Single Nucleotide Polymorphism Analysis in HIV and Kaposi's Sarcoma Disease by Microarray Technique

Author(s): Ismail Koyuncu*, Ataman Gönel, Emrah Ozcan, Ebru Temiz, Şahin Toprak, Feridun Akkafa, Irfan Binici

Journal Name: Current HIV Research

Volume 18 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Emergence of Kaposi's Sarcoma in the cases other than HIV, following the use of immunosuppressant drugs, demonstrates that it is related to weak immunity. The fact that this malignancy does not occur in every HIV-positive patient suggests that genetic predisposition may also be effective. Replacement of one of the base pairs of adenine, guanine, cytosine, and thymine that constitute the DNA sequence in the human genome with another base pair can affect susceptibility to disease, response to treatment, and immunity.

Objective: The purpose of this study is to analyze the Single Nucleotide Polymorphism that could predispose to Kaposi's sarcoma of an HIV-infected patient and to identify which nucleotides such SNPs correspond to, using the microarray technology.

Materials and Methods: The blood samples of individuals, one of whom was diagnosed with Kaposi's Sarcoma HIV (+) visiting the outpatient clinic of infectious diseases polyclinic of Harran University Research and Practice Hospital and of a healthy individual with no Kaposi's Sarcoma, were used in the study. Following the DNA isolation of the blood samples taken from the respective individuals, a SNP analysis was conducted on the microarray device. 204,000 SNPs obtained were scanned later on in the databases in an attempt to identify the SNPs related to Kaposi's Sarcoma.

Results: In the 204,000 SNP screenings, we scrutinized the SNPs that differ in the case of Kaposi's Sarcoma [KS (+) and HIV (+)] on the basis of Control [KS(-) and HIV(-)] and HIV+ [KS(-)], and two SNPs of the ENDRA gene, three SNPs of the ADRA1A gene, six SNPs of the STIM1 gene, four SNPs of the EFNB2 gene, and one SNP of the CD209 gene were found to be different. However, when it comes to all SNPs (all the 204.000 SNPs) screened in terms of allele, it was observed that the AA and BB alleles were lower in the patient with Kaposi's Sarcoma [KS (+) and HIV (+)] compared to other groups and AB alleles were found to be higher than others in the patient with Kaposi's sarcoma [KS] (+) and HIV (+)].

Conclusion: In the microarray study we have conducted, 204,000 SNPs were screened for Control (HIV-) HIV (+) and HIV (+) patient with Kaposi's Sarcoma. It was found that 32,362 of those SNPs had different alleles in the Kaposi's Sarcoma [KS + HIV (+)] patient, while they had the same ones in the control [KS (-) and HIV (-)] and HIV + [KS (-)] group. 16 of the 32,362 SNPs took place among the genes related to Kaposi's Sarcoma. In the cases of Kaposi's Sarcoma with suspected diagnosis, it can be used as a beneficial laboratory test.

Keywords: Kaposi's sarcoma, HIV, single nucleotide polymorphism, microarray, SNP analyzes, genome.

