Purification and Characterization of Natural Solid-Substrate Degrading and Alcohol Producing Hyperthermostable Alkaline Amylase from Bacillus cereus (sm-sr14)

Author(s): Sumit Sahoo, Sudipta Roy, Dipannita Santra, Sayantani Maiti, Sonali Roul, Smarajit Maiti*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: Amylases enzymes hydrolyze starch molecules to produce diverse products including dextrins, and progressively smaller polymers. These include glucose units linked through α-1- 1, α-1-4, α-1-6, glycosidic bonds.

Methods: This enzyme carrying an (α /β) 8 or TIM barrel structure is also produced containing the catalytic site residues. These groups of enzymes possess four conserved regions in their primary sequence. In the Carbohydrate-Degrading Enzyme (CAZy) database, α-amylases are classified into different Glycoside Hydrolase Families (GHF) based on their amino acid sequence. The present objective was to study one such enzyme based on its molecular characterization after purification in our laboratory. Its main property of solid-natural starch degradation was extensively investigated for its pharmaceutical/ industrial applications.

Results: Amylase producing bacteria Bacillus cereus sm-sr14 (Accession no. KM251578.1) was purified to homogeneity on a Seralose 6B-150 gel-matrix and gave a single peak during HPLC. MALDITOF mass-spectrometry with bioinformatics studies revealed its significant similarity to α/β hydrolase family. The enzyme showed an efficient application; favourable Km, Vmax and Kcat during the catalysis of different natural solid starch materials. Analysis for hydrolytic product showed that this enzyme can be classified as the exo-amylase asit produced a significant amount of glucose.

Conclusion: Besides the purified enzyme, the present organism Bacillus cereus sm-sr14 could degrade natural solid starch materials like potato and rice up to the application level in the pharmaceutical/ industrial field for alcohol production.

Keywords: Seralose 6B, HPLC, MALDI-TOF, solid starch, alcohol, alkaline amylase.

