Current Nanotechnology Based Solutions for Sustainable Wastewater Treatment

Author(s): Shabnam Murshid, Kannappan Panchamoorthy Gopinath, Dhakshinamoorthy Gnana Prakash*

Journal Name: Current Analytical Chemistry

Volume 17 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Industrialization plays an important role in the growth of a nation. But it is also one of the causes of the deteriorating condition of our ecosystem. The pollution, be it aquatic, terrestrial, or air-borne, has affected our environment drastically, and industrial and domestic wastewater plays a major role in it. As the Earth transforms into urban sprawl, industries flourish, pollution increases and the natural resources deplete. Recently nano-engineering based technologies have been explored for the purpose of wastewater treatment, which helps in the detection and remediation of the pollutants present in wastewater. Various nano-material based technologies deployed in wastewater treatment are discussed in this article.

Methods: A thorough survey of the literature was effectuated, and the study was focused mainly on the different types of nanomaterials applied for the purpose of wastewater management and the diverse treatment methods related to them. Literature was also studied to confirm the functionalization of nanomaterials as pollution sensors.

Results: There are four main kinds of nano-materials employed for the purpose of wastewater remediation, i.e. metallic nanomaterials, carbon-based nanomaterials, nanocomposites, and dendrimers. The treatment technologies utilizing these materials include nanofiltration, nanoadsorption, nano-photocatalysis, and disinfection.

Conclusion: Nanomaterials are quite efficient in removing pollutants from different kinds of wastewater. But drawbacks such as expenditure and effect of the materials in the environment make it difficult for real-time utilization. Since the nano-scaled elements behave differently than their standard-sized counterparts, the consequence of these materials in the human life cycle is unknown. This knowledge gap should be filled so that these materials can be adopted worldwide.

Keywords: Disinfection, nano-adsorption, nano-photocatalysis, nanofiltration, nanomaterials, nanotechnology, wastewater treatment.

[1]
Pollution, W. Everything you need to know.Available from:, https://www.nrdc.org/stories/water-pollution-everything-you-need-know (Accessed Jul 1, 2019).,
[3]
Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; Alcamo, J.; Oki, T. Water scarcity assessments in the past, present and future. Earths Futur., 2017, 5(6), 545-559.
[http://dx.doi.org/10.1002/2016EF000518] [PMID: 30377623]
[4]
Saxena, G.; Bharagava, R. Organic and inorganic pollutants in industrial wastes. Environmental Pollutants and Their Bioremediation Approaches, 1st ed; Bhargava, R.N., Ed.; CRC Press: Florida, USA, 2017, pp. 23-56.
[5]
Samer, M. Biological and Chemical Wastewater Treatment Processes. Wastewater Treatment Engineering, 1st ed; IntechOpen: London, 2015, pp. 1-50.
[http://dx.doi.org/10.5772/61250]
[6]
Rice, R.G. Applications of ozone for industrial wastewater treatment - A review. Ozone Sci. Eng., 1996, 18(6), 477-515.
[http://dx.doi.org/10.1080/01919512.1997.10382859]
[7]
Wang, L.K. Waste chlorination and stabilization. Advanced Physicochemical Treatment Processes, 4th ed; Wang, L.K.; Hung, Y.T.;Shammas, N.K., Eds.; Humana Press: New York, 2006, pp. 403-440. http://dx.doi.org/10.1007/978-1-59745-029-4_12.
[8]
Bratby, J. Coagulation and flocculation in water and wastewater treatment, 3rd ed; IWA Publishing: London, 2016.
[http://dx.doi.org/10.2166/9781780407500]
[9]
Nageeb, M. Adsorption technique for the removal of organic pollutants from water and wastewater. Organic Pollutants - Monitoring, Risk and Treatment, 1st Edition; IntechOpen: London, 2015, pp. 167-194.
[10]
Abdessemed, D.; Nezzal, G.; Ben Aïm, R. Treatment of wastewater by ultrafiltration. Desalination, 1999, 126(1), 1-5.
[http://dx.doi.org/10.1016/S0011-9164(99)00149-6]
[11]
Rizzo, L.; Fiorentino, A.; Anselmo, A. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains. Chemosphere, 2013, 92(2), 171-176.
[http://dx.doi.org/10.1016/j.chemosphere.2013.03.021] [PMID: 23591136]
[12]
Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in wastewater treatment. Curr. Pollut. Rep., 2015, 1, 167-176.
[http://dx.doi.org/10.1007/s40726-015-0015-z]
[13]
Trzcinski, A.P. Conventional Waste Activated Sludge Process. Advanced Biological, Physical, and Chemical Treatment of Waste Activated Sludge, 1st ed; CRC Press: Florida, USA, 2018, pp. 1-20.
[http://dx.doi.org/10.1201/9780429437960-1]
[14]
Sandra, C.A.; Jamil, N.A.M.; Jabbar, S.; Sakyat, S.; Gomes, C. Aerobic and anaerobic sewage biodegradable processes: The gap analysis. Int. J. Res. Env. Sci., 2017, 3(3), 9-19.
[15]
Iorhemen, O.T.; Hamza, R.A.; Tay, J.H. Membrane Bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane Fouling. Membranes (Basel), 2016, 6(2), 33.
[http://dx.doi.org/10.3390/membranes6020033] [PMID: 27314394]
[16]
Asri, M.; Elabed, S.; Koraichi, S.I.; Ghachtouli, N.E. Biofilm-based systems for industrial wastewater treatment. Handbook of Environmental Materials Management, 1st ed; Springer: Cham, 2019, pp. 1767-1787.
[http://dx.doi.org/10.1007/978-3-319-73645-7_137]
[17]
Bressani-Ribeiro, T.; Almeida, P.G.S.; Volcke, E.I.P.; Chernicharo, C.A.L. Trickling filters following anaerobic sewage treatment: State of the art and perspectives. Environ. Sci. Water Res. Technol., 2018, 4, 1721-1738.
[http://dx.doi.org/10.1039/C8EW00330K]
[18]
The Beginning of Nanotechnology at the 1959 APS Meeting,. https://www.aps.org/publications/apsnews/201611/nanotechnology.cfm (Accessed Jul 11, 2019).
[19]
Roco, M.C. The long view of nanotechnology development: The national nanotechnology initiative at 10 Years. J. Nanopart. Res., 2011, 1, 1-28.
[20]
Rocco, M.C.; Bainbridge, W.S. Societal implications of nanoscience and nanotechnology. NSET Workshop Report, 2001.
[21]
McManus, I.P. Nanotechnology in a globalized world: Strategic assessments of an emerging technology. Technical Report., 2014, 6, 2014.
[22]
Shrivastava, S.; Dash, D. Applying nanotechnology to human health: Revolution in biomedical sciences. J. Nanotechnol., 2009, 2009, 1-14.
[http://dx.doi.org/10.1155/2009/184702]
[23]
Ruiz-Hitzky, E.; Aranda, P. The progress on the recent patents on nanotechnology contributions. Recent Pat. Nanotechnol., 2012, 7, 1-1.
[http://dx.doi.org/10.2174/1872210511307010001]
[24]
Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in nanotechnology for water treatment. Nanotechnol. Sci. Appl., 2015, 8, 1-17.
