Effects of Minor Compounds of Edible Oils on Human Health

Author(s): Ramin Ghodsi*, Rahmat Nosrati

Journal Name: Current Nutrition & Food Science

Volume 16 , Issue 8 , 2020

Become EABM
Become Reviewer
Call for Editor


Background: Oils and fats are the densest sources of food energy among food groups. Vegetable oils are constituted predominantly of triglycerides. Due to the importance of edible oils in nutrition, food industry and human health, great attention has been paid to them in recent years. Some minor bioactive constituents in oils include phospholipids, tocols, sterols, carotenoid, chlorophyll, phenols, phylokynon and terpenes.

Objective: The aim of the present study was to examine the beneficial effects of minor compounds in edible oils on human health.

Results: Minor compounds of edible oils that we use daily can produce remarkable results in the prevention and treatment of various diseases such as diabetes, inflammation, hypertension, cancer, allergy and central nervous system disorders due to their antimicrobial, anti-cancer, anti-viral, anti-oxidative, anti-inflammation, anti-mutagenic, hypolipidemic, and hypoglycemic properties, among others.

Conclusion: The results of this study showed that the presence of beneficial minor compounds in oils could have a significant impact on the prevention and treatment of various diseases. Therefore, the type of consumed oil can play an important role in human health.

Keywords: Carotenoid, edible oils, phenols, phospholipids, phytosterol, sterols.

Miao S, Wang P, Su Z, Zhang S. Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 2014; 10(4): 1692-704.
[http://dx.doi.org/10.1016/j.actbio.2013.08.040] [PMID: 24012607]
Alberdi-Cedeño J, Ibargoitia ML, Cristillo G, Sopelana P, Guillén MD. A new methodology capable of characterizing most volatile and less volatile minor edible oils components in a single chromatographic run without solvents or reagentsDetection of new components Food Chem 2017; 221: 1135-44.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.046] [PMID: 27979070]
Wright MM, Howe AG, Zaremberg V. Cell membranes and apoptosis: role of cardiolipin, phosphatidylcholine, and anticancer lipid analogues. Biochem Cell Biol 2004; 82(1): 18-26.
[http://dx.doi.org/10.1139/o03-092] [PMID: 15052325]
Leach MO, Verrill M, Glaholm J, et al. Measurements of human breast cancer using magnetic resonance spectroscopy: a review of clinical measurements and a report of localized 31P measurements of response to treatment. NMR Biomed. 1998; 11(7): 314-40.
[http://dx.doi.org/10.1002/(SICI)1099-1492(1998110)11:7<314::AID-NBM522>3.0.CO;2-Z] [PMID: 9859939]
Küllenberg D, Taylor LA, Schneider M, Massing U. Health effects of dietary phospholipids. Lipids Health Dis 2012; 11(1): 3.
[http://dx.doi.org/10.1186/1476-511X-11-3] [PMID: 22221489]
Eros G, Varga G, Váradi R, et al. Anti-inflammatory action of a phosphatidylcholine, phosphatidylethanolamine and N-acylphosphatidylethanolamine-enriched diet in carrageenan-induced pleurisy. Eur Surg Res 2009; 42(1): 40-8.
[http://dx.doi.org/10.1159/000167856] [PMID: 18987473]
Yaguchi T, Nagata T, Nishizaki T. Dilinoleoylphosphatidylcholine ameliorates scopolamine-induced impairment of spatial learning and memory by targeting α7 nicotinic ACh receptors. Life Sci 2009; 84(9-10): 263-6.
[http://dx.doi.org/10.1016/j.lfs.2008.12.003] [PMID: 19100751]
Sakakima Y, Hayakawa A, Nagasaka T, Nakao A. Prevention of hepatocarcinogenesis with phosphatidylcholine and menaquinone-4: in vitro and in vivo experiments. J Hepatol 2007; 47(1): 83-92.
[http://dx.doi.org/10.1016/j.jhep.2007.01.030] [PMID: 17399847]
Miranda DT, Batista VG, Grando FC, et al. Soy lecithin supplementation alters macrophage phagocytosis and lymphocyte response to concanavalin A: a study in alloxan-induced diabetic rats. Cell Biochem Funct 2008; 26(8): 859-65.
[http://dx.doi.org/10.1002/cbf.1517] [PMID: 18846580]
Kidd P. Dietary phospholipids as anti-aging nutraceuticals.In:Klatz RA, Goldman R, Eds Anti-aging medical therapeutics Vol5 Chicago, IL: Health Quest Publications. 2000; 4.pp. 282-300..
Zitouni M, Wewer V, Dörmann P, Abdelly C, Ben Youssef N. Quadrupole time-of-flight mass spectrometry analysis of glycerophospholipid molecular species in the two halophyte seed oils: Eryngium maritimum and Cakile maritima. Food Chem. 2016; 213: 319-28.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.083] [PMID: 27451187]
Cohn JS, Kamili A, Wat E, Chung RW, Tandy S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2010; 2(2): 116-27.
[http://dx.doi.org/10.3390/nu2020116] [PMID: 22254012]
Zeisel SH, Blusztajn JK. Choline and human nutritionAnnu Rev Nutr 1994; 14(14): 269-96.
[http://dx.doi.org/10.1146/annurev.nu.14.070194.001413] [PMID: 7946521]
Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 2012; 1821(5): 754-61.
[http://dx.doi.org/10.1016/j.bbalip.2011.09.009] [PMID: 21979151]
Zierenberg O, Grundy SM. Intestinal absorption of polyenephosphatidylcholine in man. J Lipid Res 1982; 23(8): 1136-42.
[PMID: 7175371]
Lloyd J, Todd DA, John E. Serial phospholipid analysis in preterm infants: comparison of Exosurf and SurvantaEarly Hum Dev 1999; 54(2): 157-68.
