dx.doi.org/10.1021/ma00044a004]
[92]
Vyavahare N, Kohn J. Photocrosslinked hydrogels based on copolymers of poly (ethylene glycol) and lysine. J Polym Sci A Polym Chem 1994; 32(7): 1271-81.
[http://dx.doi.org/10.1002/pola.1994.080320708]
[93]
Zavradashvili N, Jokhadze G, Gverdtsiteli M, Tugushi D, Katsarava R. Biodegradable functional polymers composed of naturally occurring amino acids. Res Rev Polym 2017; 8(1): 105-28.
[94]
Kohn J. Pseudo-poly(amino acids). Drug News Perspect 1991; 4: 289-94.
[95]
Kohn J. The use of natural metabolites in the design of non-toxic polymers for medical applications. Polymer News 1991; 16: 325-32.
[96]
Ertel SI, Kohn J. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. J Biomed Mater Res 1994; 28(8): 919-30.
[http://dx.doi.org/10.1002/jbm.820280811]
[97]
Bourke SL, Kohn J. Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly (ethylene glycol). Adv Drug Deliv Rev 2003; 55(4): 447-66.
[http://dx.doi.org/10.1016/S0169-409X(03)00038-3]
[98]
Pulapura S, Li C, Kohn J. Structure-property relationships for the design of polyiminocarbonates. Biomaterials 1990; 11(9): 666-78.
[http://dx.doi.org/10.1016/0142-9612(90)90025-L]
[99]
Pulapura S, Kohn J. Tyrosine-derived polycarbonates: Backbone-modified “pseudo”-poly (amino acids) designed for biomedical applications. Biopolymers. Origin Res Biomol 1992; 32(4): 411-7.
[http://dx.doi.org/10.1002/bip.360320418]
[100]
Jacoby M. Custom-made biomaterials. Chem Eng News 2001; 79(6): 30.
[http://dx.doi.org/10.1021/cen-v079n006.p030]
[101]
Hooper KA, Kohn J. Diphenolic monomers derived from the natural amino acid α-l-tyrosine: an evaluation of peptide coupling techniques. J Bioact Compat Polym 1995; 10(4): 327-40.
[http://dx.doi.org/10.1177/088391159501000404]
[102]
Rodriguez-Galan A, Franco L, Puiggali J. Degradable poly (ester amide) s for biomedical applications. Polymers (Basel) 2011; 3(1): 65-99.
[http://dx.doi.org/10.3390/polym3010065]
[103]
Sun H, Meng F, Dias AA, Hendriks M, Feijen J, Zhong Z. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications. Biomacromolecules 2011; 12(6): 1937-55.
[http://dx.doi.org/10.1021/bm200043u]
[104]
Fonseca AC, Gil MH, Simoes PN. Biodegradable poly (ester amide) s-A remarkable opportunity for the biomedical area: review on the synthesis, characterization and applications. Prog Polym Sci 2014; 39(7): 1291-311.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.11.007]
[105]
Stewart FH. Synthesis of polydepsipeptides with regularly repeating unit sequences. Aust J Chem 1969; 22(6): 1291-8.
[http://dx.doi.org/10.1071/CH9691291]
[106]
Helder J, Kohn FE, Sato S, van den Berg JW, Feijen J. Synthesis of poly [oxyethylidenecarbonylimino (2-oxoethylene)][poly (glycined, l-lactic acid)] by ring opening polymerization. Makromol Chem, Rapid Commun 1985; 6(1): 9-14.
[http://dx.doi.org/10.1002/marc.1985.030060103]
[107]
Dijkstra PJ, Feijen J. Synthetic pathways to polydepsipeptides Macromolecular symposia 2000 Mar; 153(1): 67-76. Weinheim: WILEY-VCH Verlag.
[http://dx.doi.org/10.1002/1521-3900(200003)153:1<67::AIDMASY67> 3.0.CO;2-F]
[108]
Feng Y, Lu J, Behl M, Lendlein A. Progress in depsipeptide-based biomaterials. Macromol Biosci 2010; 10(9): 1008-21.
[http://dx.doi.org/10.1002/mabi.201000076]
[109]
Feng Y, Klee D, Höcker H. Synthesis and characterization of new ABA triblock copolymers with poly [3 (S)-isobutylmorpholine-2, 5-dione] and poly (ethylene oxide) blocks. Macromol Chem Phys 1999; 200(10): 2276-83.