[http://dx.doi.org/10.2147/NSA.S43773] [PMID: 25609931]
[25]
Taghipour, S.; Hosseini, S.M.; Ataie-Ashtiani, B. Engineering nano-materials for water and wastewater treatment: Review of classifications, properties and applications. New J. Chem., 2019, 43, 7902-7927.
[http://dx.doi.org/10.1039/C9NJ00157C]
[26]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[27]
Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An overview of nano-materials for water and wastewater treatment. Adv. Mater. Sci. Eng., 2016, 2016, 1-10.
[28]
Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M. Remediation of Wastewater Using Various Nano-Materials. Arab. J. Chem., 2016.
[29]
Iqbal, P.; Preece, J.A.; Mendes, P.M. Nanotechnology: The “Top-Down” and “Bottom-Up” Approaches. Supramolecular Chemistry; Wiley: UK, 2012.
[http://dx.doi.org/10.1002/9780470661345.smc195]
[30]
Yin, Y.; Talapin, D. The chemistry of functional nanomaterials. Chem. Soc. Rev., 2013, 42(7), 2484-2487.
[http://dx.doi.org/10.1039/c3cs90011h] [PMID: 23456089]
[31]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[32]
Bora, T.; Dutta, J. Applications of nanotechnology in wastewater treatment--a review. J. Nanosci. Nanotechnol., 2014, 14(1), 613-626.
[http://dx.doi.org/10.1166/jnn.2014.8898] [PMID: 24730286]
[33]
Matteucci, F.; Giannantonio, R.; Calabi, F.; Agostiano, A.; Gigli, G.; Rossi, M. .Deployment and exploitation of nanotechnology nanomaterials and nanomedicine; AIP Conference Proceedings;American Institute of Physics: United States, 2018, pp. 020001:1-25..
[34]
Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K.; Rather, I.A. Application of nanotechnology in food science: Perception and overview. Front. Microbiol., 2017, 8, 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501] [PMID: 28824605]
[35]
Coelho, M.C.; Torrão, G.; Emami, N.; Grácio, J. Nanotechnology in automotive industry: Research strategy and trends for the future-small objects, big impacts. J. Nanosci. Nanotechnol., 2012, 12(8), 6621-6630.
[http://dx.doi.org/10.1166/jnn.2012.4573] [PMID: 22962798]
[37]
Demetzos, C. Pharmaceutical Nanotechnology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017..
[38]
Amin, M.T.; Alazba, A.A.; Manzoor, U. A review of removal of pollutants from water/wastewater using different types of nano-materials. Adv. Mater. Sci. Eng., 2014, 2014, 1-24.
[http://dx.doi.org/10.1155/2014/825910]
[39]
Kusic, H.; Leszczynska, D.; Koprivanac, N.; Peternel, I. Role of quantum dots nanoparticles in the chemical treatment of colored wastewater: catalysts or additional pollutants. J. Environ. Sci. (China), 2011, 23(9), 1479-1485.
[http://dx.doi.org/10.1016/S1001-0742(10)60609-2] [PMID: 22432283]
[40]
Soliman, H.; Elsayed, A.; Dyaa, A. Antimicrobial Activity of Silver Nanoparticles Biosynthesised by Rhodotorula Sp. Strain ATL72. Egyptian J. Basic Appl. Sci, 2018, 5, 228-233.
[http://dx.doi.org/10.1016/j.ejbas.2018.05.005]
[41]
Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A Critical review of current knowledge and recommendations for future studies and applications. Materials (Basel), 2013, 6(6), 2295-2350.
[http://dx.doi.org/10.3390/ma6062295] [PMID: 28809275]
[42]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[43]
Lv, Y.; Liu, H.; Wang, Z.; Liu, S.; Hao, L.; Sang, Y.; Liu, D.; Wang, J.; Boughton, R. Silver nanoparticle-decorated porous ceramic composite for water treatment. J. Membr. Sci., 2009, 331, 50-56.
[http://dx.doi.org/10.1016/j.memsci.2009.01.007]
[44]
Bolto, B.; Xie, Z. Recent developments in fouling minimization of membranes modifed with silver nanoparticles. J. Membr. Sci. Res., 2018, 4, 3.
[45]
Badmus, K.O.; Coetsee-Hugo, E.; Swart, H.; Petrik, L. Synthesis and characterisation of stable and efficient nano zero valent iron. Environ. Sci. Pollut. Res. Int., 2018, 25(24), 23667-23684.
[http://dx.doi.org/10.1007/s11356-018-2119-7] [PMID: 29748806]
[46]
Saif, S.; Tahir, A.; Chen, Y. Green synthesis of iron nanoparticles and their environmental applications and implications. nanomaterials, 2016, 6, 209..
[47]
Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater., 2014, 267, 194-205.
[http://dx.doi.org/10.1016/j.jhazmat.2013.12.062] [PMID: 24457611]
[48]
Li, X-M.; Xu, G.; Liu, Y.; He, T. Magnetic Fe3O4 Nanoparticles: Synthesis and application in water treatment. Nanosci. Nanotechnol. Asia, 2012, 1, 14-24.
[http://dx.doi.org/10.2174/2210681211101010014]
[49]
Zhou, Z.H.; Wang, J.; Liu, X.; Chan, H.S.O. Synthesis of Fe3O4 nanoparticles from emulsions. J. Mater. Chem., 2001, 11, 1704-1709.
[http://dx.doi.org/10.1039/b100758k]
[50]
Sahbaz, D.A.; Yakar, A.; Gündüz, U. Magnetic Fe3O4-Chitosan Micro- and nanoparticles for wastewater treatment. Particul. Sci. Technol., 2018, 37, 728-736.
[51]
Shahriari, T.; Mehrdadi, N.; Tahmasebi, M. Study of cadmium and nickel removal from battery industry wastewater by Fe2O3 nanoparticles. Pollution, 2019, 5(3), 515-524.
[52]
Liu, W.; Sutton, N.B.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Pharmaceutical removal from water with iron- or manganese-based technologies: A Review. Crit. Rev. Environ. Sci. Technol., 2016, 46, 1584-1621.
[http://dx.doi.org/10.1080/10643389.2016.1251236]
[53]
Yin, H.; Wada, Y.; Kitamura, T.; Yanagida, S. Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts. Environ. Sci. Technol., 2001, 35(1), 227-231.
[http://dx.doi.org/10.1021/es001114d] [PMID: 11352018]
[54]
Tratnyek, P.G.; Salter, A.J.; Nurmi, J.T.; Sarathy, V. Environmental Applications of Zerovalent Metals: Iron vs. Zinc. ACS Symposium Series Nanoscale Materials in Chemistry: Environmental Applications, 2010, pp. 165-178.
[http://dx.doi.org/10.1021/bk-2010-1045.ch009]
[55]
Haq, A.N.U.; Nadhman, A.; Ullah, I.; Mustafa, G.; Yasinzai, M.; Khan, I. Synthesis approaches of zinc oxide nanoparticles: The dilemma of ecotoxicity. J. Nanomater., 2017, 2017, 1-14.
[56]
Colak, H. Synthesis and characterization of CeO2-Doped ZnO. Met. Mater., 2016, 54, 107-112.