[http://dx.doi.org/10.1016/S0378-3782(98)00086-3] [PMID: 10213294]
Kent C. Eukaryotic phospholipid biosynthesisAnnu Rev Biochem 1995; 64: 315-43.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.001531] [PMID: 7574485]
Lieber CS, Leo MA, Aleynik SI, Aleynik MK, DeCarli LM. Polyenylphosphatidylcholine decreases alcohol-induced oxidative stress in the baboonAlcohol Clin Exp Res 1997; 21(2): 375-9.
[http://dx.doi.org/10.1111/j.1530-0277.1997.tb03776.x] [PMID: 9113278]
Gunstone F. Major Sources of LipidsLipid technologies and applications. New York: Marcel Dekker 1997; pp. 19-50.
Young SG, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev 2013; 27(5): 459-84.
[http://dx.doi.org/10.1101/gad.209296.112] [PMID: 23475957]
Cho KH, Lee JH, Kim JM, et al. Blood lipid-lowering and antioxidant effects of a structured lipid containing monoacylglyceride enriched with monounsaturated fatty acids in C57BL/6 mice. J Med Food 2009; 12(2): 452-60.
[http://dx.doi.org/10.1089/jmf.2007.0693] [PMID: 19459751]
Coury DL, Ashwood P, Fasano A, et al. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 2012; 130(Suppl. 2): S160-8.
[http://dx.doi.org/10.1542/peds.2012-0900N] [PMID: 23118247]
Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 2010; 85(6): 1629-42.
[http://dx.doi.org/10.1007/s00253-009-2355-3] [PMID: 19956944]
Benkendorff K, Davis AR, Rogers CN, Bremner JB. Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J Exp Mar Biol Ecol 2005; 316(1): 29-44.
Lu Z-H, Mu Y-M, Wang B-A, et al. Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cellBiochem Biophys Res Commun 2003; 303(4): 1002-7.
[http://dx.doi.org/10.1016/S0006-291X(03)00449-2] [PMID: 12684033]
Kenny JG, Ward D, Josefsson E, et al. The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 2009; 4(2)e4344
[http://dx.doi.org/10.1371/journal.pone.0004344]] [PMID: 19183815]
Fisk PR, Wildey RJ, Girling AE, et al. Environmental properties of long chain alcohols. Part 1: physicochemical, environmental fate and acute aquatic toxicity properties. Ecotoxicol Environ Saf 2009; 72(4): 980-95.
[http://dx.doi.org/10.1016/j.ecoenv.2008.09.025] [PMID: 19038450]
Akoh CC. Food lipids: chemistry, nutrition, and biotechnology. Boca Raton, Florida: CRC Press 2017.
Gandolfo FG, Bot A, Flöter E. Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J Am Oil Chem Soc 2004; 81(1): 1-6.
Belanger SE, Sanderson H, Fisk PR, et al. Assessment of the environmental risk of long-chain aliphatic alcohols. Ecotoxicol Environ Saf 2009; 72(4): 1006-15.
[http://dx.doi.org/10.1016/j.ecoenv.2008.07.013] [PMID: 19013645]
Kabelitz N, Santos PM, Heipieper HJ. Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticusFEMS Microbiol Lett 2003; 220(2): 223-7.
[http://dx.doi.org/10.1016/S0378-1097(03)00103-4] [PMID: 12670684]
Togashi N, Shiraishi A, Nishizaka M, et al. Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules 2007; 12(2): 139-48.
[http://dx.doi.org/10.3390/12020139] [PMID: 17846563]
Salih EYA, Julkunen-Tiitto R, Lampi A-M, et al. Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. J Ethnopharmacol 2018; 227(227): 82-96.
[http://dx.doi.org/10.1016/j.jep.2018.04.030] [PMID: 29733942]
Tsujimoto M. About kuroko-zame shark oil. J Chem Technol Biotechnol 1906; 9(104): 953-8.
Lozano-Grande MA, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G, Martínez-Ayala AL. Plant Sources, Extraction Methods, and Uses of Squalene. Int J Agron 2018; 2018: 13.
Smith TJ. Squalene: potential chemopreventive agent. Expert Opin Investig Drugs 2000; 9(8): 1841-8.
[http://dx.doi.org/10.1517/13543784.9.8.1841] [PMID: 11060781]
Boskou D. Other important minor constituentsOlive oil Minorconstituents and health 2009; 45-54.
Palaniyandi T, Sivaji A, Thiruganasambandam R, Natarajan S, Hari R. Avicennia alba mangrove derived squalene compound inhibited the MNNG induced gastric cancer in Albino rats. J Herbs Spices Med Plants 2018; 24: 1-13.
Nowicki R, Barańska-Rybak W. Shark liver oil as a supporting therapy in aopic dermatitis Pol Merkuriusz Lek 2007; 22(130): 312-3.
Shin DH, Heo HJ, Lee YJ, Kim HK. Amaranth squalene reduces serum and liver lipid levels in rats fed a cholesterol dietBr J Biomed Sci 2004; 61(1): 11-4.
[http://dx.doi.org/10.1080/09674845.2004.11732639] [PMID: 15058737]
Lu X, Ma S, Chen Y, Yangzom D, Jiang H. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China. Biomolecules 2018; 8(4): 154.
[http://dx.doi.org/10.3390/biom8040154] [PMID: 30463288]
Subramaniam J, Murugan K, Jebanesan A, et al. Do Chenopodium ambrosioides-synthesized silver nanoparticles impact Oryzias melastigma predation against Aedes albopictus Larvae? J Cluster Sci 2017; 28(1): 413-36.
Rude MA, Schirmer A. New microbial fuels: a biotech perspective. Curr Opin Microbiol 2009; 12(3): 274-81.
[http://dx.doi.org/10.1016/j.mib.2009.04.004] [PMID: 19447673]
Lagarda MJ, García-Llatas G, Farré R. Analysis of phytosterols in foods. J Pharm Biomed Anal 2006; 41(5): 1486-96.
[http://dx.doi.org/10.1016/j.jpba.2006.02.052] [PMID: 16621410]
Ostlund RE Jr, Ostlund J. Phytosterols in human nutrition. Annu Rev Nutr 2002; 22(1): 533-49.
