The Value of Neuroimaging Techniques in the Translation and Transdiagnostic Validation of Psychiatric Diagnoses - Selective Review

Author(s): Anna Todeva-Radneva*, Rositsa Paunova, Sevdalina Kandilarova, Drozdstoy St. Stoyanov

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Psychiatric diagnosis has long been perceived as more of an art than a science since its foundations lie within the observation, and the self-report of the patients themselves and objective diagnostic biomarkers are lacking. Furthermore, the diagnostic tools in use not only stray away from the conventional medical framework but also remain invalidated with evidence-based concepts. However, neuroscience, as a source of valid objective knowledge has initiated the process of a paradigm shift underlined by the main concept of psychiatric disorders being “brain disorders”. It is also a bridge closing the explanatory gap among the different fields of medicine via the translation of the knowledge within a multidisciplinary framework.

The contemporary neuroimaging methods, such as fMRI provide researchers with an entirely new set of tools to reform the current status quo by creating an opportunity to define and validate objective biomarkers that can be translated into clinical practice. Combining multiple neuroimaging techniques with the knowledge of the role of genetic factors, neurochemical imbalance and neuroinflammatory processes in the etiopathophysiology of psychiatric disorders is a step towards a comprehensive biological explanation of psychiatric disorders and a final differentiation of psychiatry as a well-founded medical science.

In addition, the neuroscientific knowledge gained thus far suggests a necessity for directional change to exploring multidisciplinary concepts, such as multiple causality and dimensionality of psychiatric symptoms and disorders. A concomitant viewpoint transition of the notion of validity in psychiatry with a focus on an integrative validatory approach may facilitate the building of a collaborative bridge above the wall existing between the scientific fields analyzing the mind and those studying the brain.

Keywords: Translation, fMRI, Psychiatry, Neuroimaging, Trans-diagnostic validation, Biomarkers.

[1]
Walter, H.; Müller, J. [The contribution of neuroscience to the concept of mental disorder]. Nervenarzt, 2015, 86(1), 22-28.
[http://dx.doi.org/10.1007/s00115-014-4113-8] [PMID: 25575630]
[2]
Jollans, L.; Whelan, R. Neuromarkers for mental disorders: harnessing population neuroscience. Front. Psychiatry, 2018, 9, 242.
[http://dx.doi.org/10.3389/fpsyt.2018.00242] [PMID: 29928237]
[3]
Yahata, N.; Kasai, K.; Kawato, M. Computational neuroscience approach to biomarkers and treatments for mental disorders. Psychiatry Clin. Neurosci., 2017, 71(4), 215-237.
[http://dx.doi.org/10.1111/pcn.12502] [PMID: 28032396]
[4]
Stoyanov, D.S. Key Developments in translational neuroscience: an update. Balkan Med. J., 2017, 34(6), 485-486.
[http://dx.doi.org/10.4274/balkanmedj.2017.6.0002] [PMID: 29215334]
[5]
Freitas-Silva, L.R.; Ortega, F. Biological determination of mental disorders: a discussion based on recent hypotheses from neuroscience. Cad. Saude Publica, 2016, 32(8)e00168115
[PMID: 27580236]
[6]
Fu, C.H.; Costafreda, S.G. Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift. Can. J. Psychiatry, 2013, 58(9), 499-508.
[http://dx.doi.org/10.1177/070674371305800904] [PMID: 24099497]
[7]
Symms, M.; Jäger, H.R.; Schmierer, K.; Yousry, T.A. A review of structural magnetic resonance neuroimaging. J. Neurol. Neurosurg. Psychiatry, 2004, 75(9), 1235-1244.
[http://dx.doi.org/10.1136/jnnp.2003.032714] [PMID: 15314108]
[8]
Yazdani, S.; Yusof, R.; Riazi, A.; Karimian, A. Magnetic resonance image tissue classification using an automatic method. Diagn. Pathol., 2014, 9, 207.
[http://dx.doi.org/10.1186/s13000-014-0207-7] [PMID: 25540017]
[9]
Le Bihan, D. Diffusion, confusion and functional MRI. Neuroimage, 2012, 62(2), 1131-1136.
[http://dx.doi.org/10.1016/j.neuroimage.2011.09.058] [PMID: 21985905]
[10]
Pearlson, G.D.; Calhoun, V. Structural and functional magnetic resonance imaging in psychiatric disorders. Can. J. Psychiatry, 2007, 52(3), 158-166.
[http://dx.doi.org/10.1177/070674370705200304] [PMID: 17479523]
[11]
Giuliani, N.R.; Calhoun, V.D.; Pearlson, G.D.; Francis, A.; Buchanan, R.W. Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophr. Res., 2005, 74(2-3), 135-147.
[http://dx.doi.org/10.1016/j.schres.2004.08.019] [PMID: 15721994]
[12]
Zarogianni, E.; Moorhead, T.W.; Lawrie, S.M. Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level. Neuroimage Clin., 2013, 3, 279-289.
[http://dx.doi.org/10.1016/j.nicl.2013.09.003] [PMID: 24273713]
[13]
Barras, C.D.; Asadi, H.; Baldeweg, T.; Mancini, L.; Yousry, T.A.; Bisdas, S. Functional magnetic resonance imaging in clinical practice: State of the art and science. Aust. Fam. Physician, 2016, 45(11), 798-803.
[PMID: 27806448]
[14]
Glover, G.H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am., 2011, 22(2), 133-139, .
[http://dx.doi.org/10.1016/j.nec.2010.11.001] [PMID: 21435566]
[15]
Lee, M.H.; Smyser, C.D.; Shimony, J.S. Resting-state fMRI: a review of methods and clinical applications. AJNR Am. J. Neuroradiol., 2013, 34(10), 1866-1872.
[http://dx.doi.org/10.3174/ajnr.A3263] [PMID: 22936095]
[16]
Chen, J.E.; Glover, G.H. Functional magnetic resonance imaging methods. Neuropsychol. Rev., 2015, 25(3), 289-313.
[http://dx.doi.org/10.1007/s11065-015-9294-9] [PMID: 26248581]
[17]
Marková, I.S. Translational neuroscience and psychiatry: A conceptual analysis. J. Eval. Clin. Pract., 2018, 24(4), 791-796.
[http://dx.doi.org/10.1111/jep.12914] [PMID: 29603509]
[18]
Woo, C.W.; Chang, L.J.; Lindquist, M.A.; Wager, T.D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci., 2017, 20(3), 365-377.
[http://dx.doi.org/10.1038/nn.4478] [PMID: 28230847]
[19]
Adolph, K. The Pathology And Therapy Of Mental Illnesses For Physicians And Students; Wentworth Press: Stuttgart, 1845, p. 538.
[20]
Stoyanov, D.; Telles-Correia, D.; Cuthbert, B.N. The Research Domain Criteria (RDoC) and the historical roots of psychopathology: A viewpoint. Eur. Psychiatry, 2019, 57, 58-60.
[http://dx.doi.org/10.1016/j.eurpsy.2018.11.007] [PMID: 30677549]
[21]
Rojas-Malpica, C.; Portilla-Geada, N. d. l.; Mobilli-Rojas, A.; Martínez-Araujo, D. Revisiting unitary psychosis. From nosotaxis to nosology. Salud Ment., 2012, 35(2), 109-122.
