Anticancer s-Triazine Derivatives: A Synthetic Attribute

Author(s): Sonika Jain*, Pankaj Kumar Jain, Shalu Sain, Dharma Kishore, Jaya Dwivedi

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

1, 3, 5-Triazine (s-Triazine) is a versatile nucleus to design and develop potent bioactive molecules for drug discovery, particularly in cancer therapy. The aim of this review is to present the most recent trends in the field of synthetic strategies made for functionalized triazine derivatives active against cell proliferation. This review article covers the synthesis of aryl methylamino, morpholino, triamino substituted triazines, antimitotic agents coupled triazines and many more. Many 1,3,5- triazine derivatives, both hetero-fused and uncondensed, have shown remarkable antitumor activities. We have highlighted various derivatives with 1, 3, 5-triazine core targeting different kinases with an aim to help researchers for developing new 1, 3, 5-triazine derived compounds for antitumor activity.

Keywords: 1, 3, 5-Triazines, anticancer, synthesis, Suzuki cross-coupling, arylmethylamin motifs, ZSTK474.

[1]
Kumar, G.J.; Kumar, S.N.; Thummuri, D.; Adari, L.B.S.; Naidu, V.G.M.; Srinivas, K.; Rao, V.J. Erratum to: Synthesis and characterization of new s-triazine bearing benzimidazole and benzothiazole derivatives as anticancer agents. Med. Chem. Res., 2015, 24, 3991-4001.
[http://dx.doi.org/10.1007/s00044-015-1430-9]
[2]
Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur. J. Med. Chem., 2017, 142, 523-549.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.035] [PMID: 29046238]
[3]
Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem., 2017, 142, 328-375.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.009] [PMID: 28851503]
[4]
Shanmugam, M.; Narayanan, K.; Prasad, K.H.; Karthikeyan, D.; Chandrasekaran, L.; Atchudan, R.; Chidambaranathan, V. Synthesis, characterization, and antiproliferative and apoptosis inducing effects of novel s-triazine derivatives. New J. Chem., 2018, 42, 1698-1714.
[http://dx.doi.org/10.1039/C7NJ03348F]
[5]
Machakanur, S.S.; Patil, B.R.; Badiger, D.S.; Bakale, R.P.; Gudasi, K.B.; Bligh, S.W.A. Synthesis, characterization and anticancer evaluation of novel tri-arm star shaped 1,3,5-triazine hydrazones. J. Mol. Struct., 2012, 1011, 121-127.
[http://dx.doi.org/10.1016/j.molstruc.2011.12.023]
[6]
Kanwal, A.; Saddique, F.A.; Aslam, S.; Ahmad, M.; Zahoor, A.F.; Mohsin, N. Synthesis and anticancer activity of some new s-triazine derivatives. Pharm. Chem. J., 2018, 51(12), 1068-1077.
[http://dx.doi.org/10.1007/s11094-018-1742-4]
[7]
Malah, T.E.; Nour, H.F.; Nayl, A.A.; Elkhashab, R.A.; Farouk, M.E.A.M.; Mamdouh, M.A. Anticancer evaluation of tris(triazolyl)triazine derivatives generated via click chemistry. Aust. J. Chem., 2016, 69(8), 905-910.
[http://dx.doi.org/10.1071/CH16006]
[8]
Qiang, H.; Qiangqiang, F.U.; Yajing, L.; Jinying, B.; Qianying, W.; Huimin, L.; Ping, G. Design, synthesis and anticancer activity of novel 6-(aminophenyl)-2,4-bismorpholino-1,3,5-triazine derivatives bearing arylmethylene hydrazine moiety. Chem. Res. Chin. Univ., 2014, 30(2), 257-265.
[http://dx.doi.org/10.1007/s40242-014-3253-5]
[9]
Srivastava, J.K.; Pillai, G.G.; Bhat, H.R.; Verma, A.; Singh, U.P. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor receptor tyrosine kinase. Sci. Rep., 2017, 7(1), 5851.
[http://dx.doi.org/10.1038/s41598-017-05934-5] [PMID: 28724908]
[10]
(a)Gong, X.; Li, G.; Gan, Z. Sulfonylacetonitriles as building blocks in copper‐catalyzed domino reactions: An efficient apporach to sulfonated isoquinolin‐1(2H)‐ones. Asian J. Org. Chem., 2019, 8, 1472-1478.