[http://dx.doi.org/10.1146/annurev.nutr.22.020702.075220] [PMID: 12055357]
Saura-Calixto F, Goñi I. Definition of the Mediterranean diet based on bioactive compounds. Crit Rev Food Sci Nutr 2009; 49(2): 145-52.
[http://dx.doi.org/10.1080/10408390701764732] [PMID: 18989833]
Sanclemente T, Marques-Lopes I, Puzo J, García-Otín AL. Role of naturally-occurring plant sterols on intestinal cholesterol absorption and plasmatic levels. J Physiol Biochem 2009; 65(1): 87-98.
[http://dx.doi.org/10.1007/BF03165972] [PMID: 19588734]
Awad AB, Chan KC, Downie AC, Fink CS. Peanuts as a source of β-sitosterol, a sterol with anticancer properties. Nutr Cancer 2000; 36(2): 238-41.
[http://dx.doi.org/10.1207/S15327914NC3602_14] [PMID: 10890036]
Rudkowska I. Plant sterols and stanols for healthy ageing. Maturitas 2010; 66(2): 158-62.
[http://dx.doi.org/10.1016/j.maturitas.2009.12.015] [PMID: 20060666]
Marangoni F, Poli A. Phytosterols and cardiovascular health. Pharmacol Res 2010; 61(3): 193-9.
[http://dx.doi.org/10.1016/j.phrs.2010.01.001] [PMID: 20067836]
Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM. Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 2000; 80(7): 939-66.
Pollak OJ. Reduction of blood cholesterol in man. Circulation 1953; 7(5): 702-6.
[http://dx.doi.org/10.1161/01.CIR.7.5.702] [PMID: 13042924]
Plat J, Mensink RP. Plant stanol and sterol esters in the control of blood cholesterol levels: mechanism and safety aspects. Am J Cardiol 2005; 96(1A): 15D-22D.
[http://dx.doi.org/10.1016/j.amjcard.2005.03.015] [PMID: 15992511]
Siddique HR, Saleem M. Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci 2011; 88(7-8): 285-93.
[http://dx.doi.org/10.1016/j.lfs.2010.11.020] [PMID: 21118697]
Awad AB, Downie A, Fink CS, Kim U. Dietary phytosterol inhibits the growth and metastasis of MDA-MB-231 human breast cancer cells grown in SCID mice. Anticancer Res 2000; 20(2A): 821-4.
[PMID: 10810360]
Bouic PJ. The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 yearsCurr Opin Clin Nutr Metab Care 2001; 4(6): 471-5.
[http://dx.doi.org/10.1097/00075197-200111000-00001] [PMID: 11706278]
Burg VK, Grimm HS, Rothhaar TL, et al. Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J Neurosci. 2013; 33(41): 16072-87.
[http://dx.doi.org/10.1523/JNEUROSCI.1506-13.2013] [PMID: 24107941]
Caballero B, Trugo L, Finglas P. Encyclopedia of food sciences and nutrition. San Diego, Calif.; London: Academic Press 2003.
Bagamboula C, Uyttendaele M, Debevere J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol 2004; 21(1): 33-42.
Ben Arfa A, Combes S, Preziosi-Belloy L, Gontard N, Chalier P. Antimicrobial activity of carvacrol related to its chemical structureLett Appl Microbiol 2006; 43(2): 149-54.
[http://dx.doi.org/10.1111/j.1472-765X.2006.01938.x] [PMID: 16869897]
Guesmi F, Prasad S, Tyagi AK, Landoulsi A. Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IκBα kinase, through downregulation of NF-κB activation, potentiation of apoptosis and suppression of NF-κB-regulated gene expression. Biomed Pharmacother 2017; 95: 1876-85.
[http://dx.doi.org/10.1016/j.biopha.2017.09.115] [PMID: 28968948]
Khan MTH, Ather A, Thompson KD, Gambari R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res 2005; 67(2): 107-19.
[http://dx.doi.org/10.1016/j.antiviral.2005.05.002] [PMID: 16040137]
Petkov V, Roussinov K, Todorov S, Lazarova M, Yonkov D, Draganova S. Pharmacological investigations on Rhaponticum carthamoides. Planta Med 1984; 50(3): 205-9.
[http://dx.doi.org/10.1055/s-2007-969679] [PMID: 6484028]
Yang ZZ, Li J, Li SX, Feng W, Wang H. Effect of ginkgolide B on striatal extracellular amino acids in middle cerebral artery occluded rats. J Ethnopharmacol 2011; 136(1): 117-22.
[http://dx.doi.org/10.1016/j.jep.2011.04.027] [PMID: 21527331]
Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YM, Passwater R. Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa leaves in type II diabetics. A dosedependence study. J Ethnopharmacol 2003; 87(1): 115-7..
[http://dx.doi.org/10.1016/S0378-8741(03)00122-3] [PMID: 12787964]
Marques FM, Figueira MM, Schmitt EFP, et al. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology 2018; 27(2): 281-9.
[PMID: 29675712]
Hammer KA, Carson CF, Riley TV. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 2003; 95(4): 853-60..
[http://dx.doi.org/10.1046/j.1365-2672.2003.02059.x] [PMID: 12969301]
Friedman M, Henika PR, Levin CE, Mandrell RE. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J Agric Food Chem 2004; 52(19): 6042-8.
[http://dx.doi.org/10.1021/jf0495340] [PMID: 15366861]
Masuda T, Inaba Y, Takeda Y. Antioxidant mechanism of carnosic acid: structural identification of two oxidation products. J Agric Food Chem 2001; 49(11): 5560-5.
[http://dx.doi.org/10.1021/jf010693i] [PMID: 11714360]
Raphael TJ, Kuttan G. Immunomodulatory activity of naturally occurring monoterpenes carvone, limonene, and perillic acid. Immunopharmacol Immunotoxicol 2003; 25(2): 285-94.
[http://dx.doi.org/10.1081/IPH-120020476] [PMID: 12784919]
Cal K, Kupiec K, Sznitowska M. Effect of physicochemical properties of cyclic terpenes on their ex vivo skin absorption and elimination kinetics. J Dermatol Sci 2006; 41(2): 137-42.