[1]
Jujjavarapu, S.E.; Dhagat, S. Evolutionary trends in industrial production of α-amylase. Recent Pat. Biotechnol., 2019, 13(1), 4-18.
[http://dx.doi.org/10.2174/2211550107666180816093436] [PMID: 30810102]
[2]
van der Maarel, M.J.; van der Veen, B.; Uitdehaag, J.C.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol., 2002, 94(2), 137-155.
[http://dx.doi.org/10.1016/S0168-1656(01)00407-2] [PMID: 11796168]
[3]
Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial α-amylases: A biotechnological perspective. Process Biochem., 2003, 38, 1599-1616.
[http://dx.doi.org/10.1016/S0032-9592(03)00053-0]
[4]
Sunna, A.; Moracci, M.; Rossi, M.; Antranikian, G. Glycosyl hydrolases from hyperthermophiles. Extremophiles, 1997, 1(1), 2-13.
[http://dx.doi.org/10.1007/s007920050009] [PMID: 9680331]
[5]
Henrissat, B.; Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol., 1997, 7(5), 637-644.
[http://dx.doi.org/10.1016/S0959-440X(97)80072-3] [PMID: 9345621]
[6]
Sahoo, S.; Roy, S.; Maiti, S. Production and partial purification of hyperthermostable alkaline amylase in a newly isolated Bacillus cereus (sm-sr14) from hot-spring water. Res. J. Microbiol., 2017, 12, 187-201.
[http://dx.doi.org/10.3923/jm.2017.187.201]
[7]
Barnett, C.C.; Mitchinson, C.; Power, S.D.; Roquadt, C.A. Oxidatively stable alpha-amylases. Patent Application, US, 1998, 5, 824-532.
[8]
Nielsen, J.E.; Borchert, T.V. Protein engineering of bacterial α-amylases. Biochim. Biophys. Acta, 2000, 1543(2), 253-274.
[http://dx.doi.org/10.1016/S0167-4838(00)00240-5] [PMID: 11150610]
[9]
Sahoo, S.; Roy, S.; Maiti, S. A high salt stable α-amylase by Bacillus Sp. MRS6 Isolated from municipal solid waste; purification, characterization and solid state fermentation. Enzyme Eng., 2016, 5(3), 152-160.
[10]
Asoodeh, A.; Lagzian, M. Purification and characterization of a new glucoamylopullulanase from thermos tolerant alkaliphilic Bacillus subtilis DR8806 of a hot mineral spring. Process Biochem., 2012, 47, 806-815.
[http://dx.doi.org/10.1016/j.procbio.2012.02.018]
[11]
Bernfeld, P. Amylases: α and β, in methods in Enzymology. Academic Press New York, 1955, 1, 149-158.
[12]
de Souza, P.M.; de Oliveira Magalhães, P. Application of microbial α-amylase in industry - A review. Braz. J. Microbiol., 2010, 41(4), 850-861.
[http://dx.doi.org/10.1590/S1517-83822010000400004] [PMID: 24031565]
[13]
Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc., 2006, 1(6), 2856-2860.
[http://dx.doi.org/10.1038/nprot.2006.468] [PMID: 17406544]
[14]
Takasaki, S.; Mizuochi, T.; Kobata, A. Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol., 1982, 83, 263-268.
[http://dx.doi.org/10.1016/0076-6879(82)83019-X] [PMID: 7098932]
[15]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[16]
Sumbhate, S.; Nayak, S.; Goupale, D.; Tiwari, A.; Rajesh, S. Colorimetric method for the estimation of ethanol in alcoholic-drinks. J. Analyt. Techn., 2012, 1, 1-6.
[17]
Bano, S. UlQader, S.A.; Aman, A.; Azhar, A. Partial purification and some properties of partially purified α-amylase by Bacillus subtilis KIBGE-HAS. Indian J. Biochem. Biophys., 2009, 46, 401-404.
[PMID: 20027871]
[18]
Messaoud, E.B.; Ben, A.M.; Elleuch, N.; Masmoudi, F.; Bejar, S. Purification and properties of a maltoheptaose and maltohexaose forming amylase produced by B. subtilis US 116. Enzyme Microb. Technol., 2004, 34, 662-666.
[http://dx.doi.org/10.1016/j.enzmictec.2004.03.002]
[19]
Adeyanju, M.M.; Agboola, K.; Omfuvbe, B.O.; Oyefuga, O.H.; Adebawo, O.O. A thermostable extracellular α-amylase from B. Licheniformis isolated from cassava steep water. Biotechnology (Faisalabad), 2007, 6, 473-480.
[http://dx.doi.org/10.3923/biotech.2007.473.480]
[20]
Yoshigi, N.; Chikano, T.; Kamimura, M. Purification and properties of an amylase from B. cereus NY-14. Agric. Biol. Chem., 1985, 49, 3369-3376.
[21]
Uyar, F.; Baysal, Z.; Dogru, M. Purification and some characterization of an extracellular α -amylase from a thermos tolerant B. subtilis. Ann. Microbiol., 2003, 53, 315-322.
[22]
Aygan, A.; Arikan, B.; Korkmaz, H.; Dinçer, S.; Colak, O. Highly thermostable and alkaline α-amylase from a halotolerant alkaliphilic Bacillus sp. AB68. Braz. J. Microbiol., 2008, 39(3), 547-553.
[http://dx.doi.org/10.1590/S1517-83822008000300027] [PMID: 24031264]
[23]
