An Update on Glutamatergic System in Suicidal Depression and on the Role of Esketamine

Author(s): Domenico De Berardis*, Carmine Tomasetti, Maurizio Pompili, Gianluca Serafini, Federica Vellante, Michele Fornaro, Alessandro Valchera, Giampaolo Perna, Umberto Volpe, Giovanni Martinotti, Silvia Fraticelli, Massimo Di Giannantonio, Yong-Ku Kim, Laura Orsolini

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 7 , 2020

Become EABM
Become Reviewer

Abstract:

Background: A research on mood disorder pathophysiology has hypothesized abnormalities in glutamatergic neurotransmission, by suggesting further investigation on glutamatergic N-methyl-Daspartate (NMDA) receptor modulators in treating Major Depressive Disorder (MDD). Esketamine (ESK), an NMDA receptor antagonist able to modulate glutamatergic neurotransmission has been recently developed as an intranasal formulation for treatment-resistant depression (TRD) and for rapid reduction of depressive symptomatology, including suicidal ideation in MDD patients at imminent risk for suicide.

Objective: The present study aims at investigating recent clinical findings on research on the role of the glutamatergic system and ESK in treating suicidal depression in MDD and TRD.

Methods: A systematic review was here carried out on PubMed/Medline, Scopus and the database on U.S. N.I.H. Clinical Trials (https://clinicaltrials.gov) and the European Medical Agency (EMA) (https://clinicaltrialsregister.eu) from inception until October 2019.

Results: Intravenous infusion of ESK is reported to elicit rapid-acting and sustained antidepressant activity in refractory patients with MDD and TRD. In phase II studies, intranasal ESK demonstrated a rapid onset and a persistent efficacy in patients with TRD as well as in MDD patients at imminent risk for suicide. However, some data discrepancies have emerged in phase III studies.

Conclusion: The U.S. Food and Drug Administration (FDA) granted fast track and Breakthrough Therapy Designation to Janssen Pharmaceuticals®, Inc. for intranasal ESK in 2013 for treatment-resistant depression (TRD) and in 2016 for the treatment of MDD with an imminent risk of suicide. However, further studies should be implemented to investigate the long-term efficacy and safety of intranasal ESK.

Keywords: MDD, Glutamatergic system, Esketamine, Ketamine, Depression, Suicide, Glutamate, Treatment-resistant depression.

[1]
Hasin, D.S.; Sarvet, A.L.; Meyers, J.L.; Saha, T.D.; Ruan, W.J.; Stohl, M.; Grant, B.F. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry, 2018, 75(4), 336-346.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.4602] [PMID: 29450462]
[2]
WHO. Suicide; World Health Organization: Geneva, Switzerland, 2018. (Accessed on 30th September, 2019)
[3]
Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the global burden of depression from 1990 to 2017: Findings from the global burden of disease study. J. Psychiatr. Res., 2019, pii: S0022- 3956(19), 30738-1.
[4]
Patten, S.B.; Williams, J.V.; Lavorato, D.H.; Wang, J.L.; McDonald, K.; Bulloch, A.G. Descriptive epidemiology of major depressive disorder in Canada in 2012. Can. J. Psychiatry, 2015, 60(1), 23-30.
[http://dx.doi.org/10.1177/070674371506000106] [PMID: 25886546]
[5]
Yang, L.; Zhao, Y.; Wang, Y.; Liu, L.; Zhang, X.; Li, B.; Cui, R. The effects of psychological stress on depression. Curr. Neuropharmacol., 2015, 13(4), 494-504.
[http://dx.doi.org/10.2174/1570159X1304150831150507] [PMID: 26412069]
[6]
Chang, B.; Choi, Y.; Jeon, M.; Lee, J.; Han, K.M.; Kim, A.; Ham, B.J.; Kang, J. ARPNet: antidepressant response prediction network for major depressive Disorder. Genes (Basel), 2019, 10(11)E907
[http://dx.doi.org/10.3390/genes10110907] [PMID: 31703457]
[7]
Canuso, C.M.; Singh, J.B.; Fedgchin, M.; Alphs, L.; Lane, R.; Lim, P.; Pinter, C.; Hough, D.; Sanacora, G.; Manji, H.; Drevets, W.C. Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized, placebo-controlled study. Am. J. Psychiatry, 2018, 175(7), 620-630.
[http://dx.doi.org/10.1176/appi.ajp.2018.17060720] [PMID: 29656663]
[8]
WHO. Depression and other common mental disorders: global health estimates, 2017. Available from: https://apps.who.int/iris/ bitstream/handle/10665/254610/WHO-MSD-MER-2017.2eng.pdf;jsessionid=073A899990718FDDE11F70671E1D49D1?sequence=1
[9]
De Berardis, D.; Fornaro, M.; Valchera, A.; Cavuto, M.; Perna, G.; Di Nicola, M.; Serafini, G.; Carano, A.; Pompili, M.; Vellante, F.; Orsolini, L.; Fiengo, A.; Ventriglio, A.; Yong-Ku, K.; Martinotti, G.; Di Giannantonio, M.; Tomasetti, C. Eradicating suicide at its roots: preclinical bases and clinical evidence of the efficacy of ketamine in the treatment of suicidal behaviors. Int. J. Mol. Sci., 2018, 19(10)E2888
[http://dx.doi.org/10.3390/ijms19102888] [PMID: 30249029]
[10]
Molero, P.; Ramos-Quiroga, J.A.; Martin-Santos, R.; Calvo-Sánchez, E.; Gutiérrez-Rojas, L.; Meana, J.J. Antidepressant efficacy and tolerability of ketamine and esketamine: a critical review. CNS Drugs, 2018, 32(5), 411-420.
[http://dx.doi.org/10.1007/s40263-018-0519-3] [PMID: 29736744]
[11]
Garay, R.P.; Zarate, C.A., Jr; Charpeaud, T.; Citrome, L.; Correll, C.U.; Hameg, A.; Llorca, P.M. Investigational drugs in recent clinical trials for treatment-resistant depression. Expert Rev. Neurother., 2017, 17(6), 593-609.
[http://dx.doi.org/10.1080/14737175.2017.1283217] [PMID: 28092469]
[12]
Thase, M.E. New medications for treatment-resistant depression: a brief review of recent developments. CNS Spectr., 2017, 22(S1), 39-48.