[57]
Bedia, F.; Bedia, A.; Aillerie, M.; Maloufi, N.; Benyoucef, B. Structural, optical and electrical properties of sn-doped zinc oxide transparent films interesting for organic solar cells (OSCs). Energy Procedia, 2015, 74, 539-546.
[http://dx.doi.org/10.1016/j.egypro.2015.07.745]
[58]
Yang, S.; Li, G.; Qu, C.; Wang, G.; Wang, D. Simple synthesis of zno nanoparticles on n-doped reduced graphene oxide for the electrocatalytic sensing of l-Cysteine. RSC Advances, 2017, 7, 35004-35011.
[http://dx.doi.org/10.1039/C7RA04052K]
[59]
Padikkaparambil, S.; Narayanan, B.; Yaakob, Z.; Viswanathan, S.; Tasirin, S.M. Au/TiO2 reusable photocatalysts for dye degradation. Int. J. Photoenergy, 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/752605]
[60]
Lusvardi, G.; Barani, C.; Giubertoni, F.; Paganelli, G. Synthesis and Characterization of TiO? nanoparticles for the reduction of water pollutants. Materials (Basel), 2017, 10(10), 1208.
[http://dx.doi.org/10.3390/ma10101208] [PMID: 29053593]
[61]
Hou, J.; Wang, L.; Wang, C.; Zhang, S.; Liu, H.; Li, S.; Wang, X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. (China), 2019, 75, 40-53.
[http://dx.doi.org/10.1016/j.jes.2018.06.010] [PMID: 30473306]
[62]
Fu, L.; Hamzeh, M.; Dodard, S.; Zhao, Y.H.; Sunahara, G.I. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation. Environ. Toxicol. Pharmacol., 2015, 39(3), 1074-1080.
[http://dx.doi.org/10.1016/j.etap.2015.03.015] [PMID: 25867689]
[63]
Liou, J-W.; Chang, H-H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch. Immunol. Ther. Exp. (Warsz.), 2012, 60(4), 267-275.
[http://dx.doi.org/10.1007/s00005-012-0178-x] [PMID: 22678625]
[64]
Kovalevski, V.V. Fullerene-Like Carbon in Nature and Perspectives of Its Use in Science-Based Technologies. Minerals as Advanced Materials; Springer: Hiedelberg, Berlin, 2008, pp. 165-168.
[http://dx.doi.org/10.1007/978-3-540-77123-4_22]
[65]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[66]
Rahman, M.M.; Sime, S.A.; Hossain, M.A.; Shammi, M.; Uddin, M.K.; Sikder, M.T.; Kurasaki, M. Removal of pollutants from water by using single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Arab. J. Sci. Eng., 2017, 42, 261-269.
[http://dx.doi.org/10.1007/s13369-016-2303-3]
[67]
Yahyazadeh, A.; Khoshandam, B. Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron-molybdenum alloy thin layer catalysts. Result. Phys., 2017, 7, 3826-3837.
[http://dx.doi.org/10.1016/j.rinp.2017.10.001]
[68]
Aryal, R.; Beltran, D.; Liu, J. Effects of Ni nanoparticles, MWCNT, and MWCNT/Ni on the power production and the wastewater treatment of a microbial fuel cell. Int. J. Green Energy, 2019, 1, 1-9.
[http://dx.doi.org/10.1080/15435075.2019.1671412]
[69]
Saifuddin, N.; Raziah, A.Z.; Junizah, A.R. Carbon Nanotubes: A review on structure and their interaction with proteins. J. Chem., 2013, 2013, 1-18.
[http://dx.doi.org/10.1155/2013/676815]
[70]
Li, S.; Meng, Lin M.; Toprak, M.S.; Kim, D.K.; Muhammed, M. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev., 2010, 1, 5214.
[http://dx.doi.org/10.3402/nano.v1i0.5214] [PMID: 22110855]
[71]
Goyal, R.K. Synthesis of nano-materials. nano-materials and Nanocomposites, 1st ed; Goyal, R.K., Ed.; CRC Press: Florida, USA, 2017, pp. 73-106.
[72]
Yahyaei, B.; Azizian, S.; Mohammadzadeh, A.; Pajohi-Alamoti, M. Preparation of Clay/Alumina and Clay/Alumina/Ag Nanoparticle composites for chemical and bacterial treatment of waste water. Chem. Eng. J., 2014, 247, 16-24.
[http://dx.doi.org/10.1016/j.cej.2014.02.088]
[73]
Cacciato, G.; Zimbone, M.; Ruffino, F.; Grimaldi, M.G. TiO2 Nanostructures and Nanocomposites for Sustainable Photocatalytic Water Purification. In:Green Nanotechnology - Overview and Further Prospects, 1st Ed; Larramendy, M., Ed.; IntechOpen: London, 2016.
[74]
Li, J.; Zhen, D.; Sui, G.; Zhang, C.; Deng, Q.; Jia, L. Nanocomposite of Cu-TiO2-SiO2 with high photoactive performance for degradation of rhodamine B dye in aqueous wastewater. J. Nanosci. Nanotechnol., 2012, 12(8), 6265-6270.
[http://dx.doi.org/10.1166/jnn.2012.6438] [PMID: 22962734]
[75]
Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Sanz, Y.E.; Lagaron, J.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nano-Materials, 2017, 7, 74.
[76]
Taheri-Kafrani, A.; Shirzadfar, H.; Tavassoli-Kafrani, E. .Dendrimers and Dendrimers-Grafted Superparamagnetic Iron Oxide Nanoparticles: Synthesis, Characterization, Functionalization, and Biological Applications in Drug Delivery Systems. In: Nano- and Microscale Drug Delivery Systems, 1st Ed; Elsevier Press, 2017; pp. Grumezescu, A. 75-94..
[77]
Diallo, M.S. Water Treatment by Dendrimer-Enhanced Filtration: Principles and Applications; Nanotechnology Applications for Clean Water, 2009, pp. 143-155.
[78]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[79]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[80]
Neuss, L.V. Why Did the industrial revolution start in Britain? SSRN Electron. J., 2015, 1, 1.
[81]
Zouboulis, A.; Peleka, E.; Ntolia, A. Treatment of tannery wastewater with vibratory shear-enhanced processing membrane filtration. Separations, 2019, 6, 20.
[http://dx.doi.org/10.3390/separations6020020]
[82]
Shatat, M.; Riffat, S.B. Water desalination technologies utilizing conventional and renewable energy sources. Int. J. Low Carbon Technol., 2012, 9, 1-19.
[http://dx.doi.org/10.1093/ijlct/cts025]
[83]
[84]
Shon, H.K.; Phuntsho, S.; Chaudhary, D.S.; Vigneswaran, S.; Cho, J. Nanofiltration for water and wastewater treatment - a mini review. Drink. Water Eng. Sci., 2013, 6, 59-77.
[http://dx.doi.org/10.5194/dwesd-6-59-2013]
[85]
Chen, D.; Sirkar, K.; Jin, C.; Singh, D.; Pfeffer, R. Membrane-based technologies in the pharmaceutical industry and continuous production of polymer-coated crystals/particles. Curr. Pharm. Des., 2016, 22, 1-1.