[http://dx.doi.org/10.1002/(SICI)1521-3935(19991001)200:10<2276:AID-MACP2276>3.0.CO;2-N]
[110]
Feng Y, Guo J. Biodegradable polydepsipeptides. Int J Mol Sci 2009; 10(2): 589-615.
[http://dx.doi.org/10.3390/ijms10020589]
[111]
Ouchi T, Miyazaki H, Arimura H, Tasaka F, Hamada A, Ohya Y. Synthesis of biodegradable amphiphilic AB-type diblock copolymers of lactide and depsipeptide with pendant reactive groups. J Polym Sci A Polym Chem 2002; 40(9): 1218-25.
[http://dx.doi.org/10.1002/pola.10211]
[112]
Nagahama K, Imai Y, Nakayama T, Ohmura J, Ouchi T, Ohya Y. Thermo-sensitive sol-gel transition of poly (depsipeptide-co-lactide)-g-PEG copolymers in aqueous solution. Polymer (Guildf) 2009; 50(15): 3547-55.
[http://dx.doi.org/10.1016/j.polymer.2009.05.045]
[113]
Wang D, Feng XD. Synthesis of poly (glycolic acid-alt-L-aspartic acid) from a morpholine-2, 5-dione derivative. Macromolecules 1997; 30(19): 5688-92.
[http://dx.doi.org/10.1021/ma9701752]
[114]
John G, Tsuda S, Morita M. Synthesis and modification of new biodegradable copolymers: serine/glycolic acid based copolymers. J Polym Sci A Polym Chem 1997; 35(10): 1901-7.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19970730)35:10<1901:AID-POLA4>3.0.CO;2-Q]
[115]
Vinsova J. Morpholine-2, 5-diones-their preparation and exploitation. Chem Listy 2001; 95(1)
[116]
Ochkhikidze N, Razmadze E, Tugushi D, Kupatadze N, Gomurashvili Z, Katsarava R. Handbook of biodegradable polymers: isolation, synthesis, characterization and applications. John Wiley & Sons 2011.
[117]
Katsarava R, Kharadze D, Avalishvili L, et al. Selected Publications. Acta Polym 1985; 36: 29-38.
[http://dx.doi.org/10.1002/actp.1985.010360106]
[118]
Kharadze DP, Omiadze TN, Tsitlanadze GV, et al. New biodegradable polymers derived from [N, N′]-diacyl-bisphenylalanine. Poly Sci 1994; 36(9): 1214-8.
[119]
Kharadze D, Kirmelashvili L, Medzmariashvili N, et al. Synthesis and α-chymotrypsinolysis of regular poly (ester amides) based on phenylalanine, diols, and terephthalic acid. Polym Sci Ser A Chem Phys 1999; 41(9): 883-90.
[120]
Kartvelishvili T, Kvintradze A, Katsarava R. Amino acid based bioanalogous polymers. Synthesis of novel poly (urethane amide) s based on N, N′-(trimethylenedioxydicarbonyl) bis (phenylalanine). Macromol Chem Phys 1996; 197(1): 249-57.
[http://dx.doi.org/10.1002/macp.1996.021970119]
[121]
Arabuli N, Tsitlanadze G, Edilashvili L, et al. Heterochain polymers based on natural amino acids. Synthesis and enzymatic hydrolysis of regular poly (ester amide) s based on bis (L-phenylalanine) α, ω-alkylene diesters and adipic acid. Macromol Chem Phys 1994; 195(6): 2279-89.
[http://dx.doi.org/10.1002/macp.1994.021950633]
[122]
Katsarava R, Tugushi D. Non-conventional polymers composed of naturally occurring α-amino acids. J Characterization Dev Novel Mater 2011; 2(3/4): 325-42.
[123]
Gomurashvili Z, Kricheldorf HR, Katsarava R. Amino acid based bioanalogous polymers. Synthesis and study of new regular poly(ester amides)s composed of hydrophobic α-amino acids and dianhydrohexitoles. J Macromol Sci Pure Appl Chem 2000; 37: 215-27.
[124]
Okada M, Yamada M, Yokoe M, Aoi K. Biodegradable polymers based on renewable resources. V. Synthesis and biodegradation behavior of poly (ester amide) s composed of 1, 4: 3, 6-dianhydro-d-glucitol, α-amino acid, and aliphatic dicarboxylic acid units. J Appl Polym Sci 2001; 81(11): 2721-34.