[http://dx.doi.org/10.1016/j.jdermsci.2005.09.003] [PMID: 16260121]
Brown LM, Springer J, Bower M. Chemical substitution for 1, 1, 1-trichloroethane and methanol in an industrial cleaning operation. J Hazard Mater 1992; 29(2): 179-88.
Herz W. Biogenetic aspects of sesquiterpene lactone chemistry. Isr J Chem 1977; 16(1): 32-44.
Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 2010; 15(15-16): 668-78.
[http://dx.doi.org/10.1016/j.drudis.2010.06.002] [PMID: 20541036]
Canales M, Hernández T, Caballero J, et al. Informant consensus factor and antibacterial activity of the medicinal plants used by the people of San Rafael Coxcatlán, Puebla, México. J Ethnopharmacol 2005; 97(3): 429-39.
[http://dx.doi.org/10.1016/j.jep.2004.11.013] [PMID: 15740877]
Liu RH. Whole grain phytochemicals and health. J Cereal Sci 2007; 46(3): 207-19.
Wang L, Chen J, Xie H, Ju X, Liu RH. Phytochemical profiles and antioxidant activity of adlay varieties. J Agric Food Chem 2013; 61(21): 5103-13.
[http://dx.doi.org/10.1021/jf400556s] [PMID: 23647066]
Alu’datt MH, Rababah T, Ereifej K, Brewer S, Alli I. Phenolic–protein interactions in oilseed protein isolates. Food Res Int 2013; 52(1): 178-84.
Alu’datt MH, Rababah T, Alli I. Effect of phenolic compound removal on rheological, thermal and physico-chemical properties of soybean and flaxseed proteinsFood Chem 2014; 146: 608-13.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.104] [PMID: 24176388]
Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significanceNutr Rev 1998; 56(11): 317-3.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
Sun J, Chu YF, Wu X, Liu RH. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 2002; 50(25): 7449-54.
[http://dx.doi.org/10.1021/jf0207530] [PMID: 12452674]
Cicerale S, Lucas L, Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci 2010; 11(2): 458-79.
[http://dx.doi.org/10.3390/ijms11020458] [PMID: 20386648]
Battino M, Forbes-Hernández TY, Gasparrini M, et al. Relevance of functional foods in the Mediterranean diet: the role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. J Crit Rev Food Sci 2018; pp. 1-28.
Colomer R, Menéndez JA. Mediterranean diet, olive oil and cancer. Clin Transl Oncol 2006; 8(1): 15-21.
[http://dx.doi.org/10.1007/s12094-006-0090-0] [PMID: 16632435]
Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Effectiveness of the Mediterranean diet: can it help delay or prevent Alzheimer’s disease? J Alzheimers Dis 2010; 20(3): 795-801.
[http://dx.doi.org/10.3233/JAD-2010-1418] [PMID: 20182044]
Battino M, Ferreiro MS. Ageing and the Mediterranean diet: a review of the role of dietary fats. Public Health Nutr 2004; 7(7): 953-8.
[http://dx.doi.org/10.1079/PHN2004560] [PMID: 15482624]
Covas M-I, Nyyssönen K, Poulsen HE, et al. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 2006; 145(5): 333-41.
[http://dx.doi.org/10.7326/0003-4819-145-5-200609050-00006] [PMID: 16954359]
Abdel-Wahab MH, El-Mahdy MA, Abd-Ellah MF, Helal GK, Khalifa F, Hamada FM. Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat’s heartPharmacol Res 2003; 48(5): 461-5.
[http://dx.doi.org/10.1016/S1043-6618(03)00214-7] [PMID: 12967591]
Zang L-Y, Cosma G, Gardner H, Shi X, Castranova V, Vallyathan V. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidationAm J Physiol Cell Physiol 2000; 279(4): C954-60.
[http://dx.doi.org/10.1152/ajpcell.2000.279.4.C954] [PMID: 11003575]
Hudson EA, Dinh PA, Kokubun T, Simmonds MS, Gescher A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prev 2000; 9(11): 1163-70.
[PMID: 11097223]
Vauzour D, Corona G, Spencer JP. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch Biochem Biophys 2010; 501(1): 106-11.
[http://dx.doi.org/10.1016/j.abb.2010.03.016] [PMID: 20361927]
Lodovici M, Caldini S, Morbidelli L, Akpan V, Ziche M, Dolara P. Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye. Toxicology 2009; 255(1-2): 1-5.
[http://dx.doi.org/10.1016/j.tox.2008.09.011] [PMID: 18852014]
Cho J-Y, Moon J-H, Seong K-Y, Park K-H. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci Biotechnol Biochem 1998; 62(11): 2273-6.
[http://dx.doi.org/10.1271/bbb.62.2273] [PMID: 9972252]
Sathish M, Meenakshi G, Xavier S, Sebastian S. Conformational stability, TGA, and molecular docking investigations of p-coumaric acid with special relevance to anti-cancer and antibacterial activity. Acta Phys Pol A 2017; 131(6)
Barros MP, Lemos M, Maistro EL, et al. Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. J Ethnopharmacol 2008; 120(3): 372-7.
[http://dx.doi.org/10.1016/j.jep.2008.09.015] [PMID: 18930797]
Luceri C, Giannini L, Lodovici M, et al. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br J Nutr 2007; 97(3): 458-63.
[http://dx.doi.org/10.1017/S0007114507657882] [PMID: 17313706]
Luceri C, Guglielmi F, Lodovici M, Giannini L, Messerini L, Dolara P. Plant phenolic 4-coumaric acid protects against intestinal inflammation in rats. Scand J Gastroenterol 2004; 39(11): 1128-33.
[PMID: 15545172]
Ferguson LR, Lim IF, Pearson AE, Ralph J, Harris PJ. Bacterial antimutagenesis by hydroxycinnamic acids from plant cell wallsMutat Res 2003.542(1-2): 49-58..