[http://dx.doi.org/10.2174/1381612822666161025145229] [PMID: 27784239]
[86]
Aktaş, Ö.; Sahinkaya, E.; Yurtsever, A.; Demir, S.; Yüceyurt, M.; Çakmak, A.; Külekci, Ç.; Tahmaz, Ş.; Uludağ, M. Treatment of a chemical industry effluent by nanofiltration and reverse osmosis. Desalination Water Treat., 2017, 75, 274-283.
[http://dx.doi.org/10.5004/dwt.2017.20482]
[87]
Rathore, A.S.; Shirke, A. Recent developments in membrane-based separations in biotechnology processes. Review. Prep. Biochem. Biotechnol., 2011, 41(4), 398-421.
[http://dx.doi.org/10.1080/10826068.2011.613976] [PMID: 21967339]
[88]
Zagho, M.M.; Elzatahry, A. Recent trends in electrospinning of polymer nanofibers and their applications as templates for metal oxide nanofibers preparation. In: Electrospinning - Material, Techniques, and Biomedical Applications, 1st Ed; Haider, S., Ed.; IntechOpen: London, 2016.
[89]
Bhattarai, D.P.; Aguilar, L.E.; Park, C.H.; Kim, C.S. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes (Basel), 2018, 8(3), 62.
[http://dx.doi.org/10.3390/membranes8030062] [PMID: 30110968]
[90]
Al-Hazeem, N. Z. A. Nanofibers and Electrospinning Method.Novel nano-materials - Synthesis and Applications,, 2018.
[91]
Širc, J.; Hobzová, R.; Kostina, N.; Munzarová, M.; Juklíčková, M.; Lhotka, M.; Kubinová, Š.; Zajícová, A.; Michálek, J. Morphological characterization of nanofibers: Methods and application in practice. J. Nanomater., 2012, 2012, 1-14.
[http://dx.doi.org/10.1155/2012/327369]
[92]
Sundarrajan, S.; Tan, K.L.; Lim, S.H.; Ramakrishna, S. Electrospun nanofibers for air filtration applications. Procedia Eng., 2014, 75, 159-163.
[http://dx.doi.org/10.1016/j.proeng.2013.11.034]
[93]
Yalcinkaya, F. A Review on advanced nanofiber technology for membrane distillation. J. Eng. Fibers Fabrics, 2019, 14155892501882490
[http://dx.doi.org/10.1177/1558925018824901]]
[94]
Jiříček, T.; Komárek, M.; Lederer, T. Polyurethane nanofiber membranes for waste water treatment by membrane distillation. J. Nanotechnol., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/7143035]
[95]
Medeiros, K.M.D.; Araújo, E.M.; Lira, H.D.L.; Lima, D.D.F.; Lima, C.A.P.D. Hybrid membranes of polyamide applied in treatment of waste water. Mater. Res., 2017, 20, 308-316.
[http://dx.doi.org/10.1590/1980-5373-mr-2016-0242]
[96]
Nanotechnology Products and Applications,. https://www.nanowerk.com/products/product.php?id=106 (Accessed Jul 11, 2019).
[97]
Wang, Z.; Wang, Z.; Lin, S.; Jin, H.; Gao, S.; Zhu, Y.; Jin, J. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Commun., 2018, 9(1), 2004.
[http://dx.doi.org/10.1038/s41467-018-04467-3] [PMID: 29785031]
[98]
Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 2013, 308, 15-33.
[http://dx.doi.org/10.1016/j.desal.2010.11.033]
[99]
Bolto, B. Zongli, Xie. Recent Developments in Fouling Minimization of Membranes Modifed with Silver Nanoparticles; JMSR, 2018, p. 4.
[100]
Rashid, M.H-O.; Ralph, S.F. Carbon nanotube membranes: Synthesis, properties, and future filtration applications. Nano-Materials, 2017, 7, 99.
[101]
Blanco, M.; Monteserín, C.; Angulo, A.; Pérez-Márquez, A.; Maudes, J.; Murillo, N.; Aranzabe, E.; Ruiz-Rubio, L.; Vilas, J.L. TiO2-Doped electrospun nanofibrous membrane for photocatalytic water treatment. Polymers (Basel), 2019, 11(5), 747.
[http://dx.doi.org/10.3390/polym11050747] [PMID: 31027371]
[102]
Lazar, M.; Varghese, S.; Nair, S. Photocatalytic water treatment by titanium dioxide: Recent updates. Catalysts, 2012, 2, 572-601.
[http://dx.doi.org/10.3390/catal2040572]
[103]
Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical overview and future prospects. Jpn. J. Appl. Phys., 2005, 44, 8269-8285.
[http://dx.doi.org/10.1143/JJAP.44.8269]
[104]
Lan, Y.; Lu, Y.; Ren, Z. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy, 2013, 2, 1031-1045.
[http://dx.doi.org/10.1016/j.nanoen.2013.04.002]
[105]
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev., 2014, 114(19), 9919-9986.
[http://dx.doi.org/10.1021/cr5001892] [PMID: 25234429]
[106]
Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Gumfekar, S.P. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process., 2016, 109, 178-189.
[http://dx.doi.org/10.1016/j.cep.2016.08.016]
[107]
Huang, F.; Yan, A.; Zhao, H. Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst.In:Semiconductor Photocatalysis - Materials, Mechanisms and Applications, 1st ed; Cao, W., Ed.; IntechOpen: London, 2016.
[108]
Khairy, M.; Zakaria, W. Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt. J. Petrol., 2014, 23, 419-426.
[http://dx.doi.org/10.1016/j.ejpe.2014.09.010]
[109]
Owolabi, T.O.; Akande, K.O.; Olatunji, S.O.; Aldhafferi, N.; Alqahtani, A. Modeling energy band gap of doped TiO2 semiconductor using homogeneously hybridized support vector regression with gravitational search algorithm hyper-parameter optimization. AIP Adv., 2017, 7115225
[http://dx.doi.org/10.1063/1.5009693]]
[110]
Tang, B.; Chen, H.; Peng, H.; Wang, Z.; Huang, W. Graphene modified TiO2 composite photocatalysts: Mechanism, progress and perspective. Nanomaterials, 2018, 8, 105.
[111]
Czech, B.; Buda, W. Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environ. Res., 2015, 137, 176-184.
[http://dx.doi.org/10.1016/j.envres.2014.12.006] [PMID: 25543548]
[112]
Sepahvand, S.; Farhadi, S. Fullerene-modified magnetic silver phosphate (Ag3PO4/Fe3O4/C60) nanocomposites: Hydrothermal synthesis, characterization and study of photocatalytic, catalytic and antibacterial activities. RSC Advances, 2018, 8, 10124-10140.
[http://dx.doi.org/10.1039/C8RA00069G]
[113]
Truppi, A.; Petronella, F.; Placido, T.; Striccoli, M.; Agostiano, A.; Curri, M.; Comparelli, R. Visible-light-active TiO2-based hybrid nanocatalysts for environmental applications. Catalysts, 2017, 7, 100.
[http://dx.doi.org/10.3390/catal7040100]
[114]
Collivignarelli, M.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 2017, 10, 86.
[http://dx.doi.org/10.3390/su10010086]
[115]
Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; Demarini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res., 2007, 636(1-3), 178-242.