[http://dx.doi.org/10.1002/ajoc.201900382]
(b)Sun, K.; Chen, X.L.; Zhang, Y.L.; Li, K.; Huang, X.Q.; Peng, Y.Y.; Qu, L.B.; Yu, B. Metal-free sulfonyl radical-initiated cascade cyclization to access sulfonated indolo[1,2-a]quinolines. Chem. Commun. (Camb.), 2019, 55(84), 12615-12618.
[http://dx.doi.org/10.1039/C9CC06924K] [PMID: 31580369]
(c)Xie, L.Y.; Fang, T.G.; Tan, J.X. Visible-light-induced de-oxygenative C2-sulfonylation of quinoline N-oxides with sulfinic acids. Green Chem., 2019, 21, 3858-3863.
[http://dx.doi.org/10.1039/C9GC01175G]
[11]
Pathak, M.; Ojha, H.; Tiwari, A.K.; Sharma, D.; Saini, M.; Kakkar, R. Design, synthesis and biological evaluation of antimalarial activity of new derivatives of 2,4,6-s-triazine. Chem. Cent. J., 2017, 11(1), 132.
[http://dx.doi.org/10.1186/s13065-017-0362-5] [PMID: 29256159]
[12]
Mogilski, S.; Kubacka, M.; Łażewska, D.; Więcek, M.; Głuch-Lutwin, M.; Tyszka-Czochara, M.; Bukowska-Strakova, K.; Filipek, B.; Kieć-Kononowicz, K. Aryl-1,3,5-triazine ligands of histamine H4 receptor attenuate inflammatory and nociceptive response to carrageen, zymosan and lipopolysaccharide. Inflamm. Res., 2017, 66(1), 79-95.
[http://dx.doi.org/10.1007/s00011-016-0997-z] [PMID: 27766379]
[13]
Shah, D.R.; Modh, R.P.; Chikhalia, K.H. Privileged s-triazines: Structure and pharmacological applications. Future Med. Chem., 2014, 6(4), 463-477.
[http://dx.doi.org/10.4155/fmc.13.212] [PMID: 24635525]
[14]
Kothayer, H.; Spencer, S.M.; Tripathi, K.; Westwell, A.D.; Palle, K. Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(8), 2030-2034.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.085] [PMID: 26965855]
[15]
Liu, B.; Lee, Y.; Zou, J.; Petrassi, H.M.; Joseph, R.W.; Chao, W.; Michelotti, E.L.; Bukhtiyarova, M.; Springman, E.B.; Dorsey, B.D. Discovery and SAR of a series of 4,6-diamino-1,3,5-triazin-2-ol as novel non-nucleoside reverse transcriptase inhibitors of HIV-1. Bioorg. Med. Chem. Lett., 2010, 20(22), 6592-6596.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.034] [PMID: 20888224]
[16]
Dwivedi, J.; Devi, K.; Asmat, Y.; Jain, S.; Sharma, S. Synthesis, characterization, antibacterial and antiepileptic studies of some novel thiazolidinone derivatives. J. Saudi Chem. Soc., 2016, 20, S16-S20.
[http://dx.doi.org/10.1016/j.jscs.2012.09.001]
[17]
Pascal, D.; Nikaia, S.; Celine, T.R.; Expedite, Y.P. Design, synthesis, and evaluation of novel imidazo[1,2-a][1,3,5]triazines and their derivatives as focal adhesion kinase inhibitors with antitumor activity. J. Med. Chem., 2015, 58, 237-251.
[18]
Pathak, P.A.; Balkrishna, P.K.; Kumar, S.V.; Kumar, A.; Singh, A.K.; Verma, A. 1,3,5 S-triazine containing analogues a prime Src family inhibitor: Design synthesis docking, anti-carcinoma and angiogenic inhibition efficacy on cancer grafted CAM. Ann. Oncol., 2017, 28
[http://dx.doi.org/10.1093/annonc/mdx361.072]]
[19]
Menicagli, R.; Samaritani, S.; Signore, G.; Vaglini, F.; Dalla Via, L. In vitro cytotoxic activities of 2-alkyl-4,6-diheteroalkyl-1,3,5-triazines: New molecules in anticancer research. J. Med. Chem., 2004, 47(19), 4649-4652.