[22]
Emil, K. Manic depressive insanity and paranoia. J. Nerv. Ment. Dis., 1921, 53, 350.
[http://dx.doi.org/10.1097/00005053-192104000-00057]
[23]
Klaus, C. The problem of “nosological unity” in psychiatry]. Nervenarzt, 1959, 30, 488-494.
[24]
Berrios, G.E. Porter, R. A history of clinical psychiatry: the origin and history of psychiatric diseases; Athlone Pr: London, 1995.
[25]
Mishara, A.L. Klaus Conrad (1905-1961): delusional mood, psychosis, and beginning schizophrenia. Schizophr. Bull., 2010, 36(1), 9-13.
[http://dx.doi.org/10.1093/schbul/sbp144] [PMID: 19965934]
[26]
Zahn, R. The role of neuroimaging in translational cognitive neuroscience. Top. Magn. Reson. Imaging, 2009, 20(5), 279-289.
[http://dx.doi.org/10.1097/RMR.0b013e3181e8f215] [PMID: 20859189]
[27]
Stringaris, A. Editorial: Neuroimaging in clinical psychiatry--when will the pay off begin? J. Child Psychol. Psychiatry, 2015, 56(12), 1263-1265.
[http://dx.doi.org/10.1111/jcpp.12490] [PMID: 26768523]
[28]
Wolfers, T.; Buitelaar, J.K.; Beckmann, C.F.; Franke, B.; Marquand, A.F. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev., 2015, 57, 328-349.
[http://dx.doi.org/10.1016/j.neubiorev.2015.08.001] [PMID: 26254595]
[29]
Stanghellini, G.; Raballo, A. Differential typology of delusions in major depression and schizophrenia. A critique to the unitary concept of ‘psychosis’. J. Affect. Disord., 2015, 171, 171-178.
[http://dx.doi.org/10.1016/j.jad.2014.09.027] [PMID: 25443763]
[30]
Kelly, J.R.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Dimensional thinking in psychiatry in the era of the Research Domain Criteria (RDoC). Ir. J. Psychol. Med., 2018, 35 pp. 89-94.
[31]
Cuthbert, B.N. Research Domain Criteria: toward future psychiatric nosologies. Dialogues Clin. Neurosci., 2015, 17(1), 89-97.
[PMID: 25987867]
[32]
Walter, H. [Research domain criteria (RDoC) : Psychiatric research as applied cognitive neuroscience]. Nervenarzt, 2017, 88(5), 538-548.
[http://dx.doi.org/10.1007/s00115-017-0284-4] [PMID: 28188401]
[33]
Beer, M.D. Psychosis: a history of the concept. Compr. Psychiatry, 1996, 37(4), 273-291.
[http://dx.doi.org/10.1016/S0010-440X(96)90007-3] [PMID: 8826692]
[34]
Maes, M.; Yirmyia, R.; Noraberg, J.; Brene, S.; Hibbeln, J.; Perini, G.; Kubera, M.; Bob, P.; Lerer, B.; Maj, M. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab. Brain Dis., 2009, 24(1), 27-53.
[http://dx.doi.org/10.1007/s11011-008-9118-1] [PMID: 19085093]
[35]
Boku, S.; Nakagawa, S.; Toda, H.; Hishimoto, A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin. Neurosci., 2018, 72(1), 3-12.
[http://dx.doi.org/10.1111/pcn.12604] [PMID: 28926161]
[36]
Morris, G.; Puri, B.K.; Walker, A.J.; Maes, M.; Carvalho, A.F.; Bortolasci, C.C.; Walder, K.; Berk, M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci. Biobehav. Rev., 2019, 107, 862-882.
[http://dx.doi.org/10.1016/j.neubiorev.2019.09.025] [PMID: 31545987]
[37]
Sagar, R.; Pattanayak, R.D. Potential biomarkers for bipolar disorder: Where do we stand? Indian J. Med. Res., 2017, 145(1), 7-16.
[http://dx.doi.org/10.4103/ijmr.IJMR_1386_16] [PMID: 28574009]
[38]
Sigitova, E.; Fišar, Z.; Hroudová, J.; Cikánková, T.; Raboch, J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin. Neurosci., 2017, 71(2), 77-103.
[http://dx.doi.org/10.1111/pcn.12476] [PMID: 27800654]
[39]
Tomasik, J.; Rahmoune, H.; Guest, P.C.; Bahn, S. Neuroimmune biomarkers in schizophrenia. Schizophr. Res., 2016, 176(1), 3-13.
[http://dx.doi.org/10.1016/j.schres.2014.07.025] [PMID: 25124519]
[40]
Roomruangwong, C.; Simeonova, D.S.; Stoyanov, D.S.; Anderson, G.; Carvalho, A.; Maes, M. Common environmental factors may underpin the comorbidity between generalized anxiety disorder and mood disorders via activated nitro-oxidative pathways. Curr. Top. Med. Chem., 2018, 18(19), 1621-1640.
[http://dx.doi.org/10.2174/1568026618666181115101625] [PMID: 30430941]
[41]
Solé, B.; Jiménez, E.; Torrent, C.; Reinares, M.; Bonnin, C.D.M.; Torres, I.; Varo, C.; Grande, I.; Valls, E.; Salagre, E.; Sanchez-Moreno, J.; Martinez-Aran, A.; Carvalho, A.F.; Vieta, E. Cognitive impairment in bipolar disorder: treatment and prevention strategies. Int. J. Neuropsychopharmacol., 2017, 20(8), 670-680.
[http://dx.doi.org/10.1093/ijnp/pyx032] [PMID: 28498954]
[42]
Loeffler, L.A.K.; Radke, S.; Habel, U.; Ciric, R.; Satterthwaite, T.D.; Schneider, F.; Derntl, B. The regulation of positive and negative emotions through instructed causal attributions in lifetime depression - A functional magnetic resonance imaging study. Neuroimage Clin., 2018, 20, 1233-1245.
[http://dx.doi.org/10.1016/j.nicl.2018.10.025] [PMID: 30414987]
[43]
Ahmed, A.O.; Buckley, P.F.; Hanna, M. Neuroimaging schizophrenia: a picture is worth a thousand words, but is it saying anything important? Curr. Psychiatry Rep., 2013, 15(3), 345.
[http://dx.doi.org/10.1007/s11920-012-0345-0] [PMID: 23397252]
[44]
Walter, M.; Alizadeh, S.; Jamalabadi, H.; Lueken, U.; Dannlowski, U.; Walter, H.; Olbrich, S.; Colic, L.; Kambeitz, J.; Koutsouleris, N.; Hahn, T.; Dwyer, D.B. Translational machine learning for psychiatric neuroimaging. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 91, 113-121.
[http://dx.doi.org/10.1016/j.pnpbp.2018.09.014] [PMID: 30290208]
[45]
Zhuo, C.; Zhu, J.; Wang, C.; Qu, H.; Ma, X.; Tian, H.; Liu, M.; Qin, W. Brain structural and functional dissociated patterns in schizophrenia. BMC Psychiatry, 2017, 17(1), 45.