[http://dx.doi.org/10.1002/app.1718]
[125]
Memanishvili T, Zavradashvili N, Kupatadze N, et al. Biomacromolecules 2014; 15: 2839-48.
[http://dx.doi.org/10.1021/bm5005977]
[126]
Katsarava R, Tugushi D, Beridze V, Tawil N. inventors; Composition comprising a polymer and a bioactive agent and method of preparing thereof. United States patent US 15/188783 2016.
[127]
Sodium p-Toluenesulfonate - OECD.org. Available at: http://webnet.oecd.org/hpv/ui/handler.axd?id=dfc1c8a0-
[128]
Kobauri S, Otinashvili G, Kantaria T, et al. New amino acid based biodegradable poly (ester amide)s via bis-azlactone chemistry. J Macromol Sci 2018; 55(10 Pt. A): 677-90.
[http://dx.doi.org/10.1080/10601325.2018.1513776]
[129]
Katsarava R, Beridze V, Arabuli N, Kharadze D, Chu CC, Won CY. Amino acid-based bioanalogous polymers. Synthesis, and study of regular poly (ester amide) s based on bis (α-amino acid) α, ω-alkylene diesters, and aliphatic dicarboxylic acids. J Polym Sci A Polym Chem 1999; 37(4): 391-407.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19990215)37:4<391:AID-POLA3>3.0.CO;2-E]
[130]
Asín L, Armelin E, Montané J, Rodríguez-Galán A, Puiggalí J. Sequential poly (ester amide) s based on glycine, diols, and dicarboxylic acids: thermal polyesterification versus interfacial polyamidation. Characterization of polymers containing stiff units. J Polym Sci A Polym Chem 2001; 39(24): 4283-93.
[http://dx.doi.org/10.1002/pola.10082]
[131]
Montane J, Armelin E, Asín L, Rodríguez-Galán A, Puiggalí J. Comparative degradation data of polyesters and related poly (ester amide) s derived from 1, 4-butanediol, sebacic acid, and α-amino acids. J Appl Polym Sci 2002; 85(9): 1815-24.
[http://dx.doi.org/10.1002/app.10379]
[132]
Zavradashvili N, Sarisozen C, Titvinidze G, et al. Library of Cationic polymers composed of polyamines and arginine as gene transfection agents. ACS Omega 2019; 4(1): 2090-101.
[http://dx.doi.org/10.1021/acsomega.8b02977]
[133]
Kropp M, Morawa KM, Mihov G, et al. Biocompatibility of poly (ester amide)(PEA) microfibrils in ocular tissues. Polymers (Basel) 2014; 6(1): 243-60.
[http://dx.doi.org/10.3390/polym6010243]
[134]
Andrés-Guerrero V, Zong M, Ramsay E, et al. Novel biodegradable polyesteramide microspheres for controlled drug delivery in ophthalmology. J Control Release 2015; 211: 105-17.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.279]
[135]
Katsarava R, Kulikova N, Puiggalí J. Biodegradable polymers composed of amino acid based diamine-diesters - promising materials for the applications in regenerative medicine. Jacobs J Regen Med 2016; 1(1): 12.
[136]
DeFife KM, Grako K, Cruz-Aranda G, et al. Poly (ester amide) co-polymers promote blood and tissue compatibility. J Biomater Sci Polym Ed 2009; 20(11): 1495-511.
[http://dx.doi.org/10.1163/092050609X12464344572881]
[137]
Trollsas M, Maslanka B, Pham N, et al. Polyesteramide coatings for drug eluting stents: controlling drug release by polymer engineering Active implants and scaffolds for tissue regeneration. Berlin, Heidelberg: Springer 2011; pp. 127-43.
[http://dx.doi.org/10.1007/8415_2010_57]
[138]
Gomurashvili Z, Zhang H, Da J, et al. Handbook of biodegradeable polymers Available at: https://onlinelibrary.wiley.com/doi/abs/ 10.1002/9783527635818
[139]
Stakleff KS, Lin F, Smith Callahan LA, et al. Resorbable, amino acid-based poly(ester urea)s crosslinked with osteogenic growth peptide with enhanced mechanical properties and bioactivity. Acta Biomater 2013; 9: 5132-42.