[http://dx.doi.org/10.1021/jm0495374] [PMID: 15341480]
[20]
Zheng, L.W.; Wu, L.L.; Zhao, B.X.; Dong, W.L.; Miao, J.Y. Synthesis of novel substituted pyrazole-5-carbohydrazide hydrazone derivatives and discovery of a potent apoptosis inducer in A549 lung cancer cells. Bioorg. Med. Chem., 2009, 17(5), 1957-1962.
[http://dx.doi.org/10.1016/j.bmc.2009.01.037] [PMID: 19217789]
[21]
Naseer, M.M.; Abbas, A.; Hameed, S.; Farm, M. Suzuki-miyaura cross-coupling reaction of dichloro-heteroaromatics: Synthesis of functionalized dinucleophilic fragments. J. Chil. Chem. Soc., 2014, 59(4)
[http://dx.doi.org/10.4067/S0717-97072014000400018]
[22]
Jain, S.; Dwivedi, J.; Jain, P.; Kishore, D. Use of 2,4,6-trichloro-1,3,5-triazine (TCT) as organic catalyst in organic synthesis. Synth. Commun., 2016, 46(14), 1155-1174.
[http://dx.doi.org/10.1080/00397911.2016.1192651]
[23]
Zhao, H.; Liu, Y.; Cui, Z.; Beattie, D.; Gu, Y.; Wang, Q. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem., 2011, 59(21), 11711-11717.
[http://dx.doi.org/10.1021/jf203383s] [PMID: 21970768]
[24]
Hu, Z.; Ma, T.; Chen, Z.; Ye, Z.; Zhang, G.; Lou, Y.; Yu, Y. Solid-phase synthesis and antitumor evaluation of 2,4-diamino-6-aryl-1,3,5-triazines. J. Comb. Chem., 2009, 11(2), 267-273.
[http://dx.doi.org/10.1021/cc800157k] [PMID: 19125569]
[25]
Saczewski, F.; Bułakowska, A. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2006, 41(5), 611-615.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.012] [PMID: 16540207]
[26]
Nitulescu, G.M.; Draghici, C.; Olaru, O.T. New potential antitumor pyrazole derivatives: Synthesis and cytotoxic evaluation. Int. J. Mol. Sci., 2013, 14(11), 21805-21818.
[http://dx.doi.org/10.3390/ijms141121805] [PMID: 24192822]
[27]
Smith, A.L.; D’Angelo, N.D.; Bo, Y.Y.; Booker, S.K.; Cee, V.J.; Herberich, B.; Hong, F.T.; Jackson, C.L.; Lanman, B.A.; Liu, L.; Nishimura, N.; Pettus, L.H.; Reed, A.B.; Tadesse, S.; Tamayo, N.A.; Wurz, R.P.; Yang, K.; Andrews, K.L.; Whittington, D.A.; McCarter, J.D.; Miguel, T.S.; Zalameda, L.; Jiang, J.; Subramanian, R.; Mullady, E.L.; Caenepeel, S.; Freeman, D.J.; Wang, L.; Zhang, N.; Wu, T.; Hughes, P.E.; Norman, M.H. Structure-based design of a novel series of potent, selective inhibitors of the class I phosphatidylinositol 3-kinases. J. Med. Chem., 2012, 55(11), 5188-5219.
[http://dx.doi.org/10.1021/jm300184s] [PMID: 22548365]
[28]
Patel, A.B.; Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis of potential antitubercular and antimicrobial s-triazine based scaffolds via Suzuki cross-coupling reaction. Med. Chem. Res., 2013, 22(1), 367-381.
[http://dx.doi.org/10.1007/s00044-012-0041-y]
[29]
Sarhan, M.O.; Motaleb, M.A.; Ibrahim, I.T.; Anwar, M.M.; Zaghary, W.A. Development, potential anticancer activity and the receptor profile of different functionalized 1,3,5-triazine derivatives. Mini Rev. Med. Chem., 2018, 18(15), 1302-1320.