[http://dx.doi.org/10.1186/s12888-017-1194-5] [PMID: 28143464]
[46]
van Erp, T.G.; Hibar, D.P.; Rasmussen, J.M.; Glahn, D.C.; Pearlson, G.D.; Andreassen, O.A.; Agartz, I.; Westlye, L.T.; Haukvik, U.K.; Dale, A.M.; Melle, I.; Hartberg, C.B.; Gruber, O.; Kraemer, B.; Zilles, D.; Donohoe, G.; Kelly, S.; McDonald, C.; Morris, D.W.; Cannon, D.M.; Corvin, A.; Machielsen, M.W.; Koenders, L.; de Haan, L.; Veltman, D.J.; Satterthwaite, T.D.; Wolf, D.H.; Gur, R.C.; Gur, R.E.; Potkin, S.G.; Mathalon, D.H.; Mueller, B.A.; Preda, A.; Macciardi, F.; Ehrlich, S.; Walton, E.; Hass, J.; Calhoun, V.D.; Bockholt, H.J.; Sponheim, S.R.; Shoemaker, J.M.; van Haren, N.E.; Hulshoff Pol, H.E.; Ophoff, R.A.; Kahn, R.S.; Roiz-Santiañez, R.; Crespo-Facorro, B.; Wang, L.; Alpert, K.I.; Jönsson, E.G.; Dimitrova, R.; Bois, C.; Whalley, H.C.; McIntosh, A.M.; Lawrie, S.M.; Hashimoto, R.; Thompson, P.M.; Turner, J.A. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry, 2016, 21(4), 547-553.
[http://dx.doi.org/10.1038/mp.2015.63] [PMID: 26033243]
[47]
Chang, M.; Womer, F.Y.; Bai, C.; Zhou, Q.; Wei, S.; Jiang, X.; Geng, H.; Zhou, Y.; Tang, Y.; Wang, F. Voxel-based morphometry in individuals at genetic high risk for schizophrenia and patients with schizophrenia during their first episode of psychosis. PLoS One, 2016, 11(10)e0163749
[http://dx.doi.org/10.1371/journal.pone.0163749] [PMID: 27723806]
[48]
Dietsche, B.; Kircher, T.; Falkenberg, I. Structural brain changes in schizophrenia at different stages of the illness: A selective review of longitudinal magnetic resonance imaging studies. Aust. N. Z. J. Psychiatry, 2017, 51(5), 500-508.
[http://dx.doi.org/10.1177/0004867417699473] [PMID: 28415873]
[49]
Sun, J.; Maller, J.J.; Guo, L.; Fitzgerald, P.B. Superior temporal gyrus volume change in schizophrenia: a review on region of interest volumetric studies. Brain Res. Brain Res. Rev., 2009, 61(1), 14-32.
[http://dx.doi.org/10.1016/j.brainresrev.2009.03.004] [PMID: 19348859]
[50]
Sullivan, E.V.; Pfefferbaum, A. Neuroradiological characterization of normal adult ageing. Br. J. Radiol., 2007, 80(Spec No 2), S99-S108.
[http://dx.doi.org/10.1259/bjr/22893432] [PMID: 18445750]
[51]
Mitelman, S.A.; Canfield, E.L.; Newmark, R.E.; Brickman, A.M.; Torosjan, Y.; Chu, K.W.; Hazlett, E.A.; Haznedar, M.M.; Shihabuddin, L.; Buchsbaum, M.S. Longitudinal assessment of gray and white matter in chronic schizophrenia: a combined diffusion-tensor and structural magnetic resonance imaging study. Open Neuroimaging J., 2009, 3, 31-47.
[http://dx.doi.org/10.2174/1874440000903010031]
[52]
Huang, P.; Xi, Y.; Lu, Z.L.; Chen, Y.; Li, X.; Li, W.; Zhu, X.; Cui, L.B.; Tan, Q.; Liu, W.; Li, C.; Miao, D.; Yin, H. Decreased bilateral thalamic gray matter volume in first-episode schizophrenia with prominent hallucinatory symptoms: A volumetric MRI study. Sci. Rep., 2015, 5, 14505.
[http://dx.doi.org/10.1038/srep14505] [PMID: 26403064]
[53]
Modinos, G.; Costafreda, S.G.; van Tol, M.J.; McGuire, P.K.; Aleman, A.; Allen, P. Neuroanatomy of auditory verbal hallucinations in schizophrenia: a quantitative meta-analysis of voxel-based morphometry studies. Cortex, 2013, 49(4), 1046-1055.
[http://dx.doi.org/10.1016/j.cortex.2012.01.009] [PMID: 22370252]
[54]
Wang, X.; Luo, Q.; Tian, F.; Cheng, B.; Qiu, L.; Wang, S.; He, M.; Wang, H.; Duan, M.; Jia, Z. Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis. J. Psychiatry Neurosci., 2019, 44(2), 89-101.
[http://dx.doi.org/10.1503/jpn.180002] [PMID: 30354038]
[55]
Wise, T.; Radua, J.; Via, E.; Cardoner, N.; Abe, O.; Adams, T.M.; Amico, F.; Cheng, Y.; Cole, J.H.; de Azevedo Marques Périco, C.; Dickstein, D.P.; Farrow, T.F.D.; Frodl, T.; Wagner, G.; Gotlib, I.H.; Gruber, O.; Ham, B.J.; Job, D.E.; Kempton, M.J.; Kim, M.J.; Koolschijn, P.C.M.P.; Malhi, G.S.; Mataix-Cols, D.; McIntosh, A.M.; Nugent, A.C.; O’Brien, J.T.; Pezzoli, S.; Phillips, M.L.; Sachdev, P.S.; Salvadore, G.; Selvaraj, S.; Stanfield, A.C.; Thomas, A.J.; van Tol, M.J.; van der Wee, N.J.A.; Veltman, D.J.; Young, A.H.; Fu, C.H.; Cleare, A.J.; Arnone, D. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol. Psychiatry, 2017, 22(10), 1455-1463.
[http://dx.doi.org/10.1038/mp.2016.72] [PMID: 27217146]
[56]
Drevets, W.C.; Price, J.L.; Furey, M.L. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct. Funct., 2008, 213(1-2), 93-118.
[http://dx.doi.org/10.1007/s00429-008-0189-x] [PMID: 18704495]
[57]
Wright, I.C.; Rabe-Hesketh, S.; Woodruff, P.W.; David, A.S.; Murray, R.M.; Bullmore, E.T. Meta-analysis of regional brain volumes in schizophrenia. Am. J. Psychiatry, 2000, 157(1), 16-25.
[http://dx.doi.org/10.1176/ajp.157.1.16] [PMID: 10618008]
[58]
Kempton, M.J.; Salvador, Z.; Munafò, M.R.; Geddes, J.R.; Simmons, A.; Frangou, S.; Williams, S.C. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch. Gen. Psychiatry, 2011, 68(7), 675-690.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.60] [PMID: 21727252]
[59]
Chen, L.; Wang, Y.; Niu, C.; Zhong, S.; Hu, H.; Chen, P.; Zhang, S.; Chen, G.; Deng, F.; Lai, S.; Wang, J.; Huang, L.; Huang, R. Common and distinct abnormal frontal-limbic system structural and functional patterns in patients with major depression and bipolar disorder. Neuroimage Clin., 2018, 20, 42-50.