[http://dx.doi.org/10.1016/j.mrrev.2007.09.001] [PMID: 17980649]
[116]
Lockwood, D. Bacteria May Remain Dormant After UV Disinfection, https://cen.acs.org/articles/93/web/2015/01/Bacteria-Remain-Dormant-UV-Disinfection.html(Accessed Jul 9, 2019)..
[117]
Metch, J.W.; Ma, Y.; Pruden, A.; Vikesland, P.J. Enhanced disinfection by-product formation due to nanoparticles in wastewater treatment plant effluents. Environ. Sci. Water Res. Technol., 2015, 1, 823-831.
[http://dx.doi.org/10.1039/C5EW00114E]
[118]
Wong, K.K.Y.; Liu, X. Silver nanoparticles-the real “silver bullet” in clinical medicine? MedChemComm, 2010, 1, 125.
[http://dx.doi.org/10.1039/c0md00069h]
[119]
Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2012, 1, 2.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[120]
Behra, R.; Sigg, L.; Clift, M.J.D.; Herzog, F.; Minghetti, M.; Johnston, B.; Petri-Fink, A.; Rothen-Rutishauser, B. Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J. R. Soc. Interface, 2013, 10(87), 20130396-20130396.
[http://dx.doi.org/10.1098/rsif.2013.0396] [PMID: 23883950]
[121]
Kubacka, A.; Diez, M.S.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Martins dos Santos, V.A.; Fernández-García, M.; Ferrer, M. Understanding the antimicrobial mechanism of TiO?-based nanocomposite films in a pathogenic bacterium. Sci. Rep., 2014, 4, 4134.
[http://dx.doi.org/10.1038/srep04134] [PMID: 24549289]
[122]
Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 2011, 77(7), 2325-2331.
[http://dx.doi.org/10.1128/AEM.02149-10] [PMID: 21296935]
[123]
Liu, D.; Mao, Y.; Ding, L. Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control. J. Water Health, 2018, 16(2), 171-180.
[http://dx.doi.org/10.2166/wh.2018.228] [PMID: 29676754]
[124]
Al-Hakami, S.M.; Khalil, A.B.; Laoui, T.; Atieh, M.A. Fast disinfection of Escherichia Coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorg. Chem. Appl., 2013, 2013458943
[http://dx.doi.org/10.1155/2013/458943]] [PMID: 23606820]
[125]
Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett., 2018, 17, 195-213.
[http://dx.doi.org/10.1007/s10311-018-0786-8]
[126]
Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol., 2006, 97(9), 1061-1085.
[http://dx.doi.org/10.1016/j.biortech.2005.05.001] [PMID: 15993052]
[127]
Fuerhacker, M.; Haile, T.M.; Kogelnig, D.; Stojanovic, A.; Keppler, B. Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge. Water Sci. Technol., 2012, 65(10), 1765-1773.
[http://dx.doi.org/10.2166/wst.2012.907] [PMID: 22546790]
[128]
Kunz, W.; Häckl, K. The hype with ionic liquids as solvents. Chem. Phys. Lett., 2016, 661, 6-12.
[http://dx.doi.org/10.1016/j.cplett.2016.07.044]
[129]
Hlongwane, G.N.; Sekoai, P.T.; Meyyappan, M.; Moothi, K. Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control. Sci. Total Environ., 2019, 656, 808-833.
[http://dx.doi.org/10.1016/j.scitotenv.2018.11.257] [PMID: 30530150]
[130]
Thekkudan, V.N.; Vaidyanathan, V.K.; Ponnusamy, S.K.; Charles, C.; Sundar, S.; Vishnu, D.; Anbalagan, S.; Vaithyanathan, V.K.; Subramanian, S. Review on nanoadsorbents: A solution for heavy metal removal from wastewater. IET Nanobiotechnol., 2017, 11(3), 213-224.
[http://dx.doi.org/10.1049/iet-nbt.2015.0114] [PMID: 28476976]
[131]
Baalousha, M. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Total Environ., 2009, 407(6), 2093-2101.
[http://dx.doi.org/10.1016/j.scitotenv.2008.11.022] [PMID: 19059631]
[132]
Sheet, I.; Kabbani, A.; Holail, H. Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide composite. Energy Procedia, 2014, 50, 130-138.
[http://dx.doi.org/10.1016/j.egypro.2014.06.016]
[133]
Dave, P.N.; Chopda, L.V. Application of Iron Oxide nano-materials for the removal of heavy metals. J. Nanotechnol., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/398569]
[134]
Warner, C.L.; Chouyyok, W.; Mackie, K.E.; Neiner, D.; Saraf, L.V.; Droubay, T.C.; Warner, M.G.; Addleman, R.S. Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir, 2012, 28(8), 3931-3937.
[http://dx.doi.org/10.1021/la2042235] [PMID: 22329500]
[135]
Kumar, K.S.; Narayanan, K.R.R.; Siddarth, S.; Kumar, R.P.; Narayan, R.B.; Goutham, R.; Samynaathan, V. Synthesis of MgO/TiO2 nanocomposite and its application in photocatalytic dye degradation. Int. J. Chem. React. Eng., 2018, 1, 16.
[136]
Wang, Y.; Lin, J.; Wang, Y.; Liu, Z.; Lian, J.; Liu, M. Highly efficient and selective removal of low-concentration antibiotics from aqueous solution by regenerable Mg(OH)2. J. Environ. Sci. (China), 2020, 87, 228-237.
[PMID: 31791495]
[137]
Kanemitsu, Y. Excitons in semiconducting carbon nanotubes: Diameter-dependent photoluminescence spectra. Phys. Chem. Chem. Phys., 2011, 13(33), 14879-14888.
[http://dx.doi.org/10.1039/c1cp21235d] [PMID: 21735026]
[138]
Ihsanullah; Abbas, A.; Al-Amer, A. M.; Laoui, T.; Al-Marri, M. J.; Nasser, M. S.; Khraisheh, M.; Atieh, M. A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separ. Purif. Tech., 2016, 157, 141-161.
[http://dx.doi.org/10.1016/j.seppur.2015.11.039]
[139]
Kumar, R.; Khan, M.A.; Haq, N. Application of carbon nanotubes in heavy metals remediation. Crit. Rev. Environ. Sci. Technol., 2014, 44, 1000-1035.
[http://dx.doi.org/10.1080/10643389.2012.741314]
[140]
Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Removal of heavy metals from wastewater using carbon nanotubes. Separ. Purif. Rev., 2013, 43, 311-338.
[http://dx.doi.org/10.1080/15422119.2013.821996]
[141]
Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A.A.; Abdel-Daiem, A. Different technical applications of carbon nanotubes. Nanoscale Res. Lett., 2015, 10(1), 358.
[http://dx.doi.org/10.1186/s11671-015-1056-3] [PMID: 26377211]
[142]
Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications - An overview. Front. Bioeng. Biotechnol., 2016, 4, 11.
[http://dx.doi.org/10.3389/fbioe.2016.00011] [PMID: 26909346]
[143]
Willner, M.R.; Vikesland, P.J. Nano-material enabled sensors for environmental contaminants. J. Nanobiotechnology, 2018, 16, 1.
[144]
Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Recent progress in biosensors for environmental monitoring: A review. Sensors (Basel), 2017, 17(12), 2918.
[http://dx.doi.org/10.3390/s17122918] [PMID: 29244756]
[145]
Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8(7), 1985-2017.
