Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Characterization of Three Osmotin-Like Proteins from Plumeria rubra and Prospection for Adiponectin Peptidomimetics

Author(s): Cleverson D.T. de Freitas*, Beatriz C. Nishi, Camila T.M. do Nascimento, Maria Z.R. Silva, Eduardo H.S. Bezerra, Bruno A.M. Rocha, Thalles B. Grangeiro, João P.B. de Oliveira, Pedro F. Noronha Souza and Márcio V. Ramos*

Volume 27, Issue 7, 2020

Page: [593 - 603] Pages: 11

DOI: 10.2174/0929866527666200129154357

Price: $65

Abstract

Background: Osmotin-Like Proteins (OLPs) have been purified and characterized from different plant tissues, including latex fluids. Besides its defensive role, tobacco osmotin seems to induce adiponectin-like physiological effects, acting as an agonist. However, molecular information about this agonistic effect on adiponectin receptors has been poorly exploited and other osmotins have not been investigated yet.

Objective and Methods: The present study involved the characterization of three OLPs from Plumeria rubra latex and molecular docking studies to evaluate the interaction between them and adiponectin receptors (AdipoR1 and AdipoR2).

Results: P. rubra Osmotin-Like Proteins (PrOLPs) exhibited molecular masses from 21 to 25 kDa and isoelectric points ranging from 4.4 to 7.7. The proteins have 16 cysteine residues, which are involved in eight disulfide bonds, conserved in the same positions as other plant OLPs. The threedimensional (3D) models exhibited the three typical domains of OLPs, and molecular docking analysis showed that two PrOLP peptides interacted with two adiponectin receptors similarly to tobacco osmotin peptide.

Conclusion: As observed for tobacco osmotin, the latex osmotins of P. rubra exhibited compatible interactions with adiponectin receptors. Therefore, these plant defense proteins (without known counterparts in humans) are potential tools to study modulation of glucose metabolism in type II diabetes, where adiponectin plays a pivotal role in homeostasis.

Keywords: AdipoR1, AdipoR2, latex, molecular modeling, phylogeny of proteins, thaumatin.