[http://dx.doi.org/10.1016/j.nicl.2018.07.002] [PMID: 30069426]
[60]
Redlich, R.; Almeida, J.J.; Grotegerd, D.; Opel, N.; Kugel, H.; Heindel, W.; Arolt, V.; Phillips, M.L.; Dannlowski, U. Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach. JAMA Psychiatry, 2014, 71(11), 1222-1230.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1100] [PMID: 25188810]
[61]
Hiser, J.; Koenigs, M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol. Psychiatry, 2018, 83(8), 638-647.
[http://dx.doi.org/10.1016/j.biopsych.2017.10.030] [PMID: 29275839]
[62]
Tanimizu, T.; Kenney, J.W.; Okano, E.; Kadoma, K.; Frankland, P.W.; Kida, S. Functional connectivity of multiple brain regions required for the consolidation of social recognition memory. J. Neurosci., 2017, 37(15), 4103-4116.
[http://dx.doi.org/10.1523/JNEUROSCI.3451-16.2017] [PMID: 28292834]
[63]
Kühn, S.; Vanderhasselt, M.A.; De Raedt, R.; Gallinat, J. Why ruminators won’t stop: the structural and resting state correlates of rumination and its relation to depression. J. Affect. Disord., 2012, 141(2-3), 352-360.
[http://dx.doi.org/10.1016/j.jad.2012.03.024] [PMID: 22497878]
[64]
Kandilarova, S.; Stoyanov, D.; Sirakov, N.; Maes, M.; Specht, K. Reduced grey matter volume in frontal and temporal areas in depression: contributions from voxel-based morphometry study. Acta Neuropsychiatr., 2019, 31(5), 252-257.
[http://dx.doi.org/10.1017/neu.2019.20] [PMID: 31234950]
[65]
Sacchet, M.D.; Gotlib, I.H. Myelination of the brain in Major Depressive Disorder: An in vivo quantitative magnetic resonance imaging study. Sci. Rep., 2017, 7(1), 2200.
[http://dx.doi.org/10.1038/s41598-017-02062-y] [PMID: 28526817]
[66]
Lewandowski, K.E.; Ongür, D.; Sperry, S.H.; Cohen, B.M.; Sehovic, S.; Goldbach, J.R.; Du, F. Myelin vs axon abnormalities in white matter in bipolar disorder. Neuropsychopharmacology, 2015, 40(5), 1243-1249.
[http://dx.doi.org/10.1038/npp.2014.310] [PMID: 25409595]
[67]
Oertel-Knöchel, V.; Reinke, B.; Alves, G.; Jurcoane, A.; Wenzler, S.; Prvulovic, D.; Linden, D.; Knöchel, C. Frontal white matter alterations are associated with executive cognitive function in euthymic bipolar patients. J. Affect. Disord., 2014, 155, 223-233.
[http://dx.doi.org/10.1016/j.jad.2013.11.004] [PMID: 24295601]
[68]
Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry, 2009, 65(9), 732-741.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[69]
Schienle, A.; Ebner, F.; Schäfer, A. Localized gray matter volume abnormalities in generalized anxiety disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2011, 261(4), 303-307.
[http://dx.doi.org/10.1007/s00406-010-0147-5] [PMID: 20820793]
[70]
Hettema, J.M.; Kettenmann, B.; Ahluwalia, V.; McCarthy, C.; Kates, W.R.; Schmitt, J.E.; Silberg, J.L.; Neale, M.C.; Kendler, K.S.; Fatouros, P. Pilot multimodal twin imaging study of generalized anxiety disorder. Depress. Anxiety, 2012, 29(3), 202-209.
[http://dx.doi.org/10.1002/da.20901] [PMID: 21994092]
[71]
Liao, M.; Yang, F.; Zhang, Y.; He, Z.; Su, L.; Li, L. Lack of gender effects on gray matter volumes in adolescent generalized anxiety disorder. J. Affect. Disord., 2014, 155, 278-282.
[http://dx.doi.org/10.1016/j.jad.2013.10.049] [PMID: 24262640]
[72]
Liao, M.; Yang, F.; Zhang, Y.; He, Z.; Song, M.; Jiang, T.; Li, Z.; Lu, S.; Wu, W.; Su, L.; Li, L. Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS One, 2013, 8(8)e71898
[http://dx.doi.org/10.1371/journal.pone.0071898] [PMID: 23951265]
[73]
Maron, E.; Nutt, D. Biological markers of generalized anxiety disorder. Dialogues Clin. Neurosci., 2017, 19(2), 147-158.
[PMID: 28867939]
[74]
Zhang, Y.; Li, L.; Yu, R.; Liu, J.; Tang, J.; Tan, L.; Liao, M.; Yang, F.; Shan, B. White matter integrity alterations in first episode, treatment-naive generalized anxiety disorder. J. Affect. Disord., 2013, 148(2-3), 196-201.
[http://dx.doi.org/10.1016/j.jad.2012.11.060] [PMID: 23305653]
[75]
Friston, K.; Brown, H.R.; Siemerkus, J.; Stephan, K.E. The dysconnection hypothesis (2016). Schizophr. Res., 2016, 176(2-3), 83-94.
[http://dx.doi.org/10.1016/j.schres.2016.07.014] [PMID: 27450778]
[76]
Perry, A.; Roberts, G.; Mitchell, P.B.; Breakspear, M. Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks. Mol. Psychiatry, 2019, 24(9), 1296-1318.
[http://dx.doi.org/10.1038/s41380-018-0267-2] [PMID: 30279458]
[77]
Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet, 2016, 388(10039), 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[78]
Whitfield-Gabrieli, S.; Thermenos, H.W.; Milanovic, S.; Tsuang, M.T.; Faraone, S.V.; McCarley, R.W.; Shenton, M.E.; Green, A.I.; Nieto-Castanon, A.; LaViolette, P.; Wojcik, J.; Gabrieli, J.D.E.; Seidman, L.J. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1279-1284.
[http://dx.doi.org/10.1073/pnas.0809141106] [PMID: 19164577]
[79]
Schilbach, L.; Hoffstaedter, F.; Müller, V.; Cieslik, E.C.; Goya-Maldonado, R.; Trost, S.; Sorg, C.; Riedl, V.; Jardri, R.; Sommer, I.; Kogler, L.; Derntl, B.; Gruber, O.; Eickhoff, S.B. Transdiagnostic commonalities and differences in resting state functional connectivity of the default mode network in schizophrenia and major depression. Neuroimage Clin., 2015, 10, 326-335.
[http://dx.doi.org/10.1016/j.nicl.2015.11.021] [PMID: 26904405]
[80]
Sheffield, J.M.; Barch, D.M. Cognition and resting-state functional connectivity in schizophrenia. Neurosci. Biobehav. Rev., 2016, 61, 108-120.