[http://dx.doi.org/10.7150/thno.23856] [PMID: 29556369]
[146]
Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem., 2015, 87(1), 230-249.
[http://dx.doi.org/10.1021/ac5039863] [PMID: 25354297]
[147]
El-Ansary, A.; Faddah, L.M. Nanoparticles as biochemical sensors. Nanotechnol. Sci. Appl., 2010, 3, 65-76.
[http://dx.doi.org/10.2147/NSA.S8199] [PMID: 24198472]
[148]
Jame, S.A.; Zhou, Z. Electrochemical carbon nanotube filters for water and wastewater treatment. Nanotechnol. Rev., 2016, 1, 5.
[http://dx.doi.org/10.1515/ntrev-2015-0056]
[149]
Goulart, L.A.; Gonçalves, R.; Correa, A.A.; Pereira, E.C.; Mascaro, L.H. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol; Microchimica Acta, 2017, p. 185.
[150]
Lu, G.; Li, H.; Liusman, C.; Yin, Z.; Wu, S.; Zhang, H. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. (Camb.), 2011, 2, 1817.
[http://dx.doi.org/10.1039/c1sc00254f]
[151]
Zhang, Y-N.; Niu, Q.; Gu, X.; Yang, N.; Zhao, G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale, 2019, 11(25), 11992-12014.
[http://dx.doi.org/10.1039/C9NR02935D] [PMID: 31140537]
[152]
Akbari, E.; Buntat, Z.; Afroozeh, A.; Zeinalinezhad, A.; Nikoukar, A. Escherichia coli bacteria detection by using graphene-based biosensor. IET Nanobiotechnol., 2015, 9(5), 273-279.
[http://dx.doi.org/10.1049/iet-nbt.2015.0010] [PMID: 26435280]
[153]
Wan, J.; Si, Y.; Li, C.; Zhang, K. Bisphenol A electrochemical sensor based on multi-walled carbon nanotubes/polythiophene/Pt nanocomposites modified electrode. Anal. Methods, 2016, 16, 3333-3338.
[http://dx.doi.org/10.1039/C6AY00850J]
[154]
Abilash, A. Quantum dots wide absorption pattern, photo stability and greater quantum yields provides a gate way to power full applications in nano medicine and nano biotechnology. Med. Sci. Int. Med. J., 2017, 1, 1.
[155]
Haram, S.K.; Quinn, B.M.; Bard, A.J. Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps. J. Am. Chem. Soc., 2001, 123(36), 8860-8861.
[http://dx.doi.org/10.1021/ja0158206] [PMID: 11535097]
[156]
Vázquez-González, M.; Carrillo-Carrion, C. Analytical strategies based on quantum dots for heavy metal ions detection. J. Biomed. Opt., 2014, 19(10)101503
[http://dx.doi.org/10.1117/1.JBO.19.10.101503]] [PMID: 24853041]
[157]
Wei, J.; Li, H.; Yuan, Y.; Sun, C.; Hao, D.; Zheng, G.; Wang, R. A sensitive fluorescent sensor for the detection of trace water in organic solvents based on carbon quantum dots with yellow fluorescence. RSC Advances, 2018, 8, 37028-37034.
[http://dx.doi.org/10.1039/C8RA06732E]
[158]
Nunes, D.; Pimentel, A.; Santos, L.; Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R. Oxide Nanoparticle Hybrid Materials and Applications; Metal Oxide Nanostructures, 2019, pp. 235-281.
[159]
Kaur, R.; Sharma, S.K.; Tripathy, S. Advantages and limitations of environmental nanosensors. Adv. Nanosensors Biol. Environ. Anal., 2019, 1, 119-132.
[160]
Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale, 2017, 10(1), 18-33.
[http://dx.doi.org/10.1039/C7NR06367A] [PMID: 29211091]
[161]
Cable, M.L.; Kirby, J.P.; Levine, D.J.; Manary, M.J.; Gray, H.B.; Ponce, A. Detection of bacterial spores with lanthanide-macrocycle binary complexes. J. Am. Chem. Soc., 2009, 131(27), 9562-9570.
[http://dx.doi.org/10.1021/ja902291v] [PMID: 19537757]
[162]
Tîlmaciu, C-M.; Morris, M.C. Carbon nanotube biosensors. Front Chem., 2015, 3, 59.
[http://dx.doi.org/10.3389/fchem.2015.00059] [PMID: 26579509]
[163]
Donia, D.T.; Carbone, M. Fate of the nanoparticles in environmental cycles. Int. J. Environ. Sci. Technol., 2018, 16, 583-600.
[http://dx.doi.org/10.1007/s13762-018-1960-z]
[164]
Pietroiusti, A.; Stockmann-Juvala, H.; Lucaroni, F.; Savolainen, K. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 1, 10.
[http://dx.doi.org/10.1002/wnan.1513] [PMID: 29473695]
[165]
Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G-M.; Choi, H.Y.; Cho, S-G. The role of Reactive Oxygen Species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1), 120.
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[166]
Maccormack, T.J.; Clark, R.J.; Dang, M.K.M.; Ma, G.; Kelly, J.A.; Veinot, J.G.C.; Goss, G.G. Inhibition of enzyme activity by nanomaterials: Potential mechanisms and implications for nanotoxicity testing. Nanotoxicology, 2012, 6(5), 514-525.
[http://dx.doi.org/10.3109/17435390.2011.587904] [PMID: 21639725]
[167]
Recycling: A Strategy for Sustainable Nanotechnology?.. http://sustainable-nano.com/2017/10/17/reecycling-sustainable-nanotechnology/ (Accessed Jul 11, 2019).
[168]
Myakonkaya, O.; Deniau, B.; Eastoe, J.; Rogers, S.E.; Ghigo, A.; Hollamby, M.; Vesperinas, A.; Sankar, M.; Taylor, S.H.; Bartley, J.K.; Hutchings, G.J. Recovery and reuse of nanoparticles by tuning solvent quality. ChemSusChem, 2010, 3(3), 339-341.
[http://dx.doi.org/10.1002/cssc.200900280] [PMID: 20043316]
[169]
Dhavale, R.P.; Parit, S.B.; Sahoo, S.C.; Kollu, P.; Patil, P.S.; Patil, P.B.; Chougale, A.D. α-Amylase Immobilized on Magnetic Nanoparticles: Reusable Robust Nano-Biocatalyst for Starch Hydrolysis. Mater. Res. Express, 2018, 5075403
[http://dx.doi.org/10.1088/2053-1591/aacef1]]
[170]
Recycling nanoparticles,. https://www.understandingnano.com/na noparticles-recycling-microemulsion.html (Accessed Jul 11, 2019).
[171]
Abdel-Fatah, M.A.; Abdel-Salam, O.E.; Abdel-Maoty, R.E. Regeneration of fouled nanofiltration membrane used in dye-house wastewater treatment. J. Desal. Water Purif., 2017, 7, 14-22.
[172]
Hollamby, M.J.; Eastoe, J.; Chemelli, A.; Glatter, O.; Rogers, S.; Heenan, R.K.; Grillo, I. Separation and purification of nanoparticles in a single step. Langmuir, 2010, 26(10), 6989-6994.