[http://dx.doi.org/10.1017/S1092852917000876] [PMID: 29350129]
[13]
Pochwat, B.; Nowak, G.; Szewczyk, B. An update on NMDA antagonists in depression. Expert Rev. Neurother., 2019, 19(11), 1055-1067.
[http://dx.doi.org/10.1080/14737175.2019.1643237] [PMID: 31328587]
[14]
Ragguett, R.M.; Tamura, J.K.; McIntyre, R.S. Keeping up with the clinical advances: depression. CNS Spectr., 2019, 24(S1), 25-37.
[http://dx.doi.org/10.1017/S1092852919001159] [PMID: 31248466]
[15]
Swainson, J.; Thomas, R.K.; Archer, S.; Chrenek, C.; MacKay, M.A.; Baker, G.; Dursun, S.; Klassen, L.J.; Chokka, P.; Demas, M.L. Esketamine for treatment resistant depression. Expert Rev. Neurother., 2019, 19(10), 899-911.
[http://dx.doi.org/10.1080/14737175.2019.1640604] [PMID: 31282772]
[16]
Tomasetti, C.; Montemitro, C.; Fiengo, A.L.C.; Santone, C.; Orsolini, L.; Valchera, A.; Carano, A.; Pompili, M.; Serafini, G.; Perna, G.; Vellante, F.; Martinotti, G.; Giannantonio, M.D.; Kim, Y.K.; Nicola, M.D.; Bellomo, A.; Ventriglio, A.; Fornaro, M.; Berardis, D.D. Novel pathways in the treatment of major depression: focus on the glutamatergic system. Curr. Pharm. Des., 2019, 25(4), 381-387.
[http://dx.doi.org/10.2174/1381612825666190312102444] [PMID: 30864501]
[17]
Smith, D.J.; Azzaro, A.J.; Zaldivar, S.B.; Palmer, S.; Lee, H.S. Properties of the optical isomers and metabolites of ketamine on the high affinity transport and catabolism of monoamines. Neuropharmacology, 1981, 20(4), 391-396.
[http://dx.doi.org/10.1016/0028-3908(81)90015-0] [PMID: 7290352]
[18]
Smith, D.J.; Bouchal, R.L.; deSanctis, C.A.; Monroe, P.J.; Amedro, J.B.; Perrotti, J.M.; Crisp, T. Properties of the interaction between ketamine and opiate binding sites in vivo and in vitro. Neuropharmacology, 1987, 26(9), 1253-1260.
[http://dx.doi.org/10.1016/0028-3908(87)90084-0] [PMID: 2823161]
[19]
Hashimoto, K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin. Neurosci., 2019, 73(10), 613-627.
[http://dx.doi.org/10.1111/pcn.12902] [PMID: 31215725]
[20]
Ritter, P.; Findeis, H.; Bauer, M. Ketamine in the treatment of depressive episodes. Pharmacopsychiatry, 2020, 53(2), 45-50.
[http://dx.doi.org/10.1055/a-0991-0582] [PMID: 31434140]
[21]
Covvey, J.R.; Crawford, A.N.; Lowe, D.K. Intravenous ketamine for treatment-resistant major depressive disorder. Ann. Pharmacother., 2012, 46(1), 117-123.
[http://dx.doi.org/10.1345/aph.1Q371] [PMID: 22190250]
[22]
Malhi, G.S.; Byrow, Y.; Cassidy, F.; Cipriani, A.; Demyttenaere, K.; Frye, M.A.; Gitlin, M.; Kennedy, S.H.; Ketter, T.A.; Lam, R.W.; McShane, R.; Mitchell, A.J.; Ostacher, M.J.; Rizvi, S.J.; Thase, M.E.; Tohen, M. Ketamine: stimulating antidepressant treatment? BJPsych Open, 2016, 2(3), e5-e9.
[http://dx.doi.org/10.1192/bjpo.bp.116.002923] [PMID: 27703782]
[23]
Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 2000, 47(4), 351-354.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9] [PMID: 10686270]
[24]
Wilkinson, S.T.; Sanacora, G. A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today, 2019, 24(2), 606-615.
[http://dx.doi.org/10.1016/j.drudis.2018.11.007] [PMID: 30447328]
[25]
Bahr, R.; Lopez, A.; Rey, J.A. Intranasal esketamine (spravatotm) for use in treatment-resistant depression in conjunction with an oral antidepressant. P&T, 2019, 44(6), 340-375.
[PMID: 31160868]
[26]
Kudoh, A.; Takahira, Y.; Katagai, H.; Takazawa, T. Small-dose ketamine improves the postoperative state of depressed patients. Anesth. Analg., 2002, 95(1), 114-118.
[http://dx.doi.org/10.1097/00000539-200207000-00020] [PMID: 12088953]
[27]
Zarate, C.A., Jr; Brutsche, N.E.; Ibrahim, L.; Franco-Chaves, J.; Diazgranados, N.; Cravchik, A.; Selter, J.; Marquardt, C.A.; Liberty, V.; Luckenbaugh, D.A. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol. Psychiatry, 2012, 71(11), 939-946.
[http://dx.doi.org/10.1016/j.biopsych.2011.12.010] [PMID: 22297150]
[28]
Price, R.B.; Iosifescu, D.V.; Murrough, J.W.; Chang, L.C.; Al Jurdi, R.K.; Iqbal, S.Z.; Soleimani, L.; Charney, D.S.; Foulkes, A.L.; Mathew, S.J. Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression. Depress. Anxiety, 2014, 31(4), 335-343.
[http://dx.doi.org/10.1002/da.22253] [PMID: 24668760]
[29]
Murrough, J.W.; Soleimani, L.; DeWilde, K.E.; Collins, K.A.; Lapidus, K.A.; Iacoviello, B.M.; Lener, M.; Kautz, M.; Kim, J.; Stern, J.B.; Price, R.B.; Perez, A.M.; Brallier, J.W.; Rodriguez, G.J.; Goodman, W.K.; Iosifescu, D.V.; Charney, D.S. Ketamine for rapid reduction of suicidal ideation: a randomized controlled trial. Psychol. Med., 2015, 45(16), 3571-3580.
[http://dx.doi.org/10.1017/S0033291715001506] [PMID: 26266877]
[30]
Burger, J.; Capobianco, M.; Lovern, R.; Boche, B.; Ross, E.; Darracq, M.A. McLay, R. A Double-blinded, randomized, placebo-controlled sub-dissociative dose ketamine pilot study in the treatment of acute depression and suicidality in a military emergency department setting. Mil. Med., 2016, 181(10), 1195-1199.