[http://dx.doi.org/10.2174/1389557517666170927160256] [PMID: 28971773]
[30]
Zheng, M.; Xu, C.; Ma, J.; Sun, Y.; Du, F.; Liu, H.; Lin, L.; Li, C.; Ding, J.; Chen, K.; Jiang, H. Synthesis and antitumor evaluation of a novel series of triaminotriazine derivatives. Bioorg. Med. Chem., 2007, 15(4), 1815-1827.
[http://dx.doi.org/10.1016/j.bmc.2006.11.028] [PMID: 17157510]
[31]
Norman, M.H.; Andrews, K.L.; Bo, Y.Y.; Booker, S.K.; Caenepeel, S.; Cee, V.J.; D’Angelo, N.D.; Freeman, D.J.; Herberich, B.J.; Hong, F.T.; Jackson, C.L.; Jiang, J.; Lanman, B.A.; Liu, L.; McCarter, J.D.; Mullady, E.L.; Nishimura, N.; Pettus, L.H.; Reed, A.B.; Miguel, T.S.; Smith, A.L.; Stec, M.M.; Tadesse, S.; Tasker, A.; Aidasani, D.; Zhu, X.; Subramanian, R.; Tamayo, N.A.; Wang, L.; Whittington, D.A.; Wu, B.; Wu, T.; Wurz, R.P.; Yang, K.; Zalameda, L.; Zhang, N.; Hughes, P.E. Selective class I phosphoinositide 3-kinase inhibitors: Optimization of a series of pyridyltriazines leading to the identification of a clinical candidate, AMG 511. J. Med. Chem., 2012, 55(17), 7796-7816.
[http://dx.doi.org/10.1021/jm300846z] [PMID: 22897589]
[32]
Wei, Q.; Ning, J.Y.; Dai, X.; Gao, Y.D.; Su, L.; Zhao, B.X.; Miao, J.Y. Discovery of novel HSP90 inhibitors that induced apoptosis and impaired autophagic flux in A549 lung cancer cells. Eur. J. Med. Chem., 2018, 145, 551-558.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.024] [PMID: 29339250]
[33]
Bashiri, M.; Jarrahpour, A.; Rastegari, B.; Iraji, A.; Irajie, C.; Amirghofran, Z.; Malek-Hosseini, S.; Motamedifar, M.; Haddadi, M.; Zomorodian, K.; Zareshahrabadi, Z.; Turos, E. Synthesis and evaluation of biological activities of tripodal imines and β-lactams attached to the 1,3,5-34, nucleus. Monatsh. Chem., 2020, 151, 821-835.
[http://dx.doi.org/10.1007/s00706-020-02592-8]
[34]
Zhu, W.; Liu, Y.; Zhao, Y.; Wang, H.; Tan, L.; Fan, W.; Gong, P. Synthesis and biological evaluation of novel 6-hydrazinyl-2,4-bismorpholino pyrimidine and 1,3,5-triazine derivatives as potential antitumor agents. Arch. Pharm. (Weinheim), 2012, 345(10), 812-821.
[http://dx.doi.org/10.1002/ardp.201200074] [PMID: 22707438]
[35]
Moreno, L.M.; Quiroga, J.; Abonia, R.; Ramírez-Prada, J.; Insuasty, B. Synthesis of new 1, 3, 5-triazine-based 2-pyrazolines as potential anticancer agents. Molecules, 2018, 23(8), 1956.
[http://dx.doi.org/10.3390/molecules23081956] [PMID: 30082588]
[36]
Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.064] [PMID: 28478343]
[37]
Hessa, A.R.; Kholood, D.; Sharma, A.; Sholkamy, E. Barbiturate- and thiobarbituarte-based s-triazine hydrazone derivatives with promising antiproliferative activities. ACS Omega, 2020, 5(26), 15805-15811.
[38]
Singla, P.; Luxami, V.; Paul, K. Triazine-benzimidazole hybrids: anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg. Med. Chem., 2015, 23(8), 1691-1700.