[1]
Chakraborty S, Veettil MV, Chandran B. Kaposi’s sarcoma associated herpesvirus entry into target cells. Front Microbiol 2012; 3: 6.
[http://dx.doi.org/10.3389/fmicb.2012.00006] [PMID: 22319516]
[2]
Coscoy L. Immune evasion by Kaposi’s sarcoma-associated herpesvirus. Nat Rev Immunol 2007; 7(5): 391-401.
[http://dx.doi.org/10.1038/nri2076] [PMID: 17457345]
[3]
Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest 2010; 120(4): 939-49.
[http://dx.doi.org/10.1172/JCI40567] [PMID: 20364091]
[4]
Cavallin LE, Goldschmidt-Clermont P, Mesri EA. Molecular and cellular mechanisms of KSHV oncogenesis of Kaposi’s sarcoma associated with HIV/AIDS. PLoS Pathog 2014; 10(7) e1004154
[http://dx.doi.org/10.1371/journal.ppat.1004154] [PMID: 25010730]
[5]
Fagerberg L, Hallström BM, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 2014; 13(2): 397-406.
[http://dx.doi.org/10.1074/mcp.M113.035600] [PMID: 24309898]
[6]
Radu O, Pantanowitz L. Kaposi sarcoma. Arch Pathol Lab Med 2013; 137(2): 289-94.
[http://dx.doi.org/10.5858/arpa.2012-0101-RS] [PMID: 23368874]
[7]
Etemad SA, Dewan AK. Kaposi Sarcoma Updates. Dermatol Clin 2019; 37(4): 505-17.
[http://dx.doi.org/10.1016/j.det.2019.05.008] [PMID: 31466590]
[8]
Kaposi Sarcoma Treatment (PDQ®): Patient Version 2019 Available at:. https://www.cancer.gov/types/soft-tissue-sarcoma/patient/kaposi-treatment-pdq
[9]
Kaposi M. Idiopathisches multiples Pigmentsarkom der Haut. Arch Dermatol Syph 1872; 4: 265-73.
[http://dx.doi.org/10.1007/BF01830024]
[10]
Mohanna S, Maco V, Bravo F, Gotuzzo E. Epidemiology and clinical characteristics of classic Kaposi’s sarcoma, seroprevalence, and variants of human herpesvirus 8 in South America: a critical review of an old disease. Int J Infect Dis 2005; 9(5): 239-50.
[http://dx.doi.org/10.1016/j.ijid.2005.02.004] [PMID: 16095940]
[11]
Régnier-Rosencher E, Guillot B, Dupin N. Treatments for classic Kaposi sarcoma: a systematic review of the literature. J Am Acad Dermatol 2013; 68(2): 313-31.
[http://dx.doi.org/10.1016/j.jaad.2012.04.018] [PMID: 22695100]
[12]
Ruocco E, Ruocco V, Tornesello ML, Gambardella A, Wolf R, Buonaguro FM. Kaposi’s sarcoma: etiology and pathogenesis, inducing factors, causal associations, and treatments: facts and controversies. Clin Dermatol 2013; 31(4): 413-22.
[http://dx.doi.org/10.1016/j.clindermatol.2013.01.008] [PMID: 23806158]
[13]
Dollard SC, Butler LM, Jones AM, et al. Substantial regional differences in human herpesvirus 8 seroprevalence in sub-Saharan Africa: insights on the origin of the “Kaposi’s sarcoma belt”. Int J Cancer 2010; 127(10): 2395-401.
[http://dx.doi.org/10.1002/ijc.25235] [PMID: 20143397]
[14]
Hengge UR, Ruzicka T, Tyring SK, et al. Update on Kaposi’s sarcoma and other HHV8 associated diseases. Part 1: epidemiology, environmental predispositions, clinical manifestations, and therapy. Lancet Infect Dis 2002; 2(5): 281-92.
[http://dx.doi.org/10.1016/S1473-3099(02)00263-3] [PMID: 12062994]
[15]
Parkin DM, Sitas F, Chirenje M, et al. Part I: Cancer in Indigenous Africans--burden, distribution, and trends. Lancet Oncol 2008; 9(7): 683-92.