[http://dx.doi.org/10.1016/j.actbio.2012.08.035]
[140]
Policastro GM, Lin F, Smith Callahan LA, et al. OGP functionalized phenylalanine-based poly (ester urea) for enhancing osteoinductive potential of human mesenchymal stem cells. Biomacromolecules 2015; 12 1 6(4): 1358-71.
[141]
Tsitlanadze G, Machaidze M, Kviria T, Djavakhishvili N, Chu CC, Katsarava R. Biodegradation of amino-acid-based poly (ester amide) s: in vitro weight loss and preliminary in vivo studies. J Biomater Sci Polym Ed 2004; 15(1): 1-24.
[http://dx.doi.org/10.1163/156856204322752200]
[142]
Tsitlanadze G, Kviria T, Katsarava R, Chu CC. In vitro enzymatic biodegradation of amino acid based poly (ester amide) s biomaterials. J Mater Sci Mater Med 2004; 15(2): 185-90.
[http://dx.doi.org/10.1023/B:JMSM.0000011821.46166.1e]
[143]
Atkins KM, Lopez D, Knight DK, Mequanint K, Gillies ER. A versatile approach for the syntheses of poly (ester amide) s with pendant functional groups. J Polym Sci A Polym Chem 2009; 47(15): 3757-72.
[http://dx.doi.org/10.1002/pola.23429]
[144]
Knight DK, Gillies ER, Mequanint K. Biomimetic l-aspartic acid-derived functional poly (ester amide)s for vascular tissue engineering. Acta Biomater 2014; 10(8): 3484-96.
[http://dx.doi.org/10.1016/j.actbio.2014.04.014]
[145]
Chkhaidze E, Tugushi D, Kharadze D, Gomurashvili Z, Chu CC, Katsarava R. New unsaturated biodegradable poly (ester amide) s composed of fumaric acid, L-leucine and α, ω-alkylene diols. J Macromol Sci 2011; 48(7 Pt. A): 544-55.
[http://dx.doi.org/10.1080/10601325.2011.579817]
[146]
Zavradashvili N, Jokhadze G, Gverdtsiteli M, et al. Amino acid based epoxy-poly (ester amide) s-A new class of functional biodegradable polymers: synthesis and chemical transformations. J Macromol Sci 2013; 50(5 Pt. A): 449-65.
[http://dx.doi.org/10.1080/10601325.2013.780945]
[147]
Tem K, Ten K. Titvinidze G, Kobauri S, Ksovreli M, Kachlishvili T, Kulikova N, TugushiD, Katsarava R. A new generation of biocompatible nanoparticles made of resorbable poly(ester amide)s. Annals of Agrarian Science 2019; 17: 49-58.
[148]
Kharadze D, Memanishvili T, Mamulashvili K, et al. In Vitro Antimicrobial activity study of some new arginine-based biodegradable poly (ester urethane) s and poly (ester urea)s. J Chem 2015; 9: 524-32.
[149]
De Wit MA, Wang Z, Atkins KM, Mequanint K, Gillies ER. Syntheses, characterization, and functionalization of poly (ester amide) s with pendant amine functional groups. J Polym Sci A Polym Chem 2008; 46(19): 6376-92.
[http://dx.doi.org/10.1002/pola.22915]
[150]
Knight DK, Gillies ER, Mequanint K. Strategies in functional poly (ester amide) syntheses to study human coronary artery smooth muscle cell interactions. Biomacromolecules 2011; 12(7): 2475-87.
[http://dx.doi.org/10.1021/bm200149k]
[151]
Samal SK, Dash M, Van Vlierberghe S, et al. Cationic polymers and their therapeutic potential. Chem Soc Rev 2012; 41(21): 7147-94.
[http://dx.doi.org/10.1039/c2cs35094g]
[152]
Markoishvili K, Tsitlanadze G, Katsarava R, Glenn J, Morris MD Jr, Sulakvelidze A. A novel sustained-release matrix based on biodegradable poly (ester amide) s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 2002; 41(7): 453-8.
[http://dx.doi.org/10.1046/j.1365-4362.2002.01451.x]
[153]
Katsarava R, Alavidze Z. inventors; Intralytix Inc., assignee. Polymer blends as biodegradable matrices for preparing biocomposites. United States patent US 6703040 2004 Mar 9.