[http://dx.doi.org/10.1016/j.neubiorev.2015.12.007] [PMID: 26698018]
[81]
Zhou, Y.; Zeidman, P.; Wu, S.; Razi, A.; Chen, C.; Yang, L.; Zou, J.; Wang, G.; Wang, H.; Friston, K.J. Altered intrinsic and extrinsic connectivity in schizophrenia. Neuroimage Clin., 2017, 17, 704-716.
[http://dx.doi.org/10.1016/j.nicl.2017.12.006] [PMID: 29264112]
[82]
Admon, R.; Kaiser, R.H.; Dillon, D.G.; Beltzer, M.; Goer, F.; Olson, D.P.; Vitaliano, G.; Pizzagalli, D.A. Dopaminergic enhancement of striatal response to reward in major depression. Am. J. Psychiatry, 2017, 174(4), 378-386.
[http://dx.doi.org/10.1176/appi.ajp.2016.16010111] [PMID: 27771973]
[83]
Haber, S.N.; Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 2010, 35(1), 4-26.
[http://dx.doi.org/10.1038/npp.2009.129] [PMID: 19812543]
[84]
Sheline, Y.I.; Price, J.L.; Yan, Z.; Mintun, M.A. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. USA, 2010, 107(24), 11020-11025.
[http://dx.doi.org/10.1073/pnas.1000446107] [PMID: 20534464]
[85]
Yoshida, K.; Shimizu, Y.; Yoshimoto, J.; Takamura, M.; Okada, G.; Okamoto, Y.; Yamawaki, S.; Doya, K. Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression. PLoS One, 2017, 12(7)e0179638
[http://dx.doi.org/10.1371/journal.pone.0179638] [PMID: 28700672]
[86]
Liu, C.H.; Ma, X.; Yuan, Z.; Song, L.P.; Jing, B.; Lu, H.Y.; Tang, L.R.; Fan, J.; Walter, M.; Liu, C.Z.; Wang, L.; Wang, C.Y. Decreased resting-state activity in the precuneus is associated with depressive episodes in recurrent depression. J. Clin. Psychiatry, 2017, 78(4), e372-e382.
[http://dx.doi.org/10.4088/JCP.15m10022] [PMID: 28297595]
[87]
Brakowski, J.; Spinelli, S.; Dörig, N.; Bosch, O.G.; Manoliu, A.; Holtforth, M.G.; Seifritz, E. Resting state brain network function in major depression - Depression symptomatology, antidepressant treatment effects, future research. J. Psychiatr. Res., 2017, 92, 147-159.
[http://dx.doi.org/10.1016/j.jpsychires.2017.04.007] [PMID: 28458140]
[88]
Wei, M.; Qin, J.; Yan, R.; Bi, K.; Liu, C.; Yao, Z.; Lu, Q. Association of resting-state network dysfunction with their dynamics of inter-network interactions in depression. J. Affect. Disord., 2015, 174, 527-534.
[http://dx.doi.org/10.1016/j.jad.2014.12.020] [PMID: 25556670]
[89]
Kaiser, R.H.; Whitfield-Gabrieli, S.; Dillon, D.G.; Goer, F.; Beltzer, M.; Minkel, J.; Smoski, M.; Dichter, G.; Pizzagalli, D.A. Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacology, 2016, 41(7), 1822-1830.
[http://dx.doi.org/10.1038/npp.2015.352] [PMID: 26632990]
[90]
Iwabuchi, S.J.; Krishnadas, R.; Li, C.; Auer, D.P.; Radua, J.; Palaniyappan, L. Localized connectivity in depression: a meta-analysis of resting state functional imaging studies. Neurosci. Biobehav. Rev., 2015, 51, 77-86.
[http://dx.doi.org/10.1016/j.neubiorev.2015.01.006] [PMID: 25597656]
[91]
Connolly, C.G.; Ho, T.C.; Blom, E.H.; LeWinn, K.Z.; Sacchet, M.D.; Tymofiyeva, O.; Simmons, A.N.; Yang, T.T. Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression. J. Affect. Disord., 2017, 207, 86-94.
[http://dx.doi.org/10.1016/j.jad.2016.09.026] [PMID: 27716542]
[92]
Jalbrzikowski, M.; Larsen, B.; Hallquist, M.N.; Foran, W.; Calabro, F.; Luna, B. Development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex: associations with anxiety and depression. Biol. Psychiatry, 2017, 82(7), 511-521.
[http://dx.doi.org/10.1016/j.biopsych.2017.01.008] [PMID: 28274468]
[93]
Ambrosi, E.; Arciniegas, D.B.; Madan, A.; Curtis, K.N.; Patriquin, M.A.; Jorge, R.E.; Spalletta, G.; Fowler, J.C.; Frueh, B.C.; Salas, R. Insula and amygdala resting-state functional connectivity differentiate bipolar from unipolar depression. Acta Psychiatr. Scand., 2017, 136(1), 129-139.
[http://dx.doi.org/10.1111/acps.12724] [PMID: 28369737]
[94]
Dichter, G.S.; Gibbs, D.; Smoski, M.J. A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J. Affect. Disord., 2015, 172, 8-17.
[http://dx.doi.org/10.1016/j.jad.2014.09.028] [PMID: 25451389]
[95]
Kandilarova, S.; Stoyanov, D.; Kostianev, S.; Specht, K. Altered resting state effective connectivity of anterior insula in depression. Front. Psychiatry, 2018, 9, 83.
[http://dx.doi.org/10.3389/fpsyt.2018.00083] [PMID: 29599728]
[96]
Peterson, A.; Thome, J.; Frewen, P.; Lanius, R.A. Resting-state neuroimaging studies: a new way of identifying differences and similarities among the anxiety disorders? Can. J. Psychiatry, 2014, 59(6), 294-300.
[http://dx.doi.org/10.1177/070674371405900602] [PMID: 25007403]
[97]
Wang, W.; Hou, J.; Qian, S.; Liu, K.; Li, B.; Li, M.; Peng, Z.; Xin, K.; Sun, G. Aberrant regional neural fluctuations and functional connectivity in generalized anxiety disorder revealed by resting-state functional magnetic resonance imaging. Neurosci. Lett., 2016, 624, 78-84.
[http://dx.doi.org/10.1016/j.neulet.2016.05.005] [PMID: 27163197]
[98]
Cui, H.; Zhang, J.; Liu, Y.; Li, Q.; Li, H.; Zhang, L.; Hu, Q.; Cheng, W.; Luo, Q.; Li, J.; Li, W.; Wang, J.; Feng, J.; Li, C.; Northoff, G. Differential alterations of resting-state functional connectivity in generalized anxiety disorder and panic disorder. Hum. Brain Mapp., 2016, 37(4), 1459-1473.
[http://dx.doi.org/10.1002/hbm.23113] [PMID: 26800659]
[99]
Ma, Z.; Zhong, Y.; Hines, C.S.; Wu, Y.; Li, Y.; Pang, M.; Li, J.; Wang, C.; Fox, P.T.; Zhang, N.; Wang, C. Identifying generalized anxiety disorder using resting state habenular circuitry. Brain Imaging Behav., 2019, •••
[http://dx.doi.org/10.1007/s11682-019-00055-1] [PMID: 30868402]
[100]
Chan, R.C.; Li, H.; Cheung, E.F.; Gong, Q.Y. Impaired facial emotion perception in schizophrenia: a meta-analysis. Psychiatry Res., 2010, 178(2), 381-390.