Laderman, K.A.; Davis, B.R.; Krutzsch, H.C.; Lewis, M.S.; Griko, Y.V.; Privalov, P.L.; Anfinsen, C.B. The purification and characterization of an extremely thermostable α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem., 1993, 268(32), 24394-24401.
[PMID: 8226989]
[24]
Arikan, B. Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Bioresour. Technol., 2008, 99(8), 3071-3076.
[http://dx.doi.org/10.1016/j.biortech.2007.06.019] [PMID: 17689242]
[25]
Mehta, D.; Satyanarayana, T. Bacterial and archaeal α-amylases: Diversity and amelioration of the desirable characteristics for industrial applications. Front. Microbiol., 2016, 7(7), 1129.
[http://dx.doi.org/10.3389/fmicb.2016.01129] [PMID: 27516755]
[26]
Allala, F.; Bouacem, K.; Boucherba, N.; Azzouz, Z.; Mechri, S.; Sahnoun, M.; Benallaoua, S.; Hacene, H.; Jaouadi, B.; Bouanane-Darenfed, A. Purification, biochemical, and molecular characterization of a novel extracellular thermostable and alkaline α-amylase from Tepidimonas fonticaldi strain HB23. Int. J. Biol. Macromol., 2019, 132, 558-574.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.201] [PMID: 30928371]
[27]
Vihinen, M.; Mäntsälä, P. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol., 1989, 24(4), 329-418.
[http://dx.doi.org/10.3109/10409238909082556] [PMID: 2548811]
[28]
Due, E.A.; Kouadio, J.P.E.N.; Kouakou, H.T.; Dabonne, S.; Niamke, S.L.; Kouame, L.P. Purification and physicochemical properties of alpha amylase from cockroach, Periplaneta americana (LINNAEUS), for starches saccharification. Afr. J. Biotechnol., 2008, 7, 2707-2716.
[29]
Duedahl-Olesen, L.; Kragh, K.M.; Zimmermann, W. Purification and characterisation of a malto-oligosaccharide-forming amylase active at high pH from Bacillus clausii BT-21. Carbohydr. Res., 2000, 329(1), 97-107.
[http://dx.doi.org/10.1016/S0008-6215(00)00153-1] [PMID: 11086690]
[30]
Takeuchi, A.; Shimizu-Ibuka, A.; Nishiyama, Y.; Mura, K.; Okada, S.; Tokue, C.; Arai, S. Purification and characterization of an α-amylase of Pichia burtonii isolated from the traditional starter “murcha” in Nepal. Biosci. Biotechnol. Biochem., 2006, 70(12), 3019-3024.
[http://dx.doi.org/10.1271/bbb.60430] [PMID: 17151461]
[31]
Panja, A.S.; Bandopadhyay, B.; Maiti, S. Protein thermostability is owing to their preferences to non-polar smaller volume amino acids, variations in residual physico-chemical properties and more salt-bridges. PLoS One, 2015, 10(7)e0131495
[http://dx.doi.org/10.1371/journal.pone.0131495] [PMID: 26177372]
[32]
Orlando, A.R.; Ade, P.; Di Maggio, D.; Fanelli, C.; Vittozzi, L. The purification of a novel amylase from Bacillus subtilis and its inhibition by wheat proteins. Biochem. J., 1983, 209(2), 561-564.
[http://dx.doi.org/10.1042/bj2090561] [PMID: 6189482]
[33]
Ciobanu, A.; Lascu, G.; Berescu, V.; Nicolescu, L. Cooling techniques in food industry. Abacus, 1976, 20.
[34]
Chung, H.; Friedberg, F. Sequence of the N-terminal half of Bacillus amyloliquefaciens alpha-amylase. Biochem. J., 1980, 185(2), 387-395.
[http://dx.doi.org/10.1042/bj1850387] [PMID: 6156671]
[35]
Hayashida, S.; Teramoto, Y.; Inoue, T. Production and characteristics of raw potato starch digesting α-amylase from Bacillus subtilis 65. Appl. Environ. Microbiol., 1988, 54(6), 1516-1522.
[http://dx.doi.org/10.1128/AEM.54.6.1516-1522.1988] [PMID: 16347662]
[36]
Burhan, A.; Nisa, U.; Gokhan, C.; Omer, C.; Ashabil, A.; Osman, G. Enzymatic properties of novel thermostable, thermophilic, alkaline and chelator resistant amylase from alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem., 2003, 38, 1397-1403.
[http://dx.doi.org/10.1016/S0032-9592(03)00037-2]
[37]
Nagarajan, D.R.; Rajagopalan, G.; Krishnan, C. Purification and characterization of a maltooligosaccharide-forming α-amylase from a new Bacillus subtilis KCC103. Appl. Microbiol. Biotechnol., 2006, 73(3), 591-597.
[http://dx.doi.org/10.1007/s00253-006-0513-4] [PMID: 16850297]
[38]
Marco, J.L.; Bataus, L.A.; Valência, F.F.; Ulhoa, C.J.; AstolfiFilho, S.; Felix, C.R. Purification and characterization of a truncated Bacillus subtilis α-amylase produced by Escherichia coli. Appl. Microbiol. Biotechnol., 1996, 44(6), 746-752.
[http://dx.doi.org/10.1007/s002530050627] [PMID: 8867632]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 9
Year: 2020
Page: [872 - 881]
Pages: 10
DOI: 10.2174/1389201021666200130113022
Price: $65

Article Metrics

PDF: 24
HTML: 2