[http://dx.doi.org/10.7205/MILMED-D-15-00431] [PMID: 27753551]
[31]
Hu, Y.D.; Xiang, Y.T.; Fang, J.X.; Zu, S.; Sha, S.; Shi, H.; Ungvari, G.S.; Correll, C.U.; Chiu, H.F.; Xue, Y.; Tian, T.F.; Wu, A.S.; Ma, X.; Wang, G. Single i.v. ketamine augmentation of newly initiated escitalopram for major depression: results from a randomized, placebo-controlled 4-week study. Psychol. Med., 2016, 46(3), 623-635.
[http://dx.doi.org/10.1017/S0033291715002159] [PMID: 26478208]
[32]
Grunebaum, M.F.; Ellis, S.P.; Keilp, J.G.; Moitra, V.K.; Cooper, T.B.; Marver, J.E.; Burke, A.K.; Milak, M.S.; Sublette, M.E.; Oquendo, M.A.; Mann, J.J. Ketamine versus midazolam in bipolar depression with suicidal thoughts: A pilot midazolam-controlled randomized clinical trial. Bipolar Disord., 2017, 19(3), 176-183.
[http://dx.doi.org/10.1111/bdi.12487] [PMID: 28452409]
[33]
Fan, W.; Yang, H.; Sun, Y.; Zhang, J.; Li, G.; Zheng, Y.; Liu, Y. Ketamine rapidly relieves acute suicidal ideation in cancer patients: a randomized controlled clinical trial. Oncotarget, 2017, 8(2), 2356-2360.
[http://dx.doi.org/10.18632/oncotarget.13743] [PMID: 27926528]
[34]
Grunebaum, M.F.; Galfalvy, H.C.; Choo, T.H.; Keilp, J.G.; Moitra, V.K.; Parris, M.S.; Marver, J.E.; Burke, A.K.; Milak, M.S.; Sublette, M.E.; Oquendo, M.A.; Mann, J.J. Ketamine for rapid reduction of suicidal thoughts in major depression: a midazolam-controlled randomized clinical trial. Am. J. Psychiatry, 2018, 175(4), 327-335.
[http://dx.doi.org/10.1176/appi.ajp.2017.17060647] [PMID: 29202655]
[35]
Newport, D.J.; Carpenter, L.L.; McDonald, W.M.; Potash, J.B.; Tohen, M.; Nemeroff, C.B. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am. J. Psychiatry, 2015, 172(10), 950-966.
[http://dx.doi.org/10.1176/appi.ajp.2015.15040465] [PMID: 26423481]
[36]
Andrade, C. Ketamine for depression, 3: does chirality matter? J. Clin. Psychiatry, 2017, 78(6), e674-e677.
[http://dx.doi.org/10.4088/JCP.17f11681] [PMID: 28682536]
[37]
Autry, A.E.; Adachi, M.; Nosyreva, E.; Na, E.S.; Los, M.F.; Cheng, P.F.; Kavalali, E.T.; Monteggia, L.M. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 2011, 475(7354), 91-95.
[http://dx.doi.org/10.1038/nature10130] [PMID: 21677641]
[38]
Marsden, W.N. Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 43, 168-184.
[http://dx.doi.org/10.1016/j.pnpbp.2012.12.012] [PMID: 23268191]
[39]
Ignácio, Z.M.; Réus, G.Z.; Arent, C.O.; Abelaira, H.M.; Pitcher, M.R.; Quevedo, J. New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br. J. Clin. Pharmacol., 2016, 82(5), 1280-1290.
[http://dx.doi.org/10.1111/bcp.12845] [PMID: 26613210]
[40]
Sattar, Y.; Wilson, J.; Khan, A.M.; Adnan, M.; Azzopardi Larios, D.; Shrestha, S.; Rahman, Q.; Mansuri, Z.; Hassan, A.; Patel, N.B.; Tariq, N.; Latchana, S.; Lopez Pantoja, S.C.; Vargas, S.; Shaikh, N.A.; Syed, F.; Mittal, D.; Rumesa, F. A Review of the Mechanism of Antagonism of N-methyl-D-aspartate Receptor by Ketamine in Treatment-resistant Depression. Cureus, 2018, 10(5)e2652
[http://dx.doi.org/10.7759/cureus.2652] [PMID: 30034974]
[41]
Spravato. SpravatoTM (esketamine) prescribing information. Janssen Pharmaceuticals Inc.: Titusville, New Jersey, 2019.
[42]
Johnson & Johnson. Esketamine Receives Breakthrough Therapy Designation from U.S. Food and Drug Administration for Major Depressive Disorder with Imminent Risk for Suicide. 2019. Availhttps: www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm632761.htm
[43]
Food and Drug Administration (FDA). FDA approves new nasal spray medication for treatment-resistant depression; available only at a certified doctor’s office or clinic [news release]. Johnson & Johnson Media Center: Silver Spring, Maryland, March 5, 2019. Available at: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm632761.htm [Accessed on September 30th, 2019].
[44]
Kaufman, M.B. Pharmaceutical Approval Update. P&T, 2019, 44(5), 251-254.
[PMID: 31080332]
[45]
Kraus, C.; Wasserman, D.; Henter, I.D.; Acevedo-Diaz, E.; Kadriu, B.; Zarate, C.A., Jr The influence of ketamine on drug discovery in depression. Drug Discov. Today, 2019, 24(10), 2033-2043.
[http://dx.doi.org/10.1016/j.drudis.2019.07.007]
[46]
Niciu, M.J.; Henter, I.D.; Luckenbaugh, D.A.; Zarate, C.A.; Charney, D.S. Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: ketamine and other compounds. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 119-139.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135950]
[47]
Fanta, S.; Kinnunen, M.; Backman, J.T.; Kalso, E. Population pharmacokinetics of S-ketamine and norketamine in healthy volunteers after intravenous and oral dosing. Eur. J. Clin. Pharmacol., 2015, 71(4), 441-447.
[http://dx.doi.org/10.1007/s00228-015-1826-y]
[48]
Peltoniemi, M.A.; Hagelberg, N.M.; Olkkola, K.T.; Saari, T.I. Ketamine: a review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy. Clin. Pharmacokinet., 2016, 55(9), 1059-1077.
[http://dx.doi.org/10.1007/s40262-016-0383-6] [PMID: 27028535]
[49]
Oye, I.; Paulsen, O.; Maurset, A. Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J. Pharmacol. Exp. Ther., 1992, 260(3), 1209-1213.