[http://dx.doi.org/10.1016/j.psychres.2009.03.035] [PMID: 20483476]
[101]
Goghari, V.M.; Sanford, N.; Spilka, M.J.; Woodward, T.S. Task-related functional connectivity analysis of emotion discrimination in a family study of schizophrenia. Schizophr. Bull., 2017, 43(6), 1348-1362.
[http://dx.doi.org/10.1093/schbul/sbx004] [PMID: 28338738]
[102]
Belge, J.B.; Maurage, P.; Mangelinckx, C.; Leleux, D.; Delatte, B.; Constant, E. Facial decoding in schizophrenia is underpinned by basic visual processing impairments. Psychiatry Res., 2017, 255, 167-172.
[http://dx.doi.org/10.1016/j.psychres.2017.04.007] [PMID: 28554121]
[103]
Mier, D.; Lis, S.; Zygrodnik, K.; Sauer, C.; Ulferts, J.; Gallhofer, B.; Kirsch, P. Evidence for altered amygdala activation in schizophrenia in an adaptive emotion recognition task. Psychiatry Res., 2014, 221(3), 195-203.
[http://dx.doi.org/10.1016/j.pscychresns.2013.12.001] [PMID: 24434194]
[104]
Allen, P.; Modinos, G.; Hubl, D.; Shields, G.; Cachia, A.; Jardri, R.; Thomas, P.; Woodward, T.; Shotbolt, P.; Plaze, M.; Hoffman, R. Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophr. Bull., 2012, 38(4), 695-703.
[http://dx.doi.org/10.1093/schbul/sbs066] [PMID: 22535906]
[105]
García-Martí, G.; Aguilar, E.J.; Martí-Bonmatí, L.; Escartí, M.J.; Sanjuán, J. Multimodal morphometry and functional magnetic resonance imaging in schizophrenia and auditory hallucinations. World J. Radiol., 2012, 4(4), 159-166.
[http://dx.doi.org/10.4329/wjr.v4.i4.159] [PMID: 22590670]
[106]
Zhang, B.; Li, S.; Zhuo, C.; Li, M.; Safron, A.; Genz, A.; Qin, W.; Yu, C.; Walter, M. Altered task-specific deactivation in the default mode network depends on valence in patients with major depressive disorder. J. Affect. Disord., 2017, 207, 377-383.
[http://dx.doi.org/10.1016/j.jad.2016.08.042] [PMID: 27750155]
[107]
Davey, C.G.; Yücel, M.; Allen, N.B.; Harrison, B.J. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder. Front. Psychiatry, 2012, 3, 14.
[http://dx.doi.org/10.3389/fpsyt.2012.00014] [PMID: 22403553]
[108]
Admon, R.; Pizzagalli, D.A. Corticostriatal pathways contribute to the natural time course of positive mood. Nat. Commun., 2015, 6, 10065.
[http://dx.doi.org/10.1038/ncomms10065] [PMID: 26638823]
[109]
Heller, A.S.; Johnstone, T.; Shackman, A.J.; Light, S.N.; Peterson, M.J.; Kolden, G.G.; Kalin, N.H.; Davidson, R.J. Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc. Natl. Acad. Sci. USA, 2009, 106(52), 22445-22450.
[http://dx.doi.org/10.1073/pnas.0910651106] [PMID: 20080793]
[110]
Der-Avakian, A.; Markou, A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci., 2012, 35(1), 68-77.
[http://dx.doi.org/10.1016/j.tins.2011.11.005] [PMID: 22177980]
[111]
Palmer, S.M.; Crewther, S.G.; Carey, L.M. A meta-analysis of changes in brain activity in clinical depression. Front. Hum. Neurosci., 2015, 8, 1045.
[http://dx.doi.org/10.3389/fnhum.2014.01045] [PMID: 25642179]
[112]
Ferri, J.; Eisendrath, S.J.; Fryer, S.L.; Gillung, E.; Roach, B.J.; Mathalon, D.H. Blunted amygdala activity is associated with depression severity in treatment-resistant depression. Cogn. Affect. Behav. Neurosci., 2017, 17(6), 1221-1231.
[http://dx.doi.org/10.3758/s13415-017-0544-6] [PMID: 29063521]
[113]
van den Bulk, B.G.; Meens, P.H.; van Lang, N.D.; de Voogd, E.L.; van der Wee, N.J.; Rombouts, S.A.; Crone, E.A.; Vermeiren, R.R. Amygdala activation during emotional face processing in adolescents with affective disorders: the role of underlying depression and anxiety symptoms. Front. Hum. Neurosci., 2014, 8, 393.
[http://dx.doi.org/10.3389/fnhum.2014.00393] [PMID: 24926249]
[114]
Stuhrmann, A.; Dohm, K.; Kugel, H.; Zwanzger, P.; Redlich, R.; Grotegerd, D.; Rauch, A.V.; Arolt, V.; Heindel, W.; Suslow, T.; Zwitserlood, P.; Dannlowski, U. Mood-congruent amygdala responses to subliminally presented facial expressions in major depression: associations with anhedonia. J. Psychiatry Neurosci., 2013, 38(4), 249-258.
[http://dx.doi.org/10.1503/jpn.120060] [PMID: 23171695]
[115]
Grotegerd, D.; Stuhrmann, A.; Kugel, H.; Schmidt, S.; Redlich, R.; Zwanzger, P.; Rauch, A.V.; Heindel, W.; Zwitserlood, P.; Arolt, V.; Suslow, T.; Dannlowski, U. Amygdala excitability to subliminally presented emotional faces distinguishes unipolar and bipolar depression: an fMRI and pattern classification study. Hum. Brain Mapp., 2014, 35(7), 2995-3007.
[http://dx.doi.org/10.1002/hbm.22380] [PMID: 24038516]
[116]
Wegbreit, E.; Cushman, G.K.; Puzia, M.E.; Weissman, A.B.; Kim, K.L.; Laird, A.R.; Dickstein, D.P. Developmental meta-analyses of the functional neural correlates of bipolar disorder. JAMA Psychiatry, 2014, 71(8), 926-935.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.660] [PMID: 25100166]
[117]
Dima, D.; de Jong, S.; Breen, G.; Frangou, S. The polygenic risk for bipolar disorder influences brain regional function relating to visual and default state processing of emotional information. Neuroimage Clin., 2016, 12, 838-844.
[http://dx.doi.org/10.1016/j.nicl.2016.10.022] [PMID: 27857885]
[118]
Shaffer, J.J., Jr; Johnson, C.P.; Fiedorowicz, J.G.; Christensen, G.E.; Wemmie, J.A.; Magnotta, V.A. Impaired sensory processing measured by functional MRI in Bipolar disorder manic and depressed mood states. Brain Imaging Behav., 2018, 12(3), 837-847.