[39]
Sanders, M.A.; Brahemi, G.; Nangia-Makker, P.; Balan, V.; Morelli, M.; Kothayer, H.; Westwell, A.D.; Shekhar, M.P.V. Novel inhibitors of Rad6 ubiquitin conjugating enzyme: Design, synthesis, identification, and functional characterization. Mol. Cancer Ther., 2013, 12(4), 373-383.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0793] [PMID: 23339190]
[40]
Zhao, X.; Tan, Q.; Zhang, Z.; Zhao, Y. Synthesis and biological evaluation of novel phosphatidylinositol 3-kinase inhibitors: Solubilized 4-substituted benzimidazole analogs of 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474). Med. Chem. Res., 2014, 23, 5188-5196.
[http://dx.doi.org/10.1007/s00044-014-1084-z]
[41]
Jagadeesh Kumar, G.; Sriramkumar Bomma, H.V.S.; Srihari, E.; Shrivastava, S.; Naidu, V.G.M.; Srinivas, K.; Jayathirtha Rao, V. Synthesis and anticancer activity of some new s-triazine derivatives. Med. Chem. Res., 2013, 22, 5973-5981.
[42]
Paquin, I.; Raeppel, S.; Leit, S.; Gaudette, F.; Zhou, N.; Moradei, O.; Saavedra, O.; Bernstein, N.; Raeppel, F.; Bouchain, G.; Fréchette, S.; Woo, S.H.; Vaisburg, A.; Fournel, M.; Kalita, A.; Robert, M.F.; Lu, A.; Trachy-Bourget, M.C.; Yan, P.T.; Liu, J.; Rahil, J.; MacLeod, A.R.; Besterman, J.M.; Li, Z.; Delorme, D. Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-amino-phenyl)-benzamides and their analogues as a novel class of histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(3), 1067-1071.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.009] [PMID: 18160287]
[43]
Kothayer, H.; Elshanawani, A.A.; Abu Kull, M.E.; El-Sabbagh, O.I.; Shekhar, M.P.; Brancale, A.; Jones, A.T.; Westwell, A.D. Design, synthesis and in vitro anticancer evaluation of 4,6-diamino-1,3,5-triazine-2-carbohydrazides and -carboxamides. Bioorg. Med. Chem. Lett., 2013, 23(24), 6886-6889.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.087] [PMID: 24153206]
[44]
Kumar, R.; Gupta, L.; Pal, P.; Khan, S.; Singh, N.; Katiyar, S.B.; Meena, S.; Sarkar, J.; Sinha, S.; Kanaujiya, J.K.; Lochab, S.; Trivedi, A.K.; Chauhan, P.M. Synthesis and cytotoxicity evaluation of (tetrahydro-beta-carboline)-1,3,5-triazine hybrids as anticancer agents. Eur. J. Med. Chem., 2010, 45(6), 2265-2276.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.001] [PMID: 20207053]
[45]
Sharma, A.; Singh, M.; Rai, N.N.; Sawant, D. Mild and efficient cyanuric chloride catalyzed Pictet-Spengler reaction. Beilstein J. Org. Chem., 2013, 9, 1235-1242.
[http://dx.doi.org/10.3762/bjoc.9.140] [PMID: 23843919]
[46]
Khattab, S.N.; Khalil, H.H.; Bekhit, A.A.; El-Rahman, M.M.; El-Faham, A.; Albericio, F. Synthesis and preliminary biological evaluation of 1,3,5-triazine amino acid derivatives to study their mao inhibitors. Molecules, 2015, 20(9), 15976-15988.
[http://dx.doi.org/10.3390/molecules200915976] [PMID: 26364629]
[47]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis and studies of novel 2-(4-cyano-3-trifluoromethylphenyl amino)-4-(quinoline-4-yloxy)-6-(piperazinyl/piperidinyl)-s-triazines as potential antimicrobial, antimycobacterial and anticancer agents. Eur. J. Med. Chem., 2011, 46(9), 4354-4365.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.006] [PMID: 21794959]
[48]
Bhat, H.R.; Masih, A.; Ghosh, A.S.S.K.; Singh, U.P. Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4-aminoquinoline-1,3,5-triazine derivatives. J. Heterocycl. Chem., 2020, 57(1), 390-399.