[PMID: 1312163]
[50]
Kapur, S.; Seeman, P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol. Psychiatry, 2002, 7(8), 837-844.
[http://dx.doi.org/10.1038/sj.mp.4001093] [PMID: 12232776]
[51]
Lang, E.; Mallien, A.S.; Vasilescu, A.N.; Hefter, D.; Luoni, A.; Riva, M.A.; Borgwardt, S.; Sprengel, R.; Lang, U.E.; Gass, P.; Inta, D. Molecular and cellular dissection of NMDA receptor subtypes as antidepressant targets. Neurosci. Biobehav. Rev., 2018, 84, 352-358.
[http://dx.doi.org/10.1016/j.neubiorev.2017.08.012] [PMID: 28843752]
[52]
Li, L.; Vlisides, P.E. Ketamine: 50 years of modulating the mind. Front. Hum. Neurosci., 2016, 10, 612. http://journal.frontiersin.org/ article/ 10.3389/fnhum.2016.00612/full [Internet].
[http://dx.doi.org/10.3389/fnhum.2016.00612] [PMID: 27965560]
[53]
Muller, J.; Pentyala, S.; Dilger, J.; Pentyala, S. Ketamine enantiomers in the rapid and sustained antidepressant effects. Ther. Adv. Psychopharmacol., 2016, 6(3), 185-192.
[http://dx.doi.org/10.1177/2045125316631267] [PMID: 27354907]
[54]
Lener, M.S.; Kadriu, B.; Zarate, C.A., Jr Ketamine and beyond: investigations into the potential of glutamatergic agents to treat depression. Drugs, 2017, 77(4), 381-401. http://link.springer.com/10.1007/s40265-017-0702-8 [Internet].
[http://dx.doi.org/10.1007/s40265-017-0702-8] [PMID: 28194724]
[55]
Thomas, R.; Cetin, M.; Baker, G.B.; Dursun, S.M. Comment on FDA’s breakthrough therapy designation of intranasal esketamine for the treatment of major depressive disorder with imminent risk of suicide. Klinik Psikofarmakol. Bülteni, 2016, 26(4), 329-331.
[http://dx.doi.org/10.5455/bcp.20161027122045]
[56]
Quintana, D.S.; Steen, N.E.; Andreassen, O.A. The promise of intranasal esketamine as a novel and effective antidepressant. JAMA Psychiatry, 2018, 75(2), 123-124.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.3738] [PMID: 29282452]
[57]
Turecki, G.; Ota, V.K.; Belangero, S.I.; Jackowski, A.; Kaufman, J. Early life adversity, genomic plasticity, and psychopathology. Lancet Psychiatry, 2014, 1(6), 461-466.
[http://dx.doi.org/10.1016/S2215-0366(14)00022-4] [PMID: 26361201]
[58]
Oquendo, M.A.; Sullivan, G.M.; Sudol, K.; Baca-Garcia, E.; Stanley, B.H.; Sublette, M.E.; Mann, J.J. Toward a biosignature for suicide. Am. J. Psychiatry, 2014, 171(12), 1259-1277.
[http://dx.doi.org/10.1176/appi.ajp.2014.14020194] [PMID: 25263730]
[59]
Gao, S-F.; Bao, A-M. Corticotropin-releasing hormone, glutamate, and γ-aminobutyric acid in depression. Neuroscientist, 2011, 17(1), 124-144.
[http://dx.doi.org/10.1177/1073858410361780] [PMID: 20236945]
[60]
Ghosal, S.; Hare, B.; Duman, R.S. Prefrontal cortex gabaergic deficits and circuit dysfunction in the pathophysiology and treatment of chronic stress and depression. Curr. Opin. Behav. Sci., 2017, 14, 1-8.
[http://dx.doi.org/10.1016/j.cobeha.2016.09.012] [PMID: 27812532]
[61]
Chopin, E.; Kerkhof, A.J.F.M.; Arensman, E. Suicidal behaviour: Theories and research findings; Hogrefe and Huber: Göttingen, Germany, 2004.
[62]
Joiner, T. E. Jr.; Silva, C. Why people die by suicide: Further development and tests of the interpersonal-psychological theory of suicidal behavior. In Meaning, mortality, and choice: The social psychology of existential concerns. P. R. Shaver & M. Mikulincer eds., American Psychological Association: Washington, 2012, p. 325-336.
[63]
Wenzel, A.; Brown, G.K.; Beck, A.T. Cognitive Therapy for Suicidal Patients: Scientific and Clinical Applications; American Psychological Association: Washington, 2009.
[http://dx.doi.org/10.1037/11862-000]
[64]
Richard-Devantoy, S.; Turecki, G.; Jollant, F. Neurobiology of elderly suicide. Arch. Suicide Res., 2016, 20(3), 291-313.
[http://dx.doi.org/10.1080/13811118.2015.1048397] [PMID: 26743828]
[65]
Anand, A.; Li, Y.; Wang, Y.; Wu, J.; Gao, S.; Bukhari, L.; Mathews, V.P.; Kalnin, A.; Lowe, M.J. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol. Psychiatry, 2005, 57(10), 1079-1088.
[http://dx.doi.org/10.1016/j.biopsych.2005.02.021] [PMID: 15866546]
[66]
Koenigs, M.; Grafman, J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res., 2009, 201(2), 239-243.
[http://dx.doi.org/10.1016/j.bbr.2009.03.004] [PMID: 19428640]
[67]
Moghaddam, B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J. Neurochem., 1993, 60(5), 1650-1657.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb13387.x] [PMID: 8097232]
[68]
Yuen, E.Y.; Liu, W.; Karatsoreos, I.N.; Feng, J.; McEwen, B.S.; Yan, Z. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 14075-14079.
[http://dx.doi.org/10.1073/pnas.0906791106] [PMID: 19666502]
[69]
Yuen, E.Y.; Wei, J.; Liu, W.; Zhong, P.; Li, X.; Yan, Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron, 2012, 73(5), 962-977.
[http://dx.doi.org/10.1016/j.neuron.2011.12.033] [PMID: 22405206]
[70]
Dalton, G.L.; Ma, L.M.; Phillips, A.G.; Floresco, S.B. Blockade of NMDA GluN2B receptors selectively impairs behavioral flexibility but not initial discrimination learning. Psychopharmacology (Berl.), 2011, 216(4), 525-535.
[http://dx.doi.org/10.1007/s00213-011-2246-z] [PMID: 21384103]
[71]
Jett, J.D.; Bulin, S.E.; Hatherall, L.C.; McCartney, C.M.; Morilak, D.A. Deficits in cognitive flexibility induced by chronic unpredictable stress are associated with impaired glutamate neurotransmission in the rat medial prefrontal cortex. Neuroscience, 2017, 346, 284-297.
[http://dx.doi.org/10.1016/j.neuroscience.2017.01.017] [PMID: 28131625]
[72]
Zhao, J.; Verwer, R.W.H.; Gao, S-F.; Qi, X-R.; Lucassen, P.J.; Kessels, H.W.; Swaab, D.F. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. J. Psychiatr. Res., 2018, 102, 261-274.
[http://dx.doi.org/10.1016/j.jpsychires.2018.04.020] [PMID: 29753198]
[73]
Bernstein, H-G.; Tausch, A.; Wagner, R.; Steiner, J.; Seeleke, P.; Walter, M.; Dobrowolny, H.; Bogerts, B. Disruption of glutamate-glutamine-GABA cycle significantly impacts on suicidal behaviour: survey of the literature and own findings on glutamine synthetase. CNS Neurol. Disord. Drug Targets, 2013, 12(7), 900-913.
[http://dx.doi.org/10.2174/18715273113129990091] [PMID: 24040807]
[74]
Sokolowski, M.; Ben-Efraim, Y.J.; Wasserman, J.; Wasserman, D. Glutamatergic GRIN2B and polyaminergic ODC1 genes in suicide attempts: associations and gene-environment interactions with childhood/adolescent physical assault. Mol. Psychiatry, 2013, 18(9), 985-992.
[http://dx.doi.org/10.1038/mp.2012.112] [PMID: 22850629]
[75]
Trullas, R.; Skolnick, P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur. J. Pharmacol., 1990, 185(1), 1-10.
[http://dx.doi.org/10.1016/0014-2999(90)90204-J] [PMID: 2171955]
[76]
Yilmaz, A.; Schulz, D.; Aksoy, A.; Canbeyli, R. Prolonged effect of an anesthetic dose of ketamine on behavioral despair. Pharmacol. Biochem. Behav., 2002, 71(1-2), 341-344.
[http://dx.doi.org/10.1016/S0091-3057(01)00693-1] [PMID: 11812542]
[77]
Garcia, L.S.; Comim, C.M.; Valvassori, S.S.; Réus, G.Z.; Barbosa, L.M.; Andreazza, A.C.; Stertz, L.; Fries, G.R.; Gavioli, E.C.; Kapczinski, F.; Quevedo, J. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(1), 140-144.
[http://dx.doi.org/10.1016/j.pnpbp.2007.07.027] [PMID: 17884272]
[78]
Maeng, S.; Zarate, C.A., Jr; Du, J.; Schloesser, R.J.; McCammon, J.; Chen, G.; Manji, H.K. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry, 2008, 63(4), 349-352.
[http://dx.doi.org/10.1016/j.biopsych.2007.05.028] [PMID: 17643398]
[79]
Wang, N.; Yu, H-Y.; Shen, X-F.; Gao, Z-Q.; Yang, C.; Yang, J-J.; Zhang, G-F. The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus. Ups. J. Med. Sci., 2015, 120(4), 241-248.
[http://dx.doi.org/10.3109/03009734.2015.1060281] [PMID: 26220286]
[80]
Réus, G.Z.; Carlessi, A.S.; Titus, S.E.; Abelaira, H.M.; Ignácio, Z.M.; da Luz, J.R.; Matias, B.I.; Bruchchen, L.; Florentino, D.; Vieira, A.; Petronilho, F.; Quevedo, J. A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Dev. Neurobiol., 2015, 75(11), 1268-1281.
[http://dx.doi.org/10.1002/dneu.22283] [PMID: 25728399]
[81]
Fuchikami, M.; Thomas, A.; Liu, R.; Wohleb, E.S.; Land, B.B.; DiLeone, R.J.; Aghajanian, G.K.; Duman, R.S. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc. Natl. Acad. Sci. USA, 2015, 112(26), 8106-8111.
[http://dx.doi.org/10.1073/pnas.1414728112] [PMID: 26056286]
[82]
Gass, N.; Schwarz, A.J.; Sartorius, A.; Schenker, E.; Risterucci, C.; Spedding, M.; Zheng, L.; Meyer-Lindenberg, A.; Weber-Fahr, W. Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat. Neuropsychopharmacology, 2014, 39(4), 895-906.
[http://dx.doi.org/10.1038/npp.2013.290] [PMID: 24136293]
[83]
Grimm, O.; Gass, N.; Weber-Fahr, W.; Sartorius, A.; Schenker, E.; Spedding, M.; Risterucci, C.; Schweiger, J.I.; Böhringer, A.; Zang, Z.; Tost, H.; Schwarz, A.J.; Meyer-Lindenberg, A. Acute ketamine challenge increases resting state prefrontal-hippocampal connectivity in both humans and rats. Psychopharmacology (Berl.), 2015, 232(21-22), 4231-4241.
[http://dx.doi.org/10.1007/s00213-015-4022-y] [PMID: 26184011]
[84]
Hay, N.; Sonenberg, N. Upstream and downstream of mTOR. Genes Dev., 2004, 18(16), 1926-1945.
[http://dx.doi.org/10.1101/gad.1212704] [PMID: 15314020]
[85]
Inoki, K.; Ouyang, H.; Zhu, T.; Lindvall, C.; Wang, Y.; Zhang, X.; Yang, Q.; Bennett, C.; Harada, Y.; Stankunas, K.; Wang, C.Y.; He, X.; MacDougald, O.A.; You, M.; Williams, B.O.; Guan, K-L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 2006, 126(5), 955-968.
[http://dx.doi.org/10.1016/j.cell.2006.06.055] [PMID: 16959574]
[86]
Niculescu, A.B.; Levey, D.F.; Phalen, P.L.; Le-Niculescu, H.; Dainton, H.D.; Jain, N.; Belanger, E.; James, A.; George, S.; Weber, H.; Graham, D.L.; Schweitzer, R.; Ladd, T.B.; Learman, R.; Niculescu, E.M.; Vanipenta, N.P.; Khan, F.N.; Mullen, J.; Shankar, G.; Cook, S.; Humbert, C.; Ballew, A.; Yard, M.; Gelbart, T.; Shekhar, A.; Schork, N.J.; Kurian, S.M.; Sandusky, G.E.; Salomon, D.R. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol. Psychiatry, 2015, 20(11), 1266-1285.