[http://dx.doi.org/10.1021/la904225k] [PMID: 20039604]
[173]
Jiang, M.; Qi, Y.; Liu, H.; Chen, Y. The role of nano-materials and nanotechnologies in wastewater treatment: A bibliometric analysis. Nanoscale Res. Lett., 2018, 13, 1.
[http://dx.doi.org/10.1186/s11671-018-2649-4]
[174]
Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol., 2015, 6, 1769-1780.
[http://dx.doi.org/10.3762/bjnano.6.181] [PMID: 26425429]
[175]
Hey, G.; Vega, S.; Fick, J.; Tysklind, M.; Ledin, A.; Jansen, J.L.C.; Andersen, H. Removal of pharmaceuticals in WWTP effluents by ozone and hydrogen peroxide. Water S.A., 2014, 40, 165.
[http://dx.doi.org/10.4314/wsa.v40i1.20]
[176]
Corrêa, A.X.R.; Tiepo, E.N.; Somensi, C.A.; Sperb, R.M.; Radetski, C.M. Use of ozone-photocatalytic oxidation (O3/UV/TiO2) and biological remediation for treatment of produced water from petroleum refineries. J. Environ. Eng., 2010, 136, 40-45.
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000111]
[177]
Bilińska, L.; Gmurek, M.; Ledakowicz, S. Comparison between industrial and simulated textile wastewater treatment by AOPs - biodegradability, toxicity and cost assessment. Chem. Eng. J., 2016, 306, 550-559.
[http://dx.doi.org/10.1016/j.cej.2016.07.100]
[178]
Kishimoto, N.; Nakagawa, T.; Okada, H.; Mizutani, H. Treatment of paper and pulp mill wastewater by ozonation combined with electrolysis. J. Water Environ. Technol., 2010, 8, 99-109.
[http://dx.doi.org/10.2965/jwet.2010.99]
[179]
Amuda, O.S.; Amoo, I.A. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater., 2007, 141(3), 778-783.
[http://dx.doi.org/10.1016/j.jhazmat.2006.07.044] [PMID: 16959404]
[180]
Harrelkas, F.; Azizi, A.; Yaacoubi, A.; Benhammou, A.; Pons, M.N. Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination, 2009, 235, 330-339.
[http://dx.doi.org/10.1016/j.desal.2008.02.012]
[181]
Braz, R.; Pirra, A.; Lucas, M.S.; Peres, J.A. Combination of long term aerated storage and chemical coagulation/flocculation to winery wastewater treatment. Desalination, 2010, 263, 226-232.
[http://dx.doi.org/10.1016/j.desal.2010.06.063]
[182]
Sarkar, B.; Chakrabarti, P.; Vijaykumar, A.; Kale, V. Wastewater treatment in dairy industries - possibility of reuse. Desalination, 2006, 195, 141-152.
[http://dx.doi.org/10.1016/j.desal.2005.11.015]
[183]
Ayoub, G.; Hamzeh, A.; Semerjian, L. Post treatment of tannery wastewater using lime/bittern coagulation and activated carbon adsorption. Desalination, 2011, 273, 359-365.
[http://dx.doi.org/10.1016/j.desal.2011.01.045]
[184]
Santo, C.E.; Vilar, V.J.; Botelho, C.M.; Bhatnagar, A.; Kumar, E.; Boaventura, R.A. Optimization of coagulation-flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a portuguese plant. Chem. Eng. J., 2012, 183, 117-123.
[http://dx.doi.org/10.1016/j.cej.2011.12.041]
[185]
da Motta, M.; Pereira, R.; Madalena Alves, M.; Pereira, L. UV/TiO2 photocatalytic reactor for real textile wastewaters treatment. Water Sci. Technol., 2014, 70(10), 1670-1676.
[http://dx.doi.org/10.2166/wst.2014.428] [PMID: 25429456]
[186]
Adishkumar, S.; Kanmani, S. Treatment of Phenolic Wastewaters in Single Baffle Reactor by Solar/TiO2/H2O2 process. Desalination Water Treat., 2010, 24, 67-73.
[http://dx.doi.org/10.5004/dwt.2010.1183]
[187]
Lin, Y.; Mehrvar, M. Photocatalytic treatment of an actual confectionery wastewater using Ag/TiO2/Fe2O3: Optimization of photocatalytic reactions using surface response methodology. Catalysts, 2018, 8, 409.
[http://dx.doi.org/10.3390/catal8100409]
[188]
Sun, Y.; Zhang, Y.; Quan, X. Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure. Separ. Purif. Tech., 2008, 62, 565-570.
[http://dx.doi.org/10.1016/j.seppur.2008.02.027]
[189]
Das, R.; Sarkar, S.; Chakraborty, S.; Choi, H.; Bhattacharjee, C. Remediation of antiseptic components in wastewater by photocatalysis using TiO2 nanoparticles. Ind. Eng. Chem. Res., 2014, 53, 3012-3020.
[http://dx.doi.org/10.1021/ie403817z]
[190]
Altaş, L.; Büyükgüngör, H. Sulfide removal in petroleum refinery wastewater by chemical precipitation. J. Hazard. Mater., 2008, 153(1-2), 462-469.
[http://dx.doi.org/10.1016/j.jhazmat.2007.08.076] [PMID: 17913353]
[191]
Chu, L.; Wang, J.; Dong, J.; Liu, H.; Sun, X. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Chemosphere, 2012, 86(4), 409-414.
[http://dx.doi.org/10.1016/j.chemosphere.2011.09.007] [PMID: 22014660]
[192]
Martins, R.C.; Rossi, A.F.; Quinta-Ferreira, R.M. Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement. J. Hazard. Mater., 2010, 180(1-3), 716-721.
[http://dx.doi.org/10.1016/j.jhazmat.2010.04.098] [PMID: 20472338]
[193]
Hussain, S.; Shaikh, S.; Farooqui, M. COD Reduction of waste water streams of active pharmaceutical ingredient - Atenolol manufacturing unit by advanced oxidation-fenton process. J. Saudi Chem. Soc., 2013, 17, 199-202.
[http://dx.doi.org/10.1016/j.jscs.2011.03.006]
[194]
Ertugay, N.; Acar, F.N. Removal of COD and Color from Direct Blue 71 Azo Dye Wastewater by Fenton’s Oxidation: Kinetic Study. Arab. J. Chem., 2017, 1, 10.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.009]
[195]
Al-Wasify, R.S.; Ali, M.N.; Hamed, S.R. Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water Sci. Technol., 2017, 76(11-12), 3094-3100.
[http://dx.doi.org/10.2166/wst.2017.481] [PMID: 29210695]
[196]
Dhall, P.; Kumar, R.; Kumar, A. Biodegradation of sewage wastewater using autochthonous bacteria. ScientificWorldJournal, 2012, 2012861903
[http://dx.doi.org/10.1100/2012/861903]] [PMID: 22272181]
[197]
Kučić, D. Biodegradation of Agro-Industrial Waste. Chem. Biochem. Eng. Q., 2018, 31, 369-374.
[http://dx.doi.org/10.15255/CABEQ.2017.1116]
[198]
Aneyo, I.A.; Doherty, F.V.; Adebesin, O.A.; Hammed, M.O. Biodegradation of pollutants in waste water from pharmaceutical, textile and local dye effluent in Lagos, Nigeria. J. Health Pollut., 2016, 6(12), 34-42.