[154]
Sulakvelidze A, Kutter E. 14 Bacteriophage therapy in humans Bacteriophages: biology and applications. CRC Press 2004; p. 528.
[155]
Jikia D, Chkhaidze N, Imedashvili E, et al. The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clinical and experimental dermatology. Clin Dermatol 2005; 30(1): 23-6.
[156]
Lee SH, Szinai I, Carpenter K, et al. In-vivo biocompatibility evaluation of stents coated with a new biodegradable elastomeric and functional polymer. Coron Artery Dis 2002; 13(4): 237-41.
[http://dx.doi.org/10.1097/00019501-200206000-00006]
[157]
DSM and Svelte® Medical Systems, Inc. Execute license and supply agreement for dsm’s proprietary amino acid based-drug carrier for svelte’s new all-in-one drug-eluting stent system 2002.
[158]
Huang Y, Wang L, Li S, et al. Stent-based tempamine delivery on neointimal formation in a porcine coronary model. Acute Card Care 2006; 8(4): 210-6.
[http://dx.doi.org/10.1080/17482940600949661]
[159]
DesNoyer JR, Pacetti SD, Hossainy SF, Kleiner L, Tang Y, Zhang G. inventors; abbott cardiovascular systems inc., assignee. Poly (ester amide) filler blends for modulation of coating properties. United States patent US 7749263 2010 Jul 6.
[160]
Allègre L, Le Teuff I, Leprince S, et al. A new bioabsorbable polymer film to prevent peritoneal adhesions validated in a post-surgical animal model. PLoS One 2018; 13(11) e0202285
[http://dx.doi.org/10.1371/journal.pone.0202285]
[161]
Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 2000; 3(2): 23-4.
[http://dx.doi.org/10.2225/vol3-issue2-fulltext-5]
[162]
Kim J, Yaszemski MJ, Lu L. Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens. Tissue Eng Part C Methods 2009; 15(4): 583-94.
[http://dx.doi.org/10.1089/ten.tec.2008.0642]
[163]
Becker M, Graham M, Harris F, Lin F. inventors; university of Akron, assignee. Peptide-crosslinked bioactive polymeric materials. United States patent application US 14/122903 2014.
[164]
Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules 2005; 6(2): 538-46.
[http://dx.doi.org/10.1021/bm0494702]
[165]
Vert M. Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts. J Mater Sci Mater Med 2009; 20(2): 437-46.
[http://dx.doi.org/10.1007/s10856-008-3581-4]
[166]
Memanishvili T, Tornero D, Tatarishvili J, et al. Biodegradable amino acid-based polymeric microparticles for improved functional recovery in stem cell therapy after stroke Proceedings of the drug discovery and therapy word congress, and global biotechnology congress. Boston MA, USA 2014. Available at:.https://www.academia.edu/37909301/Biodegradable_Polymers_Composed_of_Amino_Acid_Based_DiamineDiesters_Promising_Materials_for_the_Applications_in_Regenerative_Medicine
[167]
Kupatadze N, Memanishvili T, Ochkhikidze N, Tugushi D, Kokaia Z, Katsarava R. Amino acid based biodegradable poly(esteramide) s and their potential biomedical applications as drug delivery containers and antibacterials. Proceedings of the ICBEB 2015. Available at:.https://publications.waset.org/abstracts/27393/amino-acidbasedbiodegradablepolyesteramidesandtheirpotentialbiomedical-applications-as-drug-delivery-containers-and-antibacterial
[168]
Memanishvili T, Kupatadze N, Tugushi D, et al. Generation of cortical neurons from human induced-pluripotent stem cells by biodegradable polymeric microspheres loaded with priming factors. Biomed Mater 2016; 11(2) 025011
[http://dx.doi.org/10.1088/1748-6041/11/2/025011]
[169]
Tawil N, Arnold EC. inventors; Phagelux, assignee. Microencapsulation of bacteriophages and related products. United States patent US 16/310732 2019.
[170]
Kantaria T, Kantaria T, Kobauri S, et al. Biodegradable nanoparticles made of amino-acid-based ester polymers: preparation, characterization, and in vitro biocompatibility study. Appl Sci (Basel) 2016; 6(12): 444.
[http://dx.doi.org/10.3390/app6120444]
[171]
Tugushi D. Biodegradable nanoparticles made of amino-acid-based ester polymers: preparation, characterization, and in vitro biocompatibility study. Available at: https://www.mdpi.com/2076-3417/6/12/444
[172]
Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996; 7(3): 216.