Graphical Abstract
[1]
Anil Kumar, S.; Hima Kumari, P.; Shravan Kumar, G.; Mohanalatha, C.; Kavi Kishor, P.B. Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Front. Plant Sci., 2015, 6, 163-171.
[http://dx.doi.org/10.3389/fpls.2015.00163] [PMID: 25852715]
[2]
Singh, N.K.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A. Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol., 1985, 79(1), 126-137.
[http://dx.doi.org/10.1104/pp.79.1.126] [PMID: 16664357]
[3]
Liu, J.J.; Sturrock, R.; Ekramoddoullah, A.K.M. The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep., 2010, 29(5), 419-436.
[http://dx.doi.org/10.1007/s00299-010-0826-8] [PMID: 20204373]
[4]
van Loon, L.C.; Rep, M.; Pieterse, C.M.J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 2006, 44, 135-162.
[http://dx.doi.org/10.1146/annurev.phyto.44.070505.143425] [PMID: 16602946]
[5]
Naseer, M.I.; Ullah, I.; Narasimhan, M.L.; Lee, H.Y.; Bressan, R.A.; Yoon, G.H.; Yun, D.J.; Kim, M.O. Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain. Cell Death Dis., 2014, 5, e1150-e1150.
[http://dx.doi.org/10.1038/cddis.2014.53] [PMID: 24675468]
[6]
Arsenescu, V.; Narasimhan, M.L.; Halide, T.; Bressan, R.A.; Barisione, C.; Cohen, D.A.; de Villiers, W.J.S.; Arsenescu, R. Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis. Dig. Dis. Sci., 2011, 56(10), 2818-2832.
[http://dx.doi.org/10.1007/s10620-011-1692-0] [PMID: 21479819]
[7]
Ali, T.; Yoon, G.H.; Shah, S.A.; Lee, H.Y.; Kim, M.O. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci. Rep., 2015, 5, 11708-11715.
[http://dx.doi.org/10.1038/srep11708] [PMID: 26118757]
[8]
Trivedi, V.R.; Chorawala, M.R.; Shah, G.B. antiatheroscleroticactivity of osmotin, an adiponectin agonist in atherogenic diet induced hypertriglyceridemia and hypercholesterolemia in wistar rats. arpb. 2, 2012. www.arpb.info (accessed march 21, 2019)
[9]
Trivedi, V.R.; Chorawala, M.R.; Shah, G.B. Osmotin: A new adiponectin agonist, in type-II diabetes and obesity. Int. J. Pharm. Sci. Rev. Res., 2012, 16, 70-79.
[10]
Shah, S.A.; Lee, H.Y.; Bressan, R.A.; Yun, D.J.; Kim, M.O. Novel osmotin attenuates glutamate-induced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain. Cell Death Dis., 2014, 5 e1026.
[http://dx.doi.org/10.1038/cddis.2013.538] [PMID: 24481440]
[11]
Takahashi, Y.; Watanabe, R.; Sato, Y.; Ozawa, N.; Kojima, M.; Watanabe-Kominato, K.; Shirai, R.; Sato, K.; Hirano, T.; Watanabe, T. Novel phytopeptide osmotin mimics preventive effects of adiponectin on vascular inflammation and atherosclerosis. Metabolism, 2018, 83, 128-138.
[http://dx.doi.org/10.1016/j.metabol.2018.01.010] [PMID: 29410350]
[12]
Shah, S.A.; Yoon, G.H.; Chung, S.S.; Abid, M.N.; Kim, T.H.; Lee, H.Y.; Kim, M.O. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol. Psychiatry, 2017, 22(3), 407-416.
[http://dx.doi.org/10.1038/mp.2016.23] [PMID: 27001618]
[13]
Kadowaki, T.; Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev., 2005, 26(3), 439-451.
[http://dx.doi.org/10.1210/er.2005-0005] [PMID: 15897298]
[14]
Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab., 2004, 89(6), 2548-2556.
[http://dx.doi.org/10.1210/jc.2004-0395] [PMID: 15181022]
[15]
Jardé, T.; Caldefie-Chézet, F.; Goncalves-Mendes, N.; Mishellany, F.; Buechler, C.; Penault-Llorca, F.; Vasson, M.P. Involvement of adiponectin and leptin in breast cancer: clinical and in vitro studies. Endocr. Relat. Cancer, 2009, 16(4), 1197-1210.
[http://dx.doi.org/10.1677/ERC-09-0043] [PMID: 19661131]
[16]
Freitas, C.D.T.; Silva, M.Z.R.; Bruno-Moreno, F.; Monteiro-Moreira, A.C.O.; Moreira, R.A.; Ramos, M.V. New constitutive latex osmotin-like proteins lacking antifungal activity. Plant Physiol. Biochem., 2015, 96, 45-52.
[http://dx.doi.org/10.1016/j.plaphy.2015.07.012] [PMID: 26231325]
[17]
de Freitas, C.D.; Nogueira, F.C.S.; Vasconcelos, I.M.; Oliveira, J.T.A.; Domont, G.B.; Ramos, M.V. Osmotin purified from the latex of Calotropis procera: biochemical characterization, biological activity and role in plant defense. Plant Physiol. Biochem., 2011, 49(7), 738-743.
[http://dx.doi.org/10.1016/j.plaphy.2011.01.027] [PMID: 21334906]
[18]
Looze, Y.; Boussard, P.; Huet, J.; Vandenbusche, G.; Azarkan, M.; Raussens, V.; Wintjens, R. Purification and characterization of a wound-inducible thaumatin-like protein from the latex of Carica papaya. Phytochemistry, 2009, 70(8), 970-978.
[http://dx.doi.org/10.1016/j.phytochem.2009.05.005] [PMID: 19527911]
[19]
Ramos, M.V.; de Oliveira, R.S.B.; Pereira, H.M.; Moreno, F.B.M.B.; Lobo, M.D.P.; Rebelo, L.M.; Brandão-Neto, J.; de Sousa, J.S.; Monteiro-Moreira, A.C.O.; Freitas, C.D.T.; Grangeiro, T.B. Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: Insights into the mechanism of action. Phytochemistry, 2015, 119, 5-18.
[http://dx.doi.org/10.1016/j.phytochem.2015.09.012] [PMID: 26456062]
[20]
Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report., 1993, 11, 113-116.