[http://dx.doi.org/10.1016/j.mrgentox.2003.08.005] [PMID: 14644353]
Pragasam SJ, Murunikkara V, Sabina EP, Rasool M. Ameliorative effect of p-coumaric acid, a common dietary phenol, on adjuvant-induced arthritis in rats. Rheumatol Int 2013; 33(2): 325-34.
[http://dx.doi.org/10.1007/s00296-012-2394-4] [PMID: 22447332]
Ekinci-Akdemir F, Gülçin İ, Gürsul C, Alwasel S, Bayir YJJ. Effect of p-coumaric acid against oxidative stress induced by cissplatin in brain tissue of rats. J Anim Plant Sci 2017; 27(5): 1560-4.
Lee S-I, An S-M, Mun G-I, et al. Protective effect of Sasa quelpaertensis and p-coumaric acid on ethanol-induced hepatotoxicity in mice. J Appl Biol Chem 2008; 51(4): 148-54.
Yoon S-A, Kang S-I, Shin H-S, et al. p-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem Biophys Res Commun 2013; 432(4): 553-7.
[http://dx.doi.org/10.1016/j.bbrc.2013.02.067] [PMID: 23485470]
Folwarczna J, Zych M, Burczyk J, Trzeciak H, Trzeciak HI. Effects of natural phenolic acids on the skeletal system of ovariectomized rats. Planta Med 2009; 75(15): 1567-72.
[http://dx.doi.org/10.1055/s-0029-1185904] [PMID: 19598079]
Delaquis P, Stanich K, Toivonen P. Effect of pH on the inhibition of Listeria spp. by vanillin and vanillic acid. J Food Prot 2005; 68(7): 1472-6.
[http://dx.doi.org/10.4315/0362-028X-68.7.1472] [PMID: 16013390]
Varma RS, Shukla A, Chatterjee RK. Evaluation of vanillic acid analogues as a new class of antifilarial agents. Indian J Exp Biol 1993; 31(10): 819-21.
[PMID: 8276433]
Singh M, Tiwari V, Jain A, Ghoshal S. Protective activity of picroliv on hepatic amoebiasis associated with carbon tetrachloride toxicity. Indian J Med Res 2005; 121(5): 676-82.
[PMID: 15937372]
Tsuda H, Uehara N, Iwahori Y, et al. Chemopreventive effects of β-carotene, α-tocopherol and five naturally occurring antioxidants on initiation of hepatocarcinogenesis by 2-amino-3-methylimidazo[4,5-f]quinoline in the rat. Jpn J Cancer Res 1994; 85(12): 1214-9.
[http://dx.doi.org/10.1111/j.1349-7006.1994.tb02932.x] [PMID: 7852184]
Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr 2005; 81(1)(Suppl.): 215S-7S.
[http://dx.doi.org/10.1093/ajcn/81.1.215S] [PMID: 15640483]
Ferrier J, Djeffal S, Morgan HP, et al. Antiglycation activity of Vaccinium spp.(Ericaceae) from the Sam Vander Kloet collection for the treatment of type II diabetes. Botany 2012; 90(5): 401-6.
Kang NJ, Shin SH, Lee HJ, Lee KW. Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesisPharmacol Ther 2011; 130(3): 310-24.
[http://dx.doi.org/10.1016/j.pharmthera.2011.02.004] [PMID: 21356239]
Camargo A, Ruano J, Fernandez JM, et al. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genomics 2010; 11(1): 253.
[http://dx.doi.org/10.1186/1471-2164-11-253] [PMID: 20406432]
de la Puerta R, Ruiz Gutierrez V, Hoult JRS. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem Pharmacol 1999; 57(4): 445-9.
[http://dx.doi.org/10.1016/S0006-2952(98)00320-7] [PMID: 9933033]
Barbaro B, Toietta G, Maggio R, et al. Effects of the olive-derived polyphenol oleuropein on human health. Int J Mol Sci 2014; 15(10): 18508-24.
[http://dx.doi.org/10.3390/ijms151018508] [PMID: 25318054]
Assy N, Nassar F, Nasser G, Grosovski M. Olive oil consumption and non-alcoholic fatty liver disease. World J Gastroenterol 2009; 15(15): 1809-15.
[http://dx.doi.org/10.3748/wjg.15.1809] [PMID: 19370776]
Zhao G, Yin Z, Dong J. Antiviral efficacy against hepatitis B virus replication of oleuropein isolated from Jasminum officinale L. var. grandiflorum. J Ethnopharmacol 2009; 125(2): 265-8.
[http://dx.doi.org/10.1016/j.jep.2009.06.030] [PMID: 19580857]
Sarbishegi M, Mehraein F, Soleimani M. Antioxidant role of oleuropein on midbrain and dopaminergic neurons of substantia nigra in aged rats. Iran Biomed J 2014; 18(1): 16-22.
[PMID: 24375158]
Marrugat J, Covas M-I, Fitó M, et al. Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation--a randomized controlled trial. Eur J Nutr 2004; 43(3): 140-7.
[http://dx.doi.org/10.1007/s00394-004-0452-8] [PMID: 15168036]
Ruiz-Sola MÁ, Rodríguez-Concepción M. Carotenoid biosynthesis in Arabidopsis: a colorful pathwayArabidopsis Book 2012 10e0158.
[http://dx.doi.org/10.1199/tab.0158] [PMID: 22582030]
Nishida C, Uauy R, Kumanyika S, Shetty P. The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr 2004; 7(1A): 245-50.
[http://dx.doi.org/10.1079/PHN2003592] [PMID: 14972063]
Carlsen MH, Karlsen A, Lillegaard IT, et al. Relative validity of fruit and vegetable intake estimated from an FFQ, using carotenoid and flavonoid biomarkers and the method of triads. Br J Nutr 2011; 105(10): 1530-8.
[http://dx.doi.org/10.1017/S0007114510005246] [PMID: 21272408]
Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res 2007; 55(3): 207-16.
[http://dx.doi.org/10.1016/j.phrs.2007.01.012] [PMID: 17349800]
Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med 2005; 26(6): 459-516.
[http://dx.doi.org/10.1016/j.mam.2005.10.001] [PMID: 16309738]
Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion 2016; 30(2): 145-59.