[http://dx.doi.org/10.1088/0957-4484/7/3/009]
[173]
Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 2003; 8(1): 64-75.
[http://dx.doi.org/10.1016/S1359-0294(03)00004-9]
[174]
Dzenis Y. Spinning continuous fibers for nanotechnology. Science 2004; 304(5679): 1917-9.
[http://dx.doi.org/10.1126/science.1099074]
[175]
Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater 2004; 16(14): 1151-70.
[http://dx.doi.org/10.1002/adma.200400719]
[176]
Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S. Recent advances in polymer nanofibers. J Nanosci Nanotechnol 2004; 4(1-2): 52-65.
[177]
Dhakate SR, Singla B, Uppal M, Mathur RB. Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers. Advanced Materials Letters 2010; 1(3): 200-4.
[http://dx.doi.org/10.5185/amlett.2010.8148]
[178]
Dersch R, Steinhart M, Boudriot U, Greiner A, Wendorff JH. Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polym Adv Technol 2005; 16(2-3): 276-82.
[http://dx.doi.org/10.1002/pat.568]
[179]
Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-a review. J Mater Process Technol 2005; 167(2-3): 283-93.
[http://dx.doi.org/10.1016/j.jmatprotec.2005.06.053]
[180]
Deitzel JM, Kleinmeyer J, Harris DE, Tan NB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf) 2001; 42(1): 261-72.
[http://dx.doi.org/10.1016/S0032-3861(00)00250-0]
[181]
Bhattarai R, Bachu R, Boddu S, Bhaduri S. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharmaceutics 2019; 11(1): 5.
[http://dx.doi.org/10.3390/pharmaceutics11010005]
[182]
Khan N. Applications of electrospun nanofibers in the biomedical field. SURG J 2012; 5(2): 63-73.
[http://dx.doi.org/10.21083/surg.v5i2.1471]
[183]
Planellas M, Pérez-Madrigal MM, del Valle LJ, et al. Microfibres of conducting polythiophene and biodegradable poly (ester urea) for scaffolds. Polym Chem 2015; 6(6): 925-37.
[http://dx.doi.org/10.1039/C4PY01243G]
[184]
Gao Y, Bach Truong Y, Zhu Y, Louis Kyratzis I. Electrospun antibacterial nanofibers: production, activity, and in vivo applications. J Appl Polym Sci 2014; 131(18)
[http://dx.doi.org/10.1002/app.40797]
[185]
Valle Mendoza LJ, Franco García ML, Katsarava R, Puiggalí Bellalta J. Electrospun biodegradable polymers loaded with bactericide agents. AIMS Mol Sci 2016; 3(1): 52-87.
[http://dx.doi.org/10.3934/molsci.2016.1.52]
[186]
Díaz A, del Valle LJ, Tugushi D, Katsarava R, Puiggalí J. New poly (ester urea) derived from L-leucine: electrospun scaffolds loaded with antibacterial drugs and enzymes. Mater Sci Eng C 2015; 46: 450-62.
[http://dx.doi.org/10.1016/j.msec.2014.10.055]
[187]
Murase SK, del Valle LJ, Kobauri S, Katsarava R, Puiggalí J. Electrospun fibrous mats from a L-phenylalanine based poly (ester amide): drug delivery and accelerated degradation by loading enzymes. Polym Degrad Stabil 2015; 119: 275-87.
[http://dx.doi.org/10.1016/j.polymdegradstab.2015.05.018]
[188]
Murase SK, Lv LP, Kaltbeitzel A, et al. Amino acid-based poly (ester amide) nanofibers for tailored enzymatic degradation prepared by miniemulsion-electrospinning. RSC Advances 2015; 5(68): 55006-14.
[http://dx.doi.org/10.1039/C5RA06267E]
[189]
Díaz A, del Valle L, Rodrigo N, et al. Antimicrobial activity of poly (ester urea) electrospun fibers loaded with bacteriophages. Fibers (Basel) 2018; 6(2): 33.
[http://dx.doi.org/10.3390/fib6020033]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 5
Year: 2020
Page: [566 - 593]
Pages: 28
DOI: 10.2174/1381612826666200203122110
Price: $65

Article Metrics

PDF: 22
HTML: 5