[http://dx.doi.org/10.5696/2156-9614-6.12.34] [PMID: 30524803]
[199]
Malamis, S.; Katsou, E.; Fabio, S.D.; Frison, N.; Cecchi, F.; Fatone, F. Treatment of petrochemical wastewater by employing membrane bioreactors: A case study of effluents discharged to a sensitive water recipient. Desal. Water Treat., 2014, 53, 3397-3406.
[http://dx.doi.org/10.1080/19443994.2014.934112]
[200]
Chang, C-Y.; Chang, J-S.; Vigneswaran, S.; Kandasamy, J. Pharmaceutical wastewater treatment by membrane bioreactor process - a case study in Southern Taiwan. Desalination, 2008, 234, 393-401.
[http://dx.doi.org/10.1016/j.desal.2007.09.109]
[201]
Gong, X-B. Advanced treatment of textile dyeing wastewater through the combination of moving bed biofilm reactors and ozonation. Sep. Sci. Technol., 2016, 1, 1-9.
[http://dx.doi.org/10.1080/01496395.2016.1165703]
[202]
Chelliapan, S.; Wilby, T.; Sallis, P. Treatment of Pharmaceutical Wastewater Containing Tylosin in an Anaerobic - Aerobic Reactor System; Water Practice Technol, 2010, p. 5.
[203]
Zou, X-L. Treatment of heavy oil wastewater by UASB-BAFs using the combination of yeast and bacteria. Environ. Technol., 2015, 36(18), 2381-2389.
[http://dx.doi.org/10.1080/09593330.2015.1030346] [PMID: 25783230]
[204]
Parawira, W.; Kudita, I.; Nyandoroh, M.; Zvauya, R. A Study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale uasb reactor seeded with activated sludge. Process Biochem., 2005, 40, 593-599.
[http://dx.doi.org/10.1016/j.procbio.2004.01.036]
[205]
Abid, M.F.; Zablouk, M.A.; Abid-Alameer, A.M. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran. J. Environ. Health Sci. Eng., 2012, 9(1), 17.
[http://dx.doi.org/10.1186/1735-2746-9-17] [PMID: 23369335]
[206]
Swamy, B.V.; Madhumala, M.; Prakasham, R.S.; Sridhar, S. Processing of biscuit industrial effluent using thin film composite nanofiltration membranes. Des. Monomers Polym., 2015, 19, 47-55.
[http://dx.doi.org/10.1080/15685551.2015.1092012]
[207]
Andrade, L.H.; Mendes, F.D.S.; Espindola, J.C.; Amaral, M.C.S. Reuse of dairy wastewater treated by membrane bioreactor and nanofiltration: Technical and economic feasibility. Braz. J. Chem. Eng., 2015, 32, 735-747.
[http://dx.doi.org/10.1590/0104-6632.20150323s00003133]
[208]
Wei, X.; Bao, X.; Wu, J.; Li, C.; Shi, Y.; Chen, J.; Lv, B.; Zhu, B. Typical pharmaceutical molecule removal behavior from water by positively and negatively charged composite hollow fiber nanofiltration membranes. RSC Advances, 2018, 8, 10396-10408.
[http://dx.doi.org/10.1039/C8RA00519B]
[209]
Agarwal, S.; Sadegh, H.; Monajjemi, M.; Hamdy, A.S.; Ali, G.A.; Memar, A.O.; Shahryari-Ghoshekandi, R.; Tyagi, I.; Gupta, V.K. Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. J. Mol. Liq., 2016, 218, 191-197.
[http://dx.doi.org/10.1016/j.molliq.2016.02.060]
[210]
Luo, T.; Cui, J.; Hu, S.; Huang, Y.; Jing, C. Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ. Sci. Technol., 2010, 44(23), 9094-9098.
[http://dx.doi.org/10.1021/es1024355] [PMID: 21053910]
[211]
Chen, H.; Gao, B.; Li, H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater., 2015, 282, 201-207.
[http://dx.doi.org/10.1016/j.jhazmat.2014.03.063] [PMID: 24755346]
[212]
Lkhagvadulam, B.; Tsagaantsetseg, B.; Tergel, D.; Chuluunkhuyag, S. Removal of chromium from a tannery wastewater by using a maghemite nanoparticles. Int. J. Environ. Sci. Dev., 2017, 8, 696-702.
[http://dx.doi.org/10.18178/ijesd.2017.8.10.1041]
[213]
Al-Issai, L.; Elshorbagy, W.; Maraqa, M.; Hamouda, M.; Soliman, A. Use of nanoparticles for the disinfection of desalinated water. Water, 2019, 11, 559.
[http://dx.doi.org/10.3390/w11030559]
[214]
Alananbeh, K.M.; Al-Qudah, Z.; El-Adly, A.; Refaee, W.J.A. Impact of silver nanoparticles on bacteria isolated from raw and treated wastewater in Madinah, KSA. Arab. J. Sci. Eng., 2016, 42, 85-93.
[http://dx.doi.org/10.1007/s13369-016-2133-3]
[215]
Zarei, M.; Jamnejad, A.; Khajehali, E. Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J. Microbiol., 2014, 7(1)e8720
[http://dx.doi.org/10.5812/jjm.8720]] [PMID: 25147658]
[216]
Hameed, A.; Fatima, S.; Rahman, F.U.; Yoon, T-H.; Azam, A.; Khan, S.; Khan, A.; Islam, N.U. Synergistic enzyme inhibition effect of cefuroxime by conjugation with gold and silver. New J. Chem., 2014, 38, 1641.
[http://dx.doi.org/10.1039/c3nj00974b]
[217]
Sutisna; Wibowo, E.; Rokhmat, M.; Rahman, D. Y.; Murniati, R.; Khairurrijal; Abdullah, M. Batik Wastewater treatment using TiO2 nanoparticles coated on the surface of plastic sheet. Procedia Eng., 2017, 170, 78-83.
[http://dx.doi.org/10.1016/j.proeng.2017.03.015]
[218]
Nogueira, V.; Lopes, I.; Rocha-Santos, T.A.P.; Gonçalves, F.; Pereira, R. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: Case study of mining and kraft pulp mill effluents. Environ. Technol., 2018, 39(12), 1586-1596.
[http://dx.doi.org/10.1080/09593330.2017.1334093] [PMID: 28532345]
[219]
Sidik, D.A.B.; Hairom, N.H.H.; Zainuri, N.Z.; Desa, A.L.; Misdan, N.; Yusof, N.; Ong, C.B.; Mohammad, A.W.; Aripen, N.S. Photocatalytic degradation of industrial dye wastewater using zinc oxide-polyvinylpyrrolidone nanoparticles. Malays. J. Anal. Sci., 2018,22
[220]
Rimawi, W. H.; Salim, H.; Seder, D.; Ghunaim, R.; Hampel, S. Photocatalytic degradation of some phenolic compounds present in olive mill wastewater. Asian J. Chem, 2018, 30, 1994-1998.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2021
Published on: 31 January, 2020
Page: [166 - 184]
Pages: 19
DOI: 10.2174/1573411016666200131122244
Price: $65

Article Metrics

PDF: 22
HTML: 1