Lauretani F, Semba RD, Bandinelli S, et al. Carotenoids as protection against disability in older persons. Rejuvenation Res 2008; 11(3): 557-63.
[http://dx.doi.org/10.1089/rej.2007.0581] [PMID: 18593275]
Ahmed SS, Lott MN, Marcus DM. The macular xanthophyllsSurv Ophthalmol 2005; 50(2): 183-93
[http://dx.doi.org/10.1016/j.survophthal.2004.12.009] [PMID: 15749308]
Krinsky NI, Landrum JT, Bone RA. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 2003; 23(1): 171-201.
[http://dx.doi.org/10.1146/annurev.nutr.23.011702.073307] [PMID: 12626691]
Trumbo PR, Ellwood KC. Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: an evaluation using the Food and Drug Administration’s evidence-based review system for health claims. Am J Clin Nutr 2006; 84(5): 971-4.
[http://dx.doi.org/10.1093/ajcn/84.5.971] [PMID: 17093145]
Alves-Rodrigues A, Shao A. The science behind lutein. Toxicol Lett 2004; 150(1): 57-83.
[http://dx.doi.org/10.1016/j.toxlet.2003.10.031] [PMID: 15068825]
Loane E, McKay GJ, Nolan JM, Beatty S. Apolipoprotein E genotype is associated with macular pigment optical density. Invest Ophthalmol Vis Sci 2010; 51(5): 2636-43.
[http://dx.doi.org/10.1167/iovs.09-4397] [PMID: 20107178]
Sasaki M, Ozawa Y, Kurihara T, et al. Neuroprotective effect of an antioxidant, lutein, during retinal inflammation. Invest Ophthalmol Vis Sci 2009; 50(3): 1433-9.
[http://dx.doi.org/10.1167/iovs.08-2493] [PMID: 18997089]
Yamagishi S, Maeda S, Matsui T, Ueda S, Fukami K, Okuda S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim Biophys Acta 2012; 1820(5): 663-71.
[http://dx.doi.org/10.1016/j.bbagen.2011.03.014] [PMID: 21440603]
Leermakers ET, Darweesh SK, Baena CP, et al. The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis. Am J Clin Nutr 2016; 103(2): 481-94.
[http://dx.doi.org/10.3945/ajcn.115.120931] [PMID: 26762372]
Quattrocchi U. CRC World Dictionary of Grasses: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology - 3 Volume Set. Boca Raton, Florida: CRC Press 2006.
Britton G, Hornero-Mendez D. Carotenoids and colour in fruit and vegetables.In: Tomás-Barberán FA, Robins RJ, EdsPhytochemistry of fruit and vegetables . Oxford: Oxford University Press Inc. 1997; pp. 11-27.
İnanç AL. Chlorophyll: structural properties, health benefits and its occurrence in virgin olive oils. Akademik GIDA 2011; 9(2): 26-32.
Britton G. Carotenoids. In: Banthorpe DV, Charlwood BV, Eds. Methods in plant biochemistry. London: Academy Press 1991; 7:pp. 473-518..
Ferruzzi MG, Blakeslee J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 2007; 27(1): 1-12.
McGinty D, Letizia CS, Api AM. Fragrance material review on phytol. Food Chem Toxicol 2010; 48(Suppl. 3): S59-63.
[http://dx.doi.org/10.1016/j.fct.2009.11.012] [PMID: 20141879]
de Moraes J, de Oliveira RN, Costa JP, et al. Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease Schistosomiasis mansoni. PLoS Negl Trop Dis 2014; 8(1)e2617
[http://dx.doi.org/10.1371/journal.pntd.0002617]] [PMID: 24392173]
Islam MT, Ali ES, de Carvalho RM, et al. Phytanic acid, a daily consumed chlorophyll-yielded phytol bio-metabolite: a comprehensive review. Cell Mol Life Sci 2016; 10(48): 1025-33.
Bero J, Beaufay C, Hannaert V, Hérent M-F, Michels PA, Quetin-Leclercq J. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase. Phytomedicine 2013; 20(3-4): 270-4.
[http://dx.doi.org/10.1016/j.phymed.2012.10.010] [PMID: 23312849]
Pejin B, Kojic V, Bogdanovic G. An insight into the cytotoxic activity of phytol at in vitro conditions. Nat Prod Res 2014; 28(22): 2053-6.
[http://dx.doi.org/10.1080/14786419.2014.921686] [PMID: 24896297]
Arnhold T, Elmazar MM, Nau H. Prevention of vitamin A teratogenesis by phytol or phytanic acid results from reduced metabolism of retinol to the teratogenic metabolite, all-trans-retinoic acid. Toxicol Sci 2002; 66(2): 274-82.
[http://dx.doi.org/10.1093/toxsci/66.2.274] [PMID: 11896294]
Aachoui Y, Chowdhury RR, Fitch RW, Ghosh SK. Molecular signatures of phytol-derived immunostimulants in the context of chemokine-cytokine microenvironment and enhanced immune response. Cell Immunol 2011; 271(2): 227-38.
[http://dx.doi.org/10.1016/j.cellimm.2011.07.001] [PMID: 21813116]
Elmazar MM, El-Abhar HS, Schaalan MF, Farag NA. Phytol/Phytanic acid and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. PLoS One 2013; 8(1)e45638
[http://dx.doi.org/10.1371/journal.pone.0045638]] [PMID: 23300941]
Gloerich J, van Vlies N, Jansen GA, et al. A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways. J Lipid Res 2005; 46(4): 716-26.
[http://dx.doi.org/10.1194/jlr.M400337-JLR200] [PMID: 15654129]
Costa JP, Ferreira PB, De Sousa DP, Jordan J, Freitas RM. Anticonvulsant effect of phytol in a pilocarpine model in mice. Neurosci Lett 2012; 523(2): 115-8.
[http://dx.doi.org/10.1016/j.neulet.2012.06.055] [PMID: 22750154]
Silva RO, Sousa FBM, Damasceno SR, et al. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundam Clin Pharmacol 2014; 28(4): 455-64.