[http://dx.doi.org/10.1007/s11682-017-9741-8] [PMID: 28674759]
[119]
Engel-Yeger, B.; Muzio, C.; Rinosi, G.; Solano, P.; Geoffroy, P.A.; Pompili, M.; Amore, M.; Serafini, G. Extreme sensory processing patterns and their relation with clinical conditions among individuals with major affective disorders. Psychiatry Res., 2016, 236, 112-118.
[http://dx.doi.org/10.1016/j.psychres.2015.12.022] [PMID: 26738981]
[120]
White, S.F.; Geraci, M.; Lewis, E.; Leshin, J.; Teng, C.; Averbeck, B.; Meffert, H.; Ernst, M.; Blair, J.R.; Grillon, C.; Blair, K.S. Prediction error representation in individuals with generalized anxiety disorder during passive avoidance. Am. J. Psychiatry, 2017, 174(2), 110-117.
[http://dx.doi.org/10.1176/appi.ajp.2016.15111410] [PMID: 27631963]
[121]
Fonzo, G.A.; Ramsawh, H.J.; Flagan, T.M.; Sullivan, S.G.; Letamendi, A.; Simmons, A.N.; Paulus, M.P.; Stein, M.B. Common and disorder-specific neural responses to emotional faces in generalised anxiety, social anxiety and panic disorders. Br. J. Psychiatry, 2015, 206(3), 206-215.
[http://dx.doi.org/10.1192/bjp.bp.114.149880] [PMID: 25573399]
[122]
Fitzgerald, J.M.; Phan, K.L.; Kennedy, A.E.; Shankman, S.A.; Langenecker, S.A.; Klumpp, H. Prefrontal and amygdala engagement during emotional reactivity and regulation in generalized anxiety disorder. J. Affect. Disord., 2017, 218, 398-406.
[http://dx.doi.org/10.1016/j.jad.2017.05.013] [PMID: 28501740]
[123]
Stoyanov, D.; Kandilarova, S.; Borgwardt, S.; Stieglitz, R.D.; Hugdahl, K.; Kostianev, S. Psychopathology assessment methods revisited: on translational cross-validation of clinical self-evaluation scale and fMRI. Front. Psychiatry, 2018, 9, 21.
[http://dx.doi.org/10.3389/fpsyt.2018.00021] [PMID: 29472876]
[124]
Stoyanov, D.; Kandilarova, S.; Arabadzhiev, Z.; Paunova, R.; Schmidt, A.; Borgwardt, S. Cross-validation of paranoid-depressive scale and functional mri: new paradigm for neuroscience informed clinical psychopathology. Front. Psychiatry, 2019, 10, 711.
[http://dx.doi.org/10.3389/fpsyt.2019.00711] [PMID: 31611826]
[125]
Stoyanov, D.; Kandilarova, S.; Paunova, R.; Barranco Garcia, J.; Latypova, A.; Kherif, F. Cross-validation of functional MRI and paranoid-depressive scale: results from multivariate analysis. Front. Psychiatry, 2019, 10, 869.
[http://dx.doi.org/10.3389/fpsyt.2019.00869] [PMID: 31824359]
[126]
Aine, C.J.; Bockholt, H.J.; Bustillo, J.R.; Cañive, J.M.; Caprihan, A.; Gasparovic, C.; Hanlon, F.M.; Houck, J.M.; Jung, R.E.; Lauriello, J.; Liu, J.; Mayer, A.R.; Perrone-Bizzozero, N.I.; Posse, S.; Stephen, J.M.; Turner, J.A.; Clark, V.P.; Calhoun, V.D. Multimodal neuroimaging in schizophrenia: description and dissemination. Neuroinformatics, 2017, 15(4), 343-364.
[http://dx.doi.org/10.1007/s12021-017-9338-9] [PMID: 28812221]
[127]
Isobe, M.; Miyata, J.; Hazama, M.; Fukuyama, H.; Murai, T.; Takahashi, H. Multimodal neuroimaging as a window into the pathological physiology of schizophrenia: Current trends and issues. Neurosci. Res., 2016, 102, 29-38.
[http://dx.doi.org/10.1016/j.neures.2015.07.009] [PMID: 26235681]
[128]
Palaniyappan, L.; Das, T.; Dempster, K. The neurobiology of transition to psychosis: clearing the cache. J. Psychiatry Neurosci., 2017, 42(5), 294-299.
[http://dx.doi.org/10.1503/jpn.170137] [PMID: 28834527]
[129]
Kalmady, S.V.; Shivakumar, V.; Arasappa, R.; Subramaniam, A.; Gautham, S.; Venkatasubramanian, G.; Gangadhar, B.N. Clinical correlates of hippocampus volume and shape in antipsychotic-naïve schizophrenia. Psychiatry Res. Neuroimaging, 2017, 263, 93-102.
[http://dx.doi.org/10.1016/j.pscychresns.2017.03.014] [PMID: 28371658]
[130]
Bogdan, R.; Salmeron, B.J.; Carey, C.E.; Agrawal, A.; Calhoun, V.D.; Garavan, H.; Hariri, A.R.; Heinz, A.; Hill, M.N.; Holmes, A.; Kalin, N.H.; Goldman, D. Imaging genetics and genomics in psychiatry: a critical review of progress and potential. Biol. Psychiatry, 2017, 82(3), 165-175.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.030] [PMID: 28283186]
[131]
Pereira, L.P.; Köhler, C.A.; de Sousa, R.T.; Solmi, M.; de Freitas, B.P.; Fornaro, M.; Machado-Vieira, R.; Miskowiak, K.W.; Vieta, E.; Veronese, N.; Stubbs, B.; Carvalho, A.F. The relationship between genetic risk variants with brain structure and function in bipolar disorder: A systematic review of genetic-neuroimaging studies. Neurosci. Biobehav. Rev., 2017, 79, 87-109.
[http://dx.doi.org/10.1016/j.neubiorev.2017.05.002] [PMID: 28479278]
[132]
Wu, F.; Zhang, Y.; Yang, Y.; Lu, X.; Fang, Z.; Huang, J.; Kong, L.; Chen, J.; Ning, Y.; Li, X.; Wu, K. Structural and functional brain abnormalities in drug-naive, first-episode, and chronic patients with schizophrenia: a multimodal MRI study. Neuropsychiatr. Dis. Treat., 2018, 14, 2889-2904.
[http://dx.doi.org/10.2147/NDT.S174356] [PMID: 30464473]
[133]
Qureshi, M.N.I.; Oh, J.; Cho, D.; Jo, H.J.; Lee, B. Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine. Front. Neuroinform., 2017, 11, 59.
[http://dx.doi.org/10.3389/fninf.2017.00059] [PMID: 28943848]
[134]
Knöchel, C.; Stäblein, M.; Storchak, H.; Reinke, B.; Jurcoane, A.; Prvulovic, D.; Linden, D.E.; van de Ven, V.; Ghinea, D.; Wenzler, S.; Alves, G.; Matura, S.; Kröger, A.; Oertel-Knöchel, V. Multimodal assessments of the hippocampal formation in schizophrenia and bipolar disorder: evidences from neurobehavioral measures and functional and structural MRI. Neuroimage Clin., 2014, 6, 134-144.