[http://dx.doi.org/10.1016/S1470-2045(08)70175-X] [PMID: 18598933]
[16]
Gérard L, Bérezné A, Galicier L, et al. Prospective study of rituximab in chemotherapy-dependent human immunodeficiency virus associated multicentric Castleman’s disease: ANRS 117 CastlemaB Trial. J Clin Oncol 2007; 25(22): 3350-6.
[http://dx.doi.org/10.1200/JCO.2007.10.6732] [PMID: 17664482]
[17]
Klepp O, Dahl O, Stenwig JT. Association of Kaposi’s sarcoma and prior immunosuppressive therapy: a 5-year material of Kaposi’s sarcoma in Norway. Cancer 1978; 42(6): 2626-30.
[http://dx.doi.org/10.1002/1097-0142(197812)42:6<2626:AID-CNCR2820420618>3.0.CO;2-7] [PMID: 728865]
[18]
Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 2005; 352(13): 1317-23.
[http://dx.doi.org/10.1056/NEJMoa042831] [PMID: 15800227]
[19]
Alkharsah KR, Alzahrani AJ, Obeid OE, et al. Vascular endothelial growth factor A polymorphism and risk of Kaposi’s sarcoma herpesvirus viremia in kidney allograft recipients. Transpl Infect Dis 2014; 16(5): 783-9.
[http://dx.doi.org/10.1111/tid.12277] [PMID: 25124076]
[20]
Cahoon EK, Linet MS, Clarke CA, Pawlish KS, Engels EA, Pfeiffer RM. Risk of Kaposi sarcoma after solid organ transplantation in the United States. Int J Cancer 2018; 143(11): 2741-8.
[http://dx.doi.org/10.1002/ijc.31735] [PMID: 29987894]
[21]
Barozzi P, Luppi M, Facchetti F, et al. Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med 2003; 9(5): 554-61.
[http://dx.doi.org/10.1038/nm862] [PMID: 12692543]
[22]
Dollard SC, Douglas D, Basavaraju SV, Schmid DS, Kuehnert M, Aqel B. Donor-derived Kaposi’s sarcoma in a liver-kidney transplant recipient. Am J Transplant 2018; 18(2): 510-3.
[http://dx.doi.org/10.1111/ajt.14516] [PMID: 28941319]
[23]
Ramzi M, Vojdani R, Haghighinejad H. Kaposi sarcoma after allogeneic hematopoietic stem cell transplant: A rare complication. Exp Clin Transplant 2018. [Epub ahead of print]
[24]
Boily M-C, Baggaley RF, Wang L, et al. Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect Dis 2009; 9(2): 118-29.
[http://dx.doi.org/10.1016/S1473-3099(09)70021-0] [PMID: 19179227]
[25]
Goncalves PH, Ziegelbauer J, Uldrick TS, Yarchoan R. Kaposi sarcoma herpesvirus-associated cancers and related diseases. Curr Opin HIV AIDS 2017; 12(1): 47-56.
[http://dx.doi.org/10.1097/COH.0000000000000330] [PMID: 27662501]
[26]
Royse KE, El Chaer F, Amirian ES, et al. Disparities in Kaposi sarcoma incidence and survival in the United States: 2000-2013. PLoS One 2017; 12(8) e0182750
[http://dx.doi.org/10.1371/journal.pone.0182750] [PMID: 28829790]
[27]
De Paoli P, Carbone A. Kaposi’s Sarcoma Herpesvirus: twenty years after its discovery. Eur Rev Med Pharmacol Sci 2016; 20(7): 1288-94.
[PMID: 27097948]
[28]
Liu Z, Fang Q, Zuo J, Minhas V, Wood C, Zhang T. The world-wide incidence of Kaposi’s sarcoma in the HIV/AIDS era. HIV Med 2018; 19(5): 355-64.
[http://dx.doi.org/10.1111/hiv.12584] [PMID: 29368388]
[29]
Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266(5192): 1865-9.
[http://dx.doi.org/10.1126/science.7997879] [PMID: 7997879]
[30]
Liu W, Jiang L, Bian C, et al. Role of CX3CL1 in Diseases. Arch Immunol Ther Exp (Warsz) 2016; 64(5): 371-83.