[http://dx.doi.org/10.1111/fcp.12049] [PMID: 24102680]
Falk J, Munné-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 2010; 61(6): 1549-66.
[http://dx.doi.org/10.1093/jxb/erq030] [PMID: 20385544]
Zingg J-M. Vitamin E: an overview of major research directions. Mol Aspects Med 2007; 28(5-6): 400-22.
[http://dx.doi.org/10.1016/j.mam.2007.05.004] [PMID: 17624418]
Colombo ML. An update on vitamin E, tocopherol and tocotrienol-perspectives. Molecules 2010; 15(4): 2103-13.
[http://dx.doi.org/10.3390/molecules15042103] [PMID: 20428030]
Abdelkarim G, Boukhatem N. Betalains, polyacetylenes and tocols as biocompounactives: a concise review for enriching the bioactivity concept. Int J Food Sci Nutr 2014; 3(4): 230-7.
Yoshida Y, Saito Y, Jones LS, Shigeri Y. Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: physiological significance and prospects as antioxidants. J Biosci Bioeng 2007; 104(6): 439-45.
[http://dx.doi.org/10.1263/jbb.104.439] [PMID: 18215628]
Cavallero A, Gianinetti A, Finocchiaro F, Delogu G, Stanca AM. Tocols in hull-less and hulled barley genotypes grown in contrasting environments. J Cereal Sci 2004; 39(2): 175-80.
Chun J, Lee J, Ye L, Exler J, Eitenmiller RR. Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet. J Food Compos Anal 2006; 19(2-3): 196-204.
Singh J, Upadhyay A, Prasad K, Bahadur A, Rai M. Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J Food Compos Anal 2007; 20(2): 106-12.
Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 2014; 72: 76-90..
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.035] [PMID: 24704972]
Wells SR, Jennings MH, Rome C, Hadjivassiliou V, Papas KA, Alexander JS. α-, γ- and δ-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells. J Nutr Biochem 2010; 21(7): 589-97.
[http://dx.doi.org/10.1016/j.jnutbio.2009.03.006] [PMID: 19443199]
Azzi A, Ricciarelli R, Zingg J-M. Non-antioxidant molecular functions of α-tocopherol (vitamin E). FEBS Lett 2002; 519(1-3): 8-10..
[http://dx.doi.org/10.1016/S0014-5793(02)02706-0] [PMID: 12023009]
Brigelius-Flohé R. Bioactivity of vitamin E. Nutr Res Rev 2006; 19(2): 174-86.
[http://dx.doi.org/10.1017/S0954422407202938] [PMID: 19079884]
Piacham T, Nantasenamat C, Suksrichavalit T, et al. Synthesis and theoretical study of molecularly imprinted nanospheres for recognition of tocopherols. Molecules 2009; 14(8): 2985-3002.
[http://dx.doi.org/10.3390/molecules14082985] [PMID: 19701140]
Shimoda K, Akagi M, Hamada H. Production of β-maltooligosaccharides of α- and δ-tocopherols by Klebsiella pneumoniae and cyclodextrin glucanotransferase as anti-allergic agents. Molecules 2009; 14(8): 3106-14.
[http://dx.doi.org/10.3390/molecules14083106] [PMID: 19701147]
Khanna S, Roy S, Slivka A, et al. Neuroprotective properties of the natural vitamin E α-tocotrienol. Stroke 2005; 36(10): 2258-64.
[http://dx.doi.org/10.1161/01.STR.0000181082.70763.22] [PMID: 16166580]
Ramanathan N, Tan E, Loh LJ, Soh BS, Yap WNJN. Tocotrienol is a cardioprotective agent against ageing-associated cardiovascular disease and its associated morbidities. Nutr Metab (Lond) 2018; 15(1): 6.
[http://dx.doi.org/10.1186/s12986-018-0244-4] [PMID: 29387138]
Adachi H, Ishii N. Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2000; 55(6): B280-5.
[http://dx.doi.org/10.1093/gerona/55.6.B280] [PMID: 10843344]
McIntyre BS, Briski KP, Tirmenstein MA, Fariss MW, Gapor A, Sylvester PW. Antiproliferative and apoptotic effects of tocopherols and tocotrienols on normal mouse mammary epithelial cells. Lipids 2000; 35(2): 171-80.
[http://dx.doi.org/10.1007/BF02664767] [PMID: 10757548]
Ima-Nirwana S, Suhaniza S. Effects of tocopherols and tocotrienols on body composition and bone calcium content in adrenalectomized rats replaced with dexamethasone. J Med Food 2004; 7(1): 45-51.
[http://dx.doi.org/10.1089/109662004322984699] [PMID: 15117552]
Wan Nazaimoon WM, Khalid BA. Tocotrienols-rich diet decreases advanced glycosylation end-products in non-diabetic rats and improves glycemic control in streptozotocin-induced diabetic rats. Malays J Pathol 2002; 24(2): 77-82.
[PMID: 12887164]
Nafeeza MI, Kang TT. Synergistic effects of tocopherol, tocotrienol, and ubiquinone in indomethacin-induced experimental gastric lesions. Int J Vitam Nutr Res 2005; 75(2): 149-55.
[http://dx.doi.org/10.1024/0300-9831.75.2.149] [PMID: 15929636]
Klack K, de Carvalho J. Vitamin K: metabolism, sources and interaction with foods and oral anticoagulants. Adv Med Biol 2011; 17(4/5): 351.
Schurgers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 2000; 30(6): 298-307.
[PMID: 11356998]
McCann JC, Ames BN. Vitamin K, an example of triage theory: Is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr 2009; 90(4): 889-907.
[http://dx.doi.org/10.3945/ajcn.2009.27930] [PMID: 19692494]
Berkner KL. The vitamin K-dependent carboxylase. J Nutr 2000; 130(8): 1877-80.
[http://dx.doi.org/10.1093/jn/130.8.1877] [PMID: 10917896]
Wen L, Chen J, Duan L, Li S. Vitamin K-dependent proteins involved in bone and cardiovascular health. Mol Med Rep 2018; 18(1): 3-15.