[http://dx.doi.org/10.1038/mp.2015.112] [PMID: 26283638]
[87]
Flory, J.D.; Donohue, D.; Muhie, S.; Yang, R.; Miller, S.A.; Hammamieh, R.; Ryberg, K.; Yehuda, R. Gene expression associated with suicide attempts in US veterans. Transl. Psychiatry, 2017, 7(9)e1226
[http://dx.doi.org/10.1038/tp.2017.179] [PMID: 28872639]
[88]
Li, N.; Lee, B.; Liu, R-J.; Banasr, M.; Dwyer, J.M.; Iwata, M.; Li, X-Y.; Aghajanian, G.; Duman, R.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 2010, 329(5994), 959-964.
[http://dx.doi.org/10.1126/science.1190287] [PMID: 20724638]
[89]
Miller, O.H.; Yang, L.; Wang, C-C.; Hargroder, E.A.; Zhang, Y.; Delpire, E.; Hall, B.J. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. eLife, 2014, 3e03581
[http://dx.doi.org/10.7554/eLife.03581] [PMID: 25340958]
[90]
Beurel, E.; Song, L.; Jope, R.S. Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol. Psychiatry, 2011, 16(11), 1068-1070.
[http://dx.doi.org/10.1038/mp.2011.47] [PMID: 21502951]
[91]
Liu, R-J.; Fuchikami, M.; Dwyer, J.M.; Lepack, A.E.; Duman, R.S.; Aghajanian, G.K. GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology, 2013, 38(11), 2268-2277.
[http://dx.doi.org/10.1038/npp.2013.128] [PMID: 23680942]
[92]
Chiu, C-T.; Scheuing, L.; Liu, G.; Liao, H-M.; Linares, G.R.; Lin, D.; Chuang, D-M. The mood stabilizer lithium potentiates the antidepressant-like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress. Int. J. Neuropsychopharmacol., 2014, 18(6), 18.
[PMID: 25548109]
[93]
Lepack, A.E.; Fuchikami, M.; Dwyer, J.M.; Banasr, M.; Duman, R.S. BDNF release is required for the behavioral actions of ketamine. Int. J. Neuropsychopharmacol., 2014, 18(1), pyu033-pyu033.
[http://dx.doi.org/10.1093/ijnp/pyu033] [PMID: 25539510]
[94]
Tomasetti, C.; Iasevoli, F.; Buonaguro, E.F.; De Berardis, D.; Fornaro, M.; Fiengo, A.L.; Martinotti, G.; Orsolini, L.; Valchera, A.; Di Giannantonio, M.; de Bartolomeis, A. Treating the synapse in major psychiatric disorders: the role of postsynaptic density network in dopamine-glutamate interplay and psychopharmacologic drugs molecular actions. Int. J. Mol. Sci., 2017, 18(1)E135
[http://dx.doi.org/10.3390/ijms18010135] [PMID: 28085108]
[95]
Liu, R-J.; Lee, F.S.; Li, X-Y.; Bambico, F.; Duman, R.S.; Aghajanian, G.K. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol. Psychiatry, 2012, 71(11), 996-1005.
[http://dx.doi.org/10.1016/j.biopsych.2011.09.030] [PMID: 22036038]
[96]
Petryshen, T.L.; Sabeti, P.C.; Aldinger, K.A.; Fry, B.; Fan, J.B.; Schaffner, S.F.; Waggoner, S.G.; Tahl, A.R.; Sklar, P. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol. Psychiatry, 2010, 15(8), 810-815.
[http://dx.doi.org/10.1038/mp.2009.24] [PMID: 19255578]
[97]
Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 5th ed; American Psychiatric Association: Washington, 2013.
[98]
A study to evaluate the effects of a single-dose and repeatadministration of intranasal esketamine on on-road driving in participants with major depressive disorder: NCT02919579. https://clinicaltrials.gov/ct2/show/NCT02919579
[99]
Singh, J.B.; Fedgchin, M.; Daly, E.; Xi, L.; Melman, C.; De Bruecker, G.; Tadic, A.; Sienaert, P.; Wiegand, F.; Manji, H.; Drevets, W.C.; Van Nueten, L. Intravenous esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol. Psychiatry, 2016, 80(6), 424-431.
[http://dx.doi.org/10.1016/j.biopsych.2015.10.018] [PMID: 26707087]
[100]
Diagnostic and Statistical Manual of Mental Disorders, 4th ed., text revision (DSM-IV-TR); American Psychiatric Association: Washington, DC, 2000.
[101]
Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry, 1998, 59(Suppl. 20), 22-33.
[PMID: 9881538]
[102]
Chandler, G.M.; Iosifescu, D.V.; Pollack, M.H.; Targum, S.D.; Fava, M. RESEARCH: validation of the massachusetts general hospital antidepressant treatment history questionnaire (ATRQ). CNS Neurosci. Ther., 2010, 16(5), 322-325.
[http://dx.doi.org/10.1111/j.1755-5949.2009.00102.x] [PMID: 19769599]
[103]
Trivedi, M.H.; Rush, A.J.; Ibrahim, H.M.; Carmody, T.J.; Biggs, M.M.; Suppes, T.; Crismon, M.L.; Shores-Wilson, K.; Toprac, M.G.; Dennehy, E.B.; Witte, B.; Kashner, T.M. The Inventory of Depressive Symptomatology, Clinician Rating (IDS-C) and Self-Report (IDS-SR), and the Quick Inventory of Depressive Symptomatology, Clinician Rating (QIDS-C) and Self-Report (QIDS-SR) in public sector patients with mood disorders: a psychometric evaluation. Psychol. Med., 2004, 34(1), 73-82.
[http://dx.doi.org/10.1017/S0033291703001107] [PMID: 14971628]
[104]
Montgomery, S.A.; Asberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry, 1979, 134, 382-389.
[http://dx.doi.org/10.1192/bjp.134.4.382] [PMID: 444788]
[105]
Alphs, L.; Canuso, C.; Williamson, D. Evaluating changes in factors associated with suicidal thinking using the suicide ideation and behavior assessment tool (SIBAT). Neuropsychopharmacology, 2016, 41(Suppl. 1S), S189.
[106]
Bremner, J.D.; Krystal, J.H.; Putnam, F.W.; Southwick, S.M.; Marmar, C.; Charney, D.S.; Mazure, C.M. Measurement of dissociative states with the clinician-administered dissociative states scale (CADSS). J. Trauma. Stress, 1998, 11(1), 125-136.
[http://dx.doi.org/10.1023/A:1024465317902] [PMID: 9479681]
[107]
Daly, E.J.; Singh, J.B.; Fedgchin, M.; Cooper, K.; Lim, P.; Shelton, R.C.; Thase, M.E.; Winokur, A.; Van Nueten, L.; Manji, H.; Drevets, W.C. Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry, 2018, 75(2), 139-148.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.3739] [PMID: 29282469]
[108]
Guy, W.M. ECDEU assessment manual for psychopharmacology; US department of health, education, and welfare: Rockville, MD, 1976.
[109]
Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch. Intern. Med., 2006, 166(10), 1092-1097.
[http://dx.doi.org/10.1001/archinte.166.10.1092] [PMID: 16717171]
[110]
Fedgchin, M.; Trivedi, M.; Daly, E.J.; Melkote, R.; Lane, R.; Lim, P.; Vitagliano, D.; Blier, P.; Fava, M.; Liebowitz, M.; Ravindran, A.; Gaillard, R.; Ameele, H.V.D.; Preskorn, S.; Manji, H.; Hough, D.; Drevets, W.C.; Singh, J.B. Efficacy and safety of fixed-dose esketamine nasal spray combined with a new oral antidepressant in treatment-resistant depression: results of a randomized, double-blind, active-controlled study (TRANSFORM-1). Int. J. Neuropsychopharmacol., 2019, 22(10), 616-630.
[http://dx.doi.org/10.1093/ijnp/pyz039] [PMID: 31290965]
[111]
Leon, A.C.; Olfson, M.; Portera, L.; Farber, L.; Sheehan, D.V. Assessing psychiatric impairment in primary care with the Sheehan Disability Scale. Int. J. Psychiatry Med., 1997, 27(2), 93-105.
[http://dx.doi.org/10.2190/T8EM-C8YH-373N-1UWD] [PMID: 9565717]
[112]
Spitzer, R.L.; Kroenke, K.; Williams, J.B. Validation and utility of a self-report version of prime-MD: the PHQ primary care study. primary care evaluation of mental disorders. patient health questionnaire. JAMA, 1999, 282(18), 1737-1744.
[http://dx.doi.org/10.1001/jama.282.18.1737] [PMID: 10568646]
[113]
EuroQol Research Foundation. EQ-5D. Available from: http://www.euroqol.org/about-eq-5d.html
[114]
Overall, J.E.; Gorham, D.R. The brief psychiatric rating scale. Psychol. Rep., 1962, 10, 799-812.
[http://dx.doi.org/10.2466/pr0.1962.10.3.799]
[115]
Rickels, K.; Garcia-Espana, F.; Mandos, L.A.; Case, G.W. Physician Withdrawal Checklist (PWC-20). J. Clin. Psychopharmacol., 2008, 28(4), 447-451.
[http://dx.doi.org/10.1097/JCP.0b013e31817efbac] [PMID: 18626273]
[116]
Popova, V.; Daly, E.J.; Trivedi, M.; Cooper, K.; Lane, R.; Lim, P.; Mazzucco, C.; Hough, D.; Thase, M.E.; Shelton, R.C.; Molero, P.; Vieta, E.; Bajbouj, M.; Manji, H.; Drevets, W.C.; Singh, J.B. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am. J. Psychiatry, 2019, 176(6), 428-438.
[http://dx.doi.org/10.1176/appi.ajp.2019.19020172] [PMID: 31109201]
[117]
Ochs-Ross, R.; Daly, E.J.; Zhang, Y.; Lane, R.; Lim, P.; Foster, K.; Hough, D.; Manji, H.; Drevets, W.C.; Sanacora, G.; Adler, C.; McShane, R.; Gaillard, R.; Singh, J.B. S114. Efficacy and safety of intranasal esketamine plus an oral antidepressant in elderly patients with treatment-resistant depression. Biol. Psychiatry, 2018, 83, S391.
[http://dx.doi.org/10.1016/j.biopsych.2018.02.1005]
[118]
Wajs, E.; Leah, A.; Morrison, R. Long-term safety of esketamine nasal spray plus oral antidepressant in patients with treatment-resistant depression: SUSTAIN-2 phase study. Eur. Neuropsychopharmacol., 2019, 29, S44-S45.
[http://dx.doi.org/10.1016/j.euroneuro.2018.11.1016]
[119]
Daly, E.J.; Trivedi, M.H.; Janik, A.; Li, H.; Zhang, Y.; Li, X.; Lane, R.; Lim, P.; Duca, A.R.; Hough, D.; Thase, M.E.; Zajecka, J.; Winokur, A.; Divacka, I.; Fagiolini, A.; Cubala, W.J.; Bitter, I.; Blier, P.; Shelton, R.C.; Molero, P.; Manji, H.; Drevets, W.C.; Singh, J.B. Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry, 2019. Epub ahead of print
[http://dx.doi.org/10.1001/jamapsychiatry.2019.1189] [PMID: 31166571]
[120]
A study to evaluate the efficacy and safety of intranasal esketamine in addition to comprehensive standard of care for the rapid reduction of the symptoms of major depressive disorder, including suicidal ideation, in adult participants assessed to be at imminent risk for suicide (aspire i). 54135419SUI3001. Available from: https://clinicaltrials.gov/ct2/show/nct03039192
[121]
A study to evaluate the efficacy and safety of intranasal esketamine in addition to comprehensive standard of care for the rapid reduction of the symptoms of major depressive disorder, including suicidal ideation, in adult participants assessed to be at imminent risk for suicide (Aspire II). 54135419SUI3002. Available from: https://clinicaltrials.gov/ct2/show/nct03097133
[122]
Ajub, E.; Lacerda, A.L.T. Efficacy of Esketamine in the Treatment of Depression With Psychotic Features: A Case Series. Biol. Psychiatry, 2018, 83(1), e15-e16.
[http://dx.doi.org/10.1016/j.biopsych.2017.06.011] [PMID: 28728676]
[123]
Correia-Melo, F.S.; Argolo, F.C.; Araújo-de-Freitas, L.; Leal, G.C.; Kapczinski, F.; Lacerda, A.L.; Quarantini, L.C. Rapid infusion of esketamine for unipolar and bipolar depression: a retrospective chart review. Neuropsychiatr. Dis. Treat., 2017, 13, 1627-1632.
[http://dx.doi.org/10.2147/NDT.S135623] [PMID: 28790825]
[124]
Correia-Melo, F.S.; Leal, G.C.; Carvalho, M.S.; Jesus-Nunes, A.P.; Ferreira, C.B.N.; Vieira, F.; Magnavita, G.; Vale, L.A.S.; Mello, R.P.; Nakahira, C.; Argolo, F.C.; Cardoso, T.; Souza, C.D.S.; Fontes, A.T.C.; Ferreira, M.B.; Araújo-de-Freitas, L.; Tuena, M.A.; Echegaray, M.V.F.; Cavalcanti, D.E.; Lucchese, A.C.; Bandeira, I.D.; Telles, M.; Lima, C.S.; Sampaio, A.S.; Silva, S.S.; Marback, R.F.; Del-Porto, J.A.; Abreu, J.N.; Sarin, L.M.; Paixão, C.S.; Carvalho, L.P.; Machado, P.R.L.; Turecki, G.; Lacerda, A.L.T.; Quarantini, L.C. Comparative study of esketamine and racemic ketamine in treatment-resistant depression: Protocol for a non-inferiority clinical trial. Medicine (Baltimore), 2018, 97(38)e12414
[http://dx.doi.org/10.1097/MD.0000000000012414] [PMID: 30235716]
[125]
Targum, S.D.; Daly, E.; Fedgchin, M.; Cooper, K.; Singh, J.B. Comparability of blinded remote and site-based assessments of response to adjunctive esketamine or placebo nasal spray in patients with treatment resistant depression. J. Psychiatr. Res., 2019, 111, 68-73.
[http://dx.doi.org/10.1016/j.jpsychires.2019.01.017] [PMID: 30685564]
[126]
Efficacy, Safety and Pharmacokinetic Study of Inhaled Esketamine in treatment-resistant Depression: NCT03965858. Available from: https://clinicaltrials.gov/ct2/show/NCT03965858
[127]
Study to evaluate the efficacy and safety of 3 fixed doses of intranasal esketamine in addition to comprehensive standard of care for the rapid reduction of the symptoms of major depressive disorder, including suicidal ideation, in pediatric participants assessed to be at imminent risk for suicide: NCT03185819. Available from: https://clinicaltrials.gov/ct2/show/NCT03185819
[128]
A study to evaluate the efficacy, safety and tolerability of fixed doses of intranasal esketamine in Japanese participants with treatment resistant depression: NCT02918318. Available from: https://clinicaltrials.gov/ct2/show/NCT02918318
[129]
A study to evaluate the efficacy, pharmacokinetics, safety and tolerability of flexible doses of intranasal esketamine plus an oral antidepressant in adult participants with treatment-resistant depression. NCT03434041. Available from: https://clinicaltrials.gov/ct2/show/NCT03434041
[130]
A long-term safety study of esketamine nasal spray in treatmentresistant depression: NCT02782104. Available from: https://clinicaltrials.gov/ct2/show/NCT02782104
[131]
A study of esketamine nasal spray plus a new standard-of-care oral antidepressant or placebo nasal spray plus a new standard-of-care oral antidepressant in adult and elderly participants with treatmentresistant depression: nct03852160. Available from: https://clinicaltrials.gov/ct2/show/NCT03852160
[132]
Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[133]
Ulbrich, M.H.; Isacoff, E.Y. Rules of engagement for NMDA receptor subunits. Proc. Natl. Acad. Sci. USA, 2008, 105(37), 14163-14168.
[http://dx.doi.org/10.1073/pnas.0802075105] [PMID: 18779583]
[134]
Peyrovian, B.; Rosenblat, J.D.; Pan, Z.; Iacobucci, M.; Brietzke, E.; McIntyre, R.S. The glycine site of NMDA receptors: A target for cognitive enhancement in psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 92, 387-404.
[http://dx.doi.org/10.1016/j.pnpbp.2019.02.001] [PMID: 30738126]
[135]
Zarate, C.A., Jr; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry, 2006, 63(8), 856-864.
[http://dx.doi.org/10.1001/archpsyc.63.8.856] [PMID: 16894061]
[136]
Mathew, S.J.; Shah, A.; Lapidus, K.; Clark, C.; Jarun, N.; Ostermeyer, B.; Murrough, J.W. Ketamine for treatment-resistant unipolar depression: current evidence. CNS Drugs, 2012, 26(3), 189-204.
[http://dx.doi.org/10.2165/11599770-000000000-00000] [PMID: 22303887]
[137]
Phillips, M.L.; Drevets, W.C.; Rauch, S.L.; Lane, R. Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biol. Psychiatry, 2003, 54(5), 515-528.
[http://dx.doi.org/10.1016/S0006-3223(03)00171-9] [PMID: 12946880]
[138]
Ibrahim, L.; Diazgranados, N.; Franco-Chaves, J.; Brutsche, N.; Henter, I.D.; Kronstein, P.; Moaddel, R.; Wainer, I.; Luckenbaugh, D.A.; Manji, H.K.; Zarate, C.A., Jr Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology, 2012, 37(6), 1526-1533.
[http://dx.doi.org/10.1038/npp.2011.338] [PMID: 22298121]
[139]
Yang, C.; Shirayama, Y.; Zhang, J.C.; Ren, Q.; Yao, W.; Ma, M.; Dong, C.; Hashimoto, K. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl. Psychiatry, 2015, 5e632
[http://dx.doi.org/10.1038/tp.2015.136] [PMID: 26327690]
[140]
Hashimoto, K.; Kakiuchi, T.; Ohba, H.; Nishiyama, S.; Tsukada, H. Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys. Eur. Arch. Psychiatry Clin. Neurosci., 2017, 267(2), 173-176.
[http://dx.doi.org/10.1007/s00406-016-0692-7] [PMID: 27091456]
[141]
Drevets, W.C.; Singh, J.B.; Hough, D.; Daly, E.J.; Popova, V.; Manji, H. Comment on a word to the wise about intranasal esketamine. Am. J. Psychiatry, 2019, 176(10), 856-857.
[http://dx.doi.org/10.1176/appi.ajp.2019.19070688] [PMID: 31569984]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 7
Year: 2020
Page: [554 - 584]
Pages: 31
DOI: 10.2174/1568026620666200131100316
Price: $65

Article Metrics

PDF: 33
HTML: 1