[49]
Verheijen, J.C.; Richard, D.J.; Curran, K.; Kaplan, J.; Yu, K.; Zask, A. 2-Arylureidophenyl-4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)tria-zines as highly potent and selective ATP competitive mTOR inhibitors: Optimization of human microsomal stability. Bioorg. Med. Chem. Lett., 2010, 20(8), 2648-2653.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.031] [PMID: 20223663]
[50]
Malysheva, Y.B.; Combes, S.; Allegro, D.; Peyrot, V.; Knochel, P.; Gavryushin, A.E.; Fedorov, A.Y. Synthesis and biological evaluation of novel anticancer bivalent colchicine-tubulizine hybrids. Bioorg. Med. Chem., 2012, 20(14), 4271-4278.
[http://dx.doi.org/10.1016/j.bmc.2012.05.072] [PMID: 22739088]
[51]
Punganuru, S.R.; Madala, H.R.; Srivenugopal, K.S. Colchicine-based hybrid anticancer drugs to combat tumor heterogeneity. Med. Chem. (Los Angeles), 2016, 6(3), 165-173.
[http://dx.doi.org/10.4172/2161-0444.1000341]
[52]
Patel, A.B.; Chikhalia, K.H.; Kumari, P. An efficient synthesis of new thiazolidin 4 one fused s triazines as potential antimirobial and anticancer agents. J. Saudi Chem. Soc., 2014, 18(5), 646-656.
[http://dx.doi.org/10.1016/j.jscs.2014.02.002]
[53]
Kaminskyy, D.; Bednarczyk-Cwynar, B.; Vasylenko, O.; Kazakova, O.; Zimenkovsky, B.; Zaprutko, L.; Lesyk, R. Synthesis of new potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds. Med. Chem. Res., 2012, 21(11), 3568-3580.
[http://dx.doi.org/10.1007/s00044-011-9893-9]
[54]
Balaha, M.F.; El-Hamamsy, M.H. El-Din, N.A.S.; El- Mahdy, N.A. Synthesis, evaluation and docking study of 1,3,5-triazine derivatives as cytotoxic agents against lung cancer. J. Appl. Pharm. Sci., 2016, 6(4), 28-45.
[http://dx.doi.org/10.7324/JAPS.2016.60405]
[55]
Shuttleworth, S.; Silva, F.; Tomassi, C.; Cecil, A.; Hill, T.; Rogers, H.; Townsend, P. Progress in the design and development of phosphoinositide 3-kinase (PI3K) inhibitors for the treatment of chronic diseases. Prog. Med. Chem., 2009, 48, 81-131.
[http://dx.doi.org/10.1016/S0079-6468(09)04803-6] [PMID: 21544958]
[56]
Kumar, G.J.; Kumar, S.N.; Thummuri, D.; Adari, L.B.S.; Naidu, V.G.M.; Srinivas, K.; Rao, V.J. Synthesis and characterization of new s-triazine bearing benzimidazole and benzothiazole derivatives as anticancer agents. Med. Chem. Res., 2015, 24, 3991-4001.
[http://dx.doi.org/10.1007/s00044-015-1430-9]
[57]
Wang, X.; Yi, Y.; Lv, Q.; Zhang, J.; Wu, K.; Wu, W.; Zhang, W. Novel 1,3,5-triazine derivatives exert potent anti-cervical cancer effects by modulating Bax, Bcl2 and caspases expression. Chem. Biol. Drug Des., 2018, 91(3), 728-734.
[http://dx.doi.org/10.1111/cbdd.13133] [PMID: 29068538]
[58]
Solárová, Z.; Mojžiš, J.; Solár, P. HSP90 inhibitor as a sensitizer of cancer cells to different therapies. (review) Int. J. Oncol., 2015, 46(3), 907-926.
[http://dx.doi.org/10.3892/ijo.2014.2791] [PMID: 25501619]
[59]
Samadi, A.K.; Zhang, X.; Mukerji, R.; Donnelly, A.C.; Blagg, B.S.; Cohen, M.S. A novel C-terminal HSP90 inhibitor KU135 induces apoptosis and cell cycle arrest in melanoma cells. Cancer Lett., 2011, 312(2), 158-167.
[http://dx.doi.org/10.1016/j.canlet.2011.07.031] [PMID: 21924824]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 8
Year: 2020
Published on: 30 January, 2020
Page: [904 - 921]
Pages: 18
DOI: 10.2174/1570193X17666200131111851
Price: $65

Article Metrics

PDF: 26
HTML: 2