[http://dx.doi.org/10.3892/mmr.2018.8940] [PMID: 29749440]
Ohsaki Y, Shirakawa H, Hiwatashi K, Furukawa Y, Mizutani T, Komai M. Vitamin K suppresses lipopolysaccharide-induced inflammation in the rat. Biosci Biotechnol Biochem 2006; 70(4): 926-32.
[http://dx.doi.org/10.1271/bbb.70.926] [PMID: 16636460]
Dam V, Dalmeijer GW, Vermeer C, et al. Association between vitamin K and the metabolic syndrome: a 10-year follow-up study in adults. J Clin Endocrinol Metab 2015; 100(6): 2472-9.
[http://dx.doi.org/10.1210/jc.2014-4449] [PMID: 25835288]
Shea MK, Booth SL, Miller ME, et al. Association between circulating vitamin K1 and coronary calcium progression in community-dwelling adults: the multi-ethnic study of atherosclerosis. Am J Clin Nutr 2013; 98(1): 197-208.
[http://dx.doi.org/10.3945/ajcn.112.056101] [PMID: 23719555]
Shea MK, Kritchevsky SB, Hsu F-C, et al. The association between vitamin K status and knee osteoarthritis features in older adults: the health, aging and body composition study. Osteoarthritis Cartilage 2015; 23(3): 370-8.
[http://dx.doi.org/10.1016/j.joca.2014.12.008] [PMID: 25528106]
Cesari M, Kritchevsky SB, Nicklas B, et al. Oxidative damage, platelet activation, and inflammation to predict mobility disability and mortality in older persons: results from the health aging and body composition study. J Gerontol A Biol Sci Med Sci 2012; 67(6): 671-6.
[http://dx.doi.org/10.1093/gerona/glr246] [PMID: 22389462]
Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 2008; 105(13): 5266-70.
[http://dx.doi.org/10.1073/pnas.0711119105] [PMID: 18362359]
Kristensen M, Kudsk J, Bügel S. Six weeks phylloquinone supplementation produces undesirable effects on blood lipids with no changes in inflammatory and fibrinolytic markers in postmenopausal women. Eur J Nutr 2008; 47(7): 375-9.
[http://dx.doi.org/10.1007/s00394-008-0737-4] [PMID: 18807108]
Cabrera-Vique C, Marfil R, Giménez R, Martínez-Augustin O. Bioactive compounds and nutritional significance of virgin argan oil--an edible oil with potential as a functional food. Nutr Rev 2012; 70(5): 266-79.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00478.x] [PMID: 22537213]
Kim N, Choe E. Contribution of minor compounds to the singlet oxygen-related photooxidation of olive and perilla oil blend. Food Sci Biotechnol 2013; 22(2): 315-21.
Gunstone FD. Vegetable oils in food technology. Wiley Online Library 2002.
Moreau RA, Johnston DB, Hicks KB. A comparison of the levels of lutein and zeaxanthin in corn germ oil, corn fiber oil and corn kernel oil. J Am Oil Chem Soc 2007; 84(11): 1039-44.
Lee SH, Min DB. Effects, quenching mechanisms, and kinetics of carotenoids in chlorophyll-sensitized photooxidation of soybean oil. J Agric Food Chem 1990; 38(8): 1630-4.
Ghazani SM, Marangoni AG. Minor components in canola oil and effects of refining on these constituents: a review. J Am Oil Chem Soc 2013; 90(7): 923-32.
Jung M, Yoon S, Min D. Effects of processing steps on the contents of minor compounds and oxidation of soybean oil. J Am Oil Chem Soc 1989; 66(1): 118-20.
Franco MN, Galeano-Díaz T, López O, et al. Phenolic compounds and antioxidant capacity of virgin olive oilFood Chem 2014; 163: 289-98.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.091] [PMID: 24912728]
Romani A, Pinelli P, Moschini V, Heimler D. Seeds and oil polyphenol content of sunflower (Helianthus annuus L.) grown with different agricultural management. Adv Hortic Sci 2017; 31(2): 85-8.
Siger A, Nogala‐Kalucka M, Lampart‐Szczapa E. The content and antioxidant activity of phenolic compounds in cold‐pressed plant oils. J Food Lipids 2008; 15(2): 137-49.
Maguire LS, O’Sullivan SM, Galvin K, O’Connor TP, O’Brien NM. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut Int J Food Sci Nutr 2004; 55(3): 171-8..
[http://dx.doi.org/10.1080/09637480410001725175] [PMID: 15223592]
Ratnayake W, Daun J. Chemical composition of canola and rapeseed oils rapeseed and canola oil Production, processing, properties and uses 2004; 37-78.
Booth SL, Sadowski JA, Weihrauch JL, Ferland G. Vitamin K1 (phylloquinone) content of foods: a provisional table. J Food Compos Anal 1993; 6(2): 109-20.
Peterson JW, Muzzey KL, Haytowitz D, Exler J, Lemar L, Booth SL. Phylloquinone (vitamin K 1) and dihydrophylloquinone content of fats and oils. J Am Oil Chem Soc 2002; 79(7): 641-6.
Przybylski R, Mag T, Eskin N, McDonald B. Canola oil Bailey's industrial oil and fat products 2005.
Basti M, Bastl L, Jovanovi J, Spiteller G. Hydrocarbons and other weakly polar unsaponifiables in some vegetable oils. J Am Oil Chem Soc 1978; 55(12): 886-91.
Deprez P, Volkman J, Davenport S. Squalene content and neutral lipis composition of livers from deep-sea sharks caught in Tasmanian waters. Mar Freshw Res 1990; 41(3): 375-87.
Schaink HM, van Malssen KF, Morgado-Alves S, Kalnin D, van der Linden E. Crystal network for edible oil organogels: possibilities and limitations of the fatty acid and fatty alcohol systems. Food Res Int 2007; 40(9): 1185-93.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [1196 - 1208]
Pages: 13
DOI: 10.2174/1573401316666200203121034
Price: $65

Article Metrics

PDF: 24