[http://dx.doi.org/10.1007/s00005-016-0395-9] [PMID: 27098399]
[31]
Parczewski M, Urbańska A, Maciejewska K, Clark J, Leszczyszyn-Pynka M. Association of chemokine receptor gene variants with HIV-1 genotype predicted tropism. HIV Med 2014; 15(10): 577-86.
[http://dx.doi.org/10.1111/hiv.12155] [PMID: 24750723]
[32]
Byun M, Abhyankar A, Lelarge V, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med 2010; 207(11): 2307-12.
[http://dx.doi.org/10.1084/jem.20101597] [PMID: 20876309]
[33]
Petersen DC, Glashoff RH, Shrestha S, et al. Risk for HIV-1 infection associated with a common CXCL12 (SDF1) polymorphism and CXCR4 variation in an African population. J Acquir Immune Defic Syndr 2005; 40(5): 521-6.
[34]
Alfano M, Poli G. Cytokines and HIV Infection. In: Soluble Factors Mediating Innate Immune Responses to HIV Infection. Ed. Alfano M.. Bentham Science Publishers Ltd. 2010; pp. 17-50.
[35]
Chen D, Sandford G, Nicholas J. Intracellular signaling mechanisms and activities of human herpesvirus 8 interleukin-6. J Virol 2009; 83(2): 722-33.
[http://dx.doi.org/10.1128/JVI.01517-08] [PMID: 18987143]
[36]
Ji J, Sahu GK, Braciale VL, Cloyd MW. HIV-1 induces IL-10 production in human monocytes via a CD4-independent pathway. Int Immunol 2005; 17(6): 729-36.
[http://dx.doi.org/10.1093/intimm/dxh252] [PMID: 15937058]
[37]
Stylianou E, Aukrust P, Kvale D, Müller F, Frøland SS. IL-10 in HIV infection: increasing serum IL-10 levels with disease progression--down-regulatory effect of potent anti-retroviral therapy. Clin Exp Immunol 1999; 116(1): 115-20.
[http://dx.doi.org/10.1046/j.1365-2249.1999.00865.x] [PMID: 10209514]
[38]
Shrestha S, Wiener HW, Aissani B, et al. Interleukin-10 (IL-10) pathway: genetic variants and outcomes of HIV-1 infection in African American adolescents. PLoS One 2010; 5(10) e13384
[http://dx.doi.org/10.1371/journal.pone.0013384] [PMID: 20976276]
[39]
Kwon DS, Kaufmann DE. Protective and detrimental roles of IL-10 in HIV pathogenesis. Eur Cytokine Netw 2010; 21(3): 208-14.
[PMID: 20732847]
[40]
Klei LR, Garciafigueroa DY, Barchowsky A. Arsenic Activates Endothelin-1 Gi Protein–Coupled Receptor Signaling to Inhibit Stem Cell Differentiation in Adipogenesis toxicological sciences 2012; 131(2): 512-20.
[41]
Yuferov V, Ho A, Morgello S, Yang Y, Ott J, Kreek MJ. Expression of ephrin receptors and ligands in postmortem brains of HIV-infected subjects with and without cognitive impairment. J Neuroimmune Pharmacol 2013; 8(1): 333-44.
[http://dx.doi.org/10.1007/s11481-012-9429-1] [PMID: 23314923]
[42]
Li Y, Chang SC, Niu R, et al. TP53 genetic polymorphisms, interactions with lifestyle factors and lung cancer risk: a case control study in a Chinese population. BMC Cancer 2013; 13(1): 607.
[http://dx.doi.org/10.1186/1471-2407-13-607] [PMID: 24369748]
[43]
Izumi T, Io K, Matsui M, et al. HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively regulate viral replication. Proc Natl Acad Sci USA 2010; 107(48): 20798-803.
[http://dx.doi.org/10.1073/pnas.1008076107] [PMID: 21071676]
[44]
Galanina N, Goodman AM, Cohen PR, Frampton GM, Kurzrock R. Successful treatment of HIV-associated Kaposi sarcoma with immune checkpoint blockade. Cancer Immunol Res 2018; 6(10): 1129-35.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0121] [PMID: 30194084]
[45]
Entiauspe LG, Seixas FK, Nunes EM, et al. Uncommon non-oncogenic HPV genotypes, TP53 and MDM2 genes polymorphisms in HIV-infected women in Southern Brazil. Braz J Infect Dis 2014; 18(6): 643-50.
[http://dx.doi.org/10.1016/j.bjid.2014.07.005] [PMID: 25181402]
[46]
Selvaraj P, Alagarasu K, Swaminathan S, Harishankar M, Narendran G. CD209 gene polymorphisms in South Indian HIV and HIV-TB patients. Infect Genet Evol 2009; 9(2): 256-62.
[http://dx.doi.org/10.1016/j.meegid.2008.12.003] [PMID: 19126442]
[47]
Vannberg FO, Chapman SJ, Khor CC, et al. CD209 genetic polymorphism and tuberculosis disease. PLoS One 2008; 3(1) e1388
[http://dx.doi.org/10.1371/journal.pone.0001388] [PMID: 18167547]
[48]
Herrero R, Pineda JA, Rivero-Juarez A, et al. Common haplotypes in CD209 promoter and susceptibility to HIV-1 infection in intravenous drug users. Infect Genet Evol 2016; 45: 20-5.
[http://dx.doi.org/10.1016/j.meegid.2016.08.014] [PMID: 27539513]
[49]
Henrich K-O. CAMTA1 (calmodulin binding transcription activator 1). Atlas Genet Cytogenet Oncol Haematol 2011.
[http://dx.doi.org/10.4267/2042/45021]
[50]
Sugita S, Hirano H, Kikuchi N, et al. Diagnostic utility of FOSB immunohistochemistry in pseudomyogenic hemangioendothelioma and its histological mimics. Diagn Pathol 2016; 11(1): 75.
[http://dx.doi.org/10.1186/s13000-016-0530-2] [PMID: 27515856]
[51]
Mocroft A, Youle M, Gazzard B, Morcinek J, Halai R, Phillips AN. Royal Free/Chelsea and Westminster Hospitals Collaborative Group. Anti-herpesvirus treatment and risk of Kaposi’s sarcoma in HIV infection. AIDS 1996; 10(10): 1101-5.
[PMID: 8874626]
[52]
White GH, Tideman PA. Heterophilic antibody interference with CARDIAC T quantitative rapid assay. Clin Chem 2002; 48(1): 201-3.
[http://dx.doi.org/10.1093/clinchem/48.1.201] [PMID: 11751561]
[53]
Firth HV, Hurst JA. Oxford Desk Reference: Clinical Genetics and Genomics. Oxford University Press 2017.
[http://dx.doi.org/10.1093/med/9780199557509.001.0001]
[54]
Bignell GR, Greenman CD, Davies H, et al. Signatures of mutation and selection in the cancer genome. Nature 2010; 463(7283): 893-8.
[http://dx.doi.org/10.1038/nature08768] [PMID: 20164919]
[55]
Miller RD, Kwok P-Y. The birth and death of human single-nucleotide polymorphisms: new experimental evidence and implications for human history and medicine. Hum Mol Genet 2001; 10(20): 2195-8.
[http://dx.doi.org/10.1093/hmg/10.20.2195] [PMID: 11673401]
[56]
Aissani B, Boehme AK, Wiener HW, Shrestha S, Jacobson LP, Kaslow RA. SNP screening of central MHC-identified HLA-DMB as a candidate susceptibility gene for HIV-related Kaposi’s sarcoma. Genes Immun 2014; 15(6): 424-9.
[http://dx.doi.org/10.1038/gene.2014.42] [PMID: 25008864]
[57]
Wang QJ, Jenkins FJ, Jacobson LP, et al. Primary human herpesvirus 8 infection generates a broadly specific CD8(+) T-cell response to viral lytic cycle proteins. Blood 2001; 97(8): 2366-73.
[http://dx.doi.org/10.1182/blood.V97.8.2366] [PMID: 11290599]
[58]
Aoki Y, Jones KD, Tosato G. Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. J Hematother Stem Cell Res 2000; 9(2): 137-45.
[http://dx.doi.org/10.1089/152581600319351] [PMID: 10813527]
[59]
Moore PS, Boshoff C, Weiss RA, Chang Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996; 274(5293): 1739-44.
[http://dx.doi.org/10.1126/science.274.5293.1739] [PMID: 8939871]
[60]
Uldrick TS, Wang V, O’Mahony D, et al. An interleukin-6-related systemic inflammatory syndrome in patients co-infected with Kaposi sarcoma-associated herpesvirus and HIV but without Multicentric Castleman disease. Clin Infect Dis 2010; 51(3): 350-8.
[http://dx.doi.org/10.1086/654798] [PMID: 20583924]
[61]
Shin HD, Winkler C, Stephens JC, et al. Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc Natl Acad Sci USA 2000; 97(26): 14467-72.
[http://dx.doi.org/10.1073/pnas.97.26.14467] [PMID: 11121048]
[62]
Polizzotto MN, Uldrick TS, Wyvill KM, et al. Clinical features and outcomes of patients with symptomatic Kaposi sarcoma herpesvirus (KSHV)-associated inflammation: prospective characterization of KSHV inflammatory cytokine syndrome (KICS). Clin Infect Dis 2016; 62(6): 730-8.
[http://dx.doi.org/10.1093/cid/civ996] [PMID: 26658701]
[63]
Kallianpur AR, Levine AJ. Host genetic factors predisposing to HIV-associated neurocognitive disorder. Curr HIV/AIDS Rep 2014; 11(3): 336-52.
[http://dx.doi.org/10.1007/s11904-014-0222-z] [PMID: 24996618]
[64]
Tikka-Kleemola P, Kaunisto MA, Hämäläinen E, et al. Genetic association study of endothelin-1 and its receptors EDNRA and EDNRB in migraine with aura. Cephalalgia 2009; 29(11): 1224-31.
[http://dx.doi.org/10.1111/j.1468-2982.2009.01855.x] [PMID: 19558538]
[65]
Varmazyar S, Marashi SM, Shoja Z, et al. MDM2 gene polymorphisms and risk of classic Kaposi’s sarcoma among Iranian patients. Med Microbiol Immunol (Berl) 2017; 206(2): 157-63.
[http://dx.doi.org/10.1007/s00430-016-0491-9] [PMID: 28083704]
[66]
Buckhout-White S, Person C, Medintz IL, Goldman ER. Restriction enzymes as a target for DNA-based sensing and structural rearrangement. ACS Omega 2018; 3(1): 495-502.
[http://dx.doi.org/10.1021/acsomega.7b01333] [PMID: 31457907]
[67]
Peng L, Peng W, Hu P, Zhang HF. Clinical significance of expression levels of serum ADRA1A in hysterocarcinoma patients. Oncol Lett 2018; 15(6): 9162-6.
[http://dx.doi.org/10.3892/ol.2018.8465] [PMID: 29805646]
[68]
Bais C, Santomasso B, Coso O, et al. G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 1998; 391(6662): 86-9.
[http://dx.doi.org/10.1038/34193] [PMID: 9422510]
[69]
Tanas MR, Ma S, Jadaan FO, et al. Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein. Oncogene 2016; 35(7): 929-38.
[http://dx.doi.org/10.1038/onc.2015.148] [PMID: 25961935]
[70]
Cheung V, Clarkson A, Gill A. CAMTA1 immunohistochemistry is a highly sensitive marker for epithelioid haemangioendothelioma. Pathology 2018; 50: S140.
[http://dx.doi.org/10.1016/j.pathol.2017.11.050]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 3
Year: 2020
Page: [154 - 164]
Pages: 11
DOI: 10.2174/1570162X18666200130100654
Price: $65

Article Metrics

PDF: 7
HTML: 3