[http://dx.doi.org/10.1016/j.nicl.2014.08.015] [PMID: 25379425]
[135]
Kambeitz, J.; Kambeitz-Ilankovic, L.; Leucht, S.; Wood, S.; Davatzikos, C.; Malchow, B.; Falkai, P.; Koutsouleris, N. Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology, 2015, 40(7), 1742-1751.
[http://dx.doi.org/10.1038/npp.2015.22] [PMID: 25601228]
[136]
Schmaal, L.; Marquand, A.F.; Rhebergen, D.; van Tol, M.J.; Ruhé, H.G.; van der Wee, N.J.; Veltman, D.J.; Penninx, B.W. Predicting the naturalistic course of major depressive disorder using clinical and multimodal neuroimaging information: a multivariate pattern recognition study. Biol. Psychiatry, 2015, 78(4), 278-286.
[http://dx.doi.org/10.1016/j.biopsych.2014.11.018] [PMID: 25702259]
[137]
Kambeitz, J.; Cabral, C.; Sacchet, M.D.; Gotlib, I.H.; Zahn, R.; Serpa, M.H.; Walter, M.; Falkai, P.; Koutsouleris, N. Detecting neuroimaging biomarkers for depression: a meta-analysis of multivariate pattern recognition studies. Biol. Psychiatry, 2017, 82(5), 330-338.
[http://dx.doi.org/10.1016/j.biopsych.2016.10.028] [PMID: 28110823]
[138]
Norton, P.J.; Paulus, D.J. Transdiagnostic models of anxiety disorder: Theoretical and empirical underpinnings. Clin. Psychol. Rev., 2017, 56, 122-137.
[http://dx.doi.org/10.1016/j.cpr.2017.03.004] [PMID: 28450042]
[139]
Gottschalk, M.G.; Domschke, K. Genetics of generalized anxiety disorder and related traits. Dialogues Clin. Neurosci., 2017, 19(2), 159-168.
[PMID: 28867940]
[140]
Kruschwitz, J.D.; Walter, M.; Varikuti, D.; Jensen, J.; Plichta, M.M.; Haddad, L.; Grimm, O.; Mohnke, S.; Pöhland, L.; Schott, B.; Wold, A.; Mühleisen, T.W.; Heinz, A.; Erk, S.; Romanczuk-Seiferth, N.; Witt, S.H.; Nöthen, M.M.; Rietschel, M.; Meyer-Lindenberg, A.; Walter, H. 5-HTTLPR/rs25531 polymorphism and neuroticism are linked by resting state functional connectivity of amygdala and fusiform gyrus. Brain Struct. Funct., 2015, 220(4), 2373-2385.
[http://dx.doi.org/10.1007/s00429-014-0782-0] [PMID: 24874919]
[141]
Steiger, V.R.; Brühl, A.B.; Weidt, S.; Delsignore, A.; Rufer, M.; Jäncke, L.; Herwig, U.; Hänggi, J. Pattern of structural brain changes in social anxiety disorder after cognitive behavioral group therapy: a longitudinal multimodal MRI study. Mol. Psychiatry, 2017, 22(8), 1164-1171.
[http://dx.doi.org/10.1038/mp.2016.217] [PMID: 27922605]
[142]
Qi, S.; Yang, X.; Zhao, L.; Calhoun, V.D.; Perrone-Bizzozero, N.; Liu, S.; Jiang, R.; Jiang, T.; Sui, J.; Ma, X. MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain, 2018, 141(3), 916-926.
[http://dx.doi.org/10.1093/brain/awx366] [PMID: 29408968]
[143]
Zheng, Z.; Zeng, Y.; Huang, H.; Xu, F. MicroRNA-132 may play a role in coexistence of depression and cardiovascular disease: a hypothesis. Med. Sci. Monit., 2013, 19, 438-443.
[http://dx.doi.org/10.12659/MSM.883935] [PMID: 23748239]
[144]
Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast., 2017, 20176871089
[http://dx.doi.org/10.1155/2017/6871089] [PMID: 28246558]
[145]
Zheng, L.J.; Yang, G.F.; Zhang, X.Y.; Wang, Y.F.; Liu, Y.; Zheng, G.; Lu, G.M.; Zhang, L.J.; Han, Y. Altered amygdala and hippocampus effective connectivity in mild cognitive impairment patients with depression: a resting-state functional MR imaging study with granger causality analysis. Oncotarget, 2017, 8(15), 25021-25031.
[http://dx.doi.org/10.18632/oncotarget.15335] [PMID: 28212570]
[146]
Luo, N.; Sui, J.; Chen, J.; Zhang, F.; Tian, L.; Lin, D.; Song, M.; Calhoun, V.D.; Cui, Y.; Vergara, V.M.; Zheng, F.; Liu, J.; Yang, Z.; Zuo, N.; Fan, L.; Xu, K.; Liu, S.; Li, J.; Xu, Y.; Liu, S.; Lv, L.; Chen, J.; Chen, Y.; Guo, H.; Li, P.; Lu, L.; Wan, P.; Wang, H.; Wang, H.; Yan, H.; Yan, J.; Yang, Y.; Zhang, H.; Zhang, D.; Jiang, T. A Schizophrenia-related genetic-brain-cognition pathway revealed in a large chinese population. EBioMedicine, 2018, 37, 471-482.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.009] [PMID: 30341038]
[147]
Cooper, D.; Barker, V.; Radua, J.; Fusar-Poli, P.; Lawrie, S.M. Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Res., 2014, 221(1), 69-77.
[http://dx.doi.org/10.1016/j.pscychresns.2013.07.008] [PMID: 24239093]
[148]
Telles-Correia, D. The mind-brain gap and the neuroscience-psychiatry gap. J. Eval. Clin. Pract., 2018, 24(4), 797-802.
[http://dx.doi.org/10.1111/jep.12891] [PMID: 29498174]
[149]
Telles Correia, D. Different perspectives of validity in psychiatry. J. Eval. Clin. Pract., 2017, 23(5), 988-993.
[http://dx.doi.org/10.1111/jep.12766] [PMID: 28512760]
[150]
Castanheira, L.; Ferreira, M.F.; Sebastião, A.M.; Telles-Correia, D. Anxiety assessment in pre-clinical tests and in clinical trials: a critical review. Curr. Top. Med. Chem., 2018, 18(19), 1656-1676.
[http://dx.doi.org/10.2174/1568026618666181115102518] [PMID: 30430939]
[151]
Cloninger, R. Degeneracy of categorical disease paradigms. Philos. Psychiatry Psychol., 2013, 20(3), 275-279.
[http://dx.doi.org/10.1353/ppp.2013.0043]
[152]
Stoyanov, D.S. Fallacious forced choice: cloninger and stoyanov, machamer, and schaffner are compatible. In: Philosophy, Psychiatry, & Psychology; The Johns Hopkins University Press: Baltimore, 2013; pp. 281-284.
[153]
Stoyanov, D.S. The endophenotype project and the validation theory: integration of neurobiology and psychiatry. Folia Med. (Plovdiv), 2010, 52(1), 18-25.
[PMID: 20380283]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 7
Year: 2020
Page: [540 - 553]
Pages: 14
DOI: 10.2174/1568026620666200131095328
Price: $65

Article Metrics

PDF: 21
HTML: 1