[http://dx.doi.org/10.1007/BF02670468]
[21]
Ewing, B.; Hillier, L.; Wendl, M.C.; Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res., 1998, 8(3), 175-185.
[http://dx.doi.org/10.1101/gr.8.3.175] [PMID: 9521921]
[22]
Ewing, B.; Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res., 1998, 8(3), 186-194.
[http://dx.doi.org/10.1101/gr.8.3.186] [PMID: 9521922]
[23]
Gordon, D.; Abajian, C.; Green, P. Consed: a graphical tool for sequence finishing. Genome Res., 1998, 8(3), 195-202.
[http://dx.doi.org/10.1101/gr.8.3.195] [PMID: 9521923]
[24]
Kumar, S.; Stecher, G.; Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 2016, 33(7), 1870-1874.
[http://dx.doi.org/10.1093/molbev/msw054] [PMID: 27004904]
[25]
Nielsen, M.; Lundegaard, C.; Lund, O.; Petersen, T.N. cphmodels-3.0-remote homology modeling using structure-guided sequence profiles. nucleic acids res 2010, 38(web server issue), w576-581.
[http://dx.doi.org/10.1093/nar/gkq535] [PMID: 20542909]
[26]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. curr. protoc. bioinformatics, 2016, 54, 5.6.1-5.6.37.,
[http://dx.doi.org/10.1002/cpbi.3] [PMID: 27322406]
[27]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[28]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. swiss-model: modelling protein tertiary and quaternary structure using evolutionary information. nucleic acids res 2014, 42(web server issue), w252-258.
[http://dx.doi.org/10.1093/nar/gku340 ] [PMID: 24782522]
[29]
Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 1), 12-21.
[http://dx.doi.org/10.1107/S0907444909042073] [PMID: 20057044]
[30]
Sumathi, K.; Ananthalakshmi, P.; Roshan, M.N.A.M.; Sekar, K. 3dss: 3d structural superposition. nucleic acids res., 2006, 34(web server issue), w128-132.
[PMID: 16844975]
[31]
Miele, M.; Costantini, S.; Colonna, G. Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin. PLoS One, 2011, 6(2) e16690.
[http://dx.doi.org/10.1371/journal.pone.0016690] [PMID: 21311758]
[32]
Tanabe, H.; Fujii, Y.; Okada-Iwabu, M.; Iwabu, M.; Nakamura, Y.; Hosaka, T.; Motoyama, K.; Ikeda, M.; Wakiyama, M.; Terada, T.; Ohsawa, N.; Hato, M.; Ogasawara, S.; Hino, T.; Murata, T.; Iwata, S.; Hirata, K.; Kawano, Y.; Yamamoto, M.; Kimura-Someya, T.; Shirouzu, M.; Yamauchi, T.; Kadowaki, T.; Yokoyama, S. Crystal structures of the human adiponectin receptors. Nature, 2015, 520(7547), 312-316.
[http://dx.doi.org/10.1038/nature14301] [PMID: 25855295]
[33]
Tovchigrechko, A.; Vakser, I.A. GRAMM-X public web server for protein-protein docking. nucleic acids res, 2006, 34(web server issue), w310-4.
[http://dx.doi.org/10.1093/nar/gkl206] [PMID: 16845016]
[34]
Donsky, E.; Wolfson, H.J. PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics, 2011, 27(20), 2836-2842.
[http://dx.doi.org/10.1093/bioinformatics/btr498] [PMID: 21880702]
[35]
Mani, T.; Manjula, S. Cloning and characterization of two osmotin isoforms from Piper colubrinum. Biol. Plant., 2010, 54, 377-380.
[http://dx.doi.org/10.1007/s10535-010-0068-1]
[36]
Breitbart, R.E.; Andreadis, A.; Nadal-Ginard, B. Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu. Rev. Biochem., 1987, 56, 467-495.
[http://dx.doi.org/10.1146/annurev.bi.56.070187.002343] [PMID: 3304142]
[37]
Batalia, M.A.; Monzingo, A.F.; Ernst, S.; Roberts, W.; Robertus, J.D. The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. Nat. Struct. Biol., 1996, 3(1), 19-23.
[http://dx.doi.org/10.1038/nsb0196-19] [PMID: 8548448]
[38]
Ghosh, R.; Chakrabarti, C. Crystal structure analysis of NP24-I: a thaumatin-like protein. Planta, 2008, 228(5), 883-890.
[http://dx.doi.org/10.1007/s00425-008-0790-5] [PMID: 18651170]
[39]
Ma, L.; Zhang, Z.; Xue, X.; Wan, Y.; Ye, B.; Lin, K. A potent peptide as adiponectin receptor 1 agonist to against fibrosis. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 624-631.
[http://dx.doi.org/10.1080/14756366.2017.1284067] [PMID: 28260395]
[40]
de Oliveira, K.A.; Moreira Gomes, M.D.; Vasconcelos, R.P.; de Abreu, E.S.; Fortunato, R.S.; Carneiro Loureiro, A.C.; Coelho-de-Souza, A.N.; de Oliveira, R.S.B.; de Freitas, C.D.T.; Ramos, M.V.; de Oliveira, A.C. Phytomodulatory proteins promote inhibition of hepatic glucose production and favor glycemic control via the AMPK pathway. Biomed. Pharmacother., 2019, 109, 2342-2347.
[http://dx.doi.org/10.1016/j.biopha.2018.11.139] [PMID: 30551493]
[41]
Otvos, L., Jr; Haspinger, E.; La Russa, F.; Maspero, F.; Graziano, P.; Kovalszky, I.; Lovas, S.; Nama, K.; Hoffmann, R.; Knappe, D.; Cassone, M.; Wade, J.; Surmacz, E. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment. BMC Biotechnol., 2011, 11, 90-100.
[http://dx.doi.org/10.1186/1472-6750-11-90] [PMID: 21974986]
[42]
Vagner, J.; Qu, H.; Hruby, V.J. Peptidomimetics, a synthetic tool of drug discovery. Curr. Opin. Chem. Biol., 2008, 12(3), 292-296.
[http://dx.doi.org/10.1016/j.cbpa.2008.03.009] [PMID